PERIODIC SOLUTIONS OF INVERSE QUANTUM ORTHOGONAL EQUATIONS

FREDERICK IRA MOXLEY III

Abstract. In the year 1939, the Mathematician G.H. Hardy proved that the only functions \(f \) which satisfy the classical orthogonality relation

\[
\int_0^1 f(\lambda_m t) f(\lambda_n t) \, dt = 0, \quad m \neq n,
\]

are the Bessel functions \(J_\nu(t) \) under certain constraints, where \(\nu > -1 \) is the order of the Bessel function, and \(\lambda_m, \lambda_n \) are the zeros of the Bessel function. More recently, the Mathematician L.D. Abreu proved that if a function \(f \in L^2_q(0,1) \) is \(q \)-orthogonal with respect to its own zeros in the interval \((0,1)\), then it satisfies the \(q \)-orthogonality relation

\[
\int_0^1 f(\lambda_m t) f(\lambda_n t) \, dq(t) = 0, \quad m \neq n,
\]

where the \(q \)-integral is a Riemann-Stieltjes integral with respect to a step function having infinitely many points of increase at the points \(q^\ell \), with the step size at the point \(q^\ell \) being \(q \), \(\forall \ell \in \mathbb{N}_0 \), where \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \), and \(0 < q < 1 \). Following these developments, herein we present an equivalence class of entire \(q^{-1} \)-periodic functions satisfying the \(q^{-1} \)-orthogonality relation

\[
\int_0^1 f(\lambda_m t) f(\lambda_n t) \, dq^{-1} t = 0, \quad m \neq n.
\]

1. Introduction

The quantum calculus, otherwise known as the \(q \)-calculus \[1\], has been found to have a wide variety of interesting applications in number theory \[2\], and the theory of orthogonal polynomials \[3, 4, 5\], for example. As such, herein we investigate a class of entire functions that are \(q^{-1} \)-orthogonal with respect to their own zeros,
and find that in this equivalence class, the only q^{-1}-periodic functions are nonzero constant-valued functions. It is well understood by the Fundamental Theorem of Algebra [6], that a nonzero constant function has no roots. Accordingly, this study aims to develop a novel approach to the field of q^{-1}-orthogonal polynomials [7], and the distribution of their zeros [8].

The paper is organized as follows: In Sec. 2 we introduce a class of entire functions, q^{-1}-orthogonal with respect to their own zeros, and demonstrate that the class is comprised of q^{-1}-periodic (i.e. constant) functions on the complex plane. Sec. 3 details the q^{-1}-Fourier series, and the completeness relations of the class. In Sec. 4, a first-order linear q^{-1}-difference equation is obtained for arriving at the value of the q^{-1}-periodic constant constituted by the class. Finally, concluding remarks are made in Sec. 5.

1.1. Preliminaries. If $q^{-1} \in \mathbb{R}$ is fixed, then a subset of \mathbb{C} is named \mathcal{A}, and is also q^{-1}-geometric if $q^{-1}x \in \mathcal{A}$ whenever $x \in \mathcal{A}$. If $\mathcal{A} \subset \mathbb{C}$ is q^{-1}-geometric then it contains all geometric sequences $\{xq^{-\ell}\}_{\ell=0}^{\infty}$, where $x \in \mathcal{A}$ such that as $q \to 1$ then $\mathcal{A} \to \mathbb{C}$. Unless otherwise noted, herein $0 < q < 1$ [9].

Definition 1.1. A function f defined on the q-geometric set \mathcal{A}, where $0 \in \mathcal{A}$, is said to be q-regular at zero if

$$
\lim_{\ell \to \infty} f(xq^\ell) = f(0), \quad \forall x \in \mathcal{A}.
$$

Definition 1.2. A function f defined on the q^{-1}-geometric set \mathcal{A}, where $0 \in \mathcal{A}$, is said to be q-regular at infinity if there exists a constant C such that

$$
\lim_{\ell \to \infty} f(xq^{-\ell}) = C, \quad \forall x \in \mathcal{A}.
$$

Definition 1.3. The Euler-Heine q^{-1}-difference operator [10, 11], is defined by

$$
\hat{D}_{q^{-1}} f(x) := \frac{f(x) - f(q^{-1}x)}{x - q^{-1}x}, \quad \forall x \in \mathcal{A} \setminus \{0\}.
$$
If $0 \in \mathcal{A}$, the q-derivative at zero is defined for $|q| < 1$ by

$$\hat{D}_{q^{-1}}f(0) := \lim_{\ell \to \infty} \frac{f(sq^{-\ell}) - f(0)}{sq^{-\ell}}, \quad \forall x \in \mathcal{A} / \{0\}.$$ \hspace{1cm} (1.4)

The q^{-1}-derivative at zero is denoted as $f'(0)$, assuming the limit exists and is independent of x.

The q^{-1}-product rule is \cite{12}

$$\hat{D}_{q^{-1}}[f(x)g(x)] = f(q^{-1}x)\hat{D}_{q^{-1}}g(x) + g(x)\hat{D}_{q^{-1}}f(x),$$ \hspace{1cm} (1.5)

and the q^{-1}-integral in the interval $(0, x)$ is

$$\int_0^x f(t)d_{q^{-1}}t = (1 - q) \sum_{\ell=0}^{\infty} f(xq^{-\ell})xq^{-\ell}.$$ \hspace{1cm} (1.6)

Now let $1 \leq p < \infty$, $x > 0$, and $\eta \in \mathbb{R}$. Also let $\mathcal{L}^p_{q^{-1},\eta}(0, x)$ be the space of all equivalence classes of functions satisfying

$$\int_0^x t^{|\eta|}f(t)^pd_{q^{-1}}t < \infty,$$ \hspace{1cm} (1.7)

where two functions are defined as equivalent if they are equivalent on the sequence $\{xq^{-\ell} : \ell \in \mathbb{N}_0\}$, where $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. Hence, f is a function in the Banach space $\mathcal{L}^p_{q^{-1},\eta}(0, x)$ with norm

$$||f||_{p,\eta,x} := \left(\int_0^x t^{|\eta|}f(t)^pd_{q^{-1}}t \right)^{\frac{1}{p}}.$$ \hspace{1cm} (1.8)

For the case when $p = 2$, it can be seen that the inner product

$$\langle f, g \rangle := \int_0^x t^{|\eta|}f(t)\overline{g(t)}d_{q^{-1}}t,$$ \hspace{1cm} (1.9)

is a separable Hilbert space, where $f, g \in \mathcal{L}^2_{q^{-1},\eta}(0, x)$. If $x = 1$, the resulting Hilbert space is $\mathcal{L}^2_{q^{-1},\eta}(0, 1)$, and the function $f \in \mathcal{L}^2_{q^{-1},\eta}(0, 1)$ is q^{-1}-orthogonal.
with respect to its own zeros in the interval \((0, 1)\) if

\[
\int_{0}^{1} f(\lambda_m t) f(\lambda_n t) d_{q^{-1}} t = \sum_{\ell=0}^{\infty} f(\lambda_m q^{-\ell}) f(\lambda_n q^{-\ell}) q^{-\ell} = 0, \quad m \neq n.
\]

Here, it should be pointed out that an orthonormal basis of \(L^2_{q^{-1}, \eta}(0, x)\) is \([13]\)

\[
\varphi_n(t) = \begin{cases}
\frac{1}{\sqrt{\eta + (1-q)}}, & t = xq^{-\ell}, \quad \ell \in \mathbb{N}_0; \\
0, & \text{otherwise}.
\end{cases}
\]

2. \(q^{-1}\)-Periodicity

Theorem 2.1. If the class constituted by all entire functions \(f\) of order less than 1, or of order 1 and minimal type of the form

\[
f(x) = x^{\rho(x)} F(x),
\]

where \(f(0) = -1/2\), and \(\rho(x)\) is given by the natural logarithmic relation \([14]\)

\[
\rho(x) = \log \left(\frac{\log \left(\frac{1}{2(1-x)} \right) + 1}{\log(x)} \right) > -\frac{1}{2},
\]

where \(\Gamma\) is the gamma function, and the entire function \(F(x)\), with real but not necessarily positive zeros is

\[
F(x) = \exp(cx) \prod_{n=1}^{\infty} \left\{ \left(1 - \frac{x}{\lambda_n} \right) \exp \left(\frac{x}{\lambda_n} \right) \right\},
\]

where \(c = \log(2\pi) - 1 - \gamma/2, \gamma\) is the Euler-Mascheroni constant; if \(F(x) \neq 0\) and \(f(x)\) is \(q^{-1}\)-orthogonal with respect to its zeros; \(\sum_{n} \lambda_n^{-1}\) is convergent, but not absolutely \([16]\); then \(f\) has the \(q^{-1}\)-periodic representation

\[
f_{q^{-1}}(x) = \prod_{\ell=0}^{\infty} \frac{1}{q^{2\ell+1} + q^2},
\]

defined on the \(q^{-1}\)-geometric set \(A\), i.e., \(f_{q^{-1}}(x)\) is constant in \(x\).
Proof. The proof depends on two lemmas. If

\[(2.5) \quad \int_0^1 \{f(\lambda_n t)\}^2 d\eta^{-1} t = (q^{-\ell})^{\eta+1}(1-q),\]

then the system

\[(2.6) \quad \varphi_n(t) = \frac{1}{\sqrt{(q^{-\ell})^{\eta+1}(1-q)}} f(\lambda_n t)\]

is orthonormal in \((0, 1)\). The following Theorem 2.2 demonstrates the system \(\varphi_n(t)\) is complete, independent of \(q^{-1}\)-orthogonality.

Theorem 2.2. If \(f\) satisfies the conditions of the previous Theorem 2.1, other than \(q^{-1}\)-orthogonality, \(g\) is \(q^{-1}\)-integrable, and

\[(2.7) \quad \int_0^1 g(t) f(\lambda_n t) d\eta^{-1} t = 0, \quad \forall \, n,\]

then \(g(t) \equiv 0\).

Proof. Let \(t = rq^{-\ell} \exp(i\theta)\), where \(\theta\) is the complex argument, \(i = \sqrt{-1}\), and

\[(2.8) \quad h(x) = \int_0^1 g(t) f(xt) d\eta^{-1} t.\]

It is clear that

\[(2.9) \quad h(x) = x^{\eta(x)} H(x),\]

where \(H(x)\) is an entire function. Here, we suppose that \(F(x)\) is of order less than 1, when \(H(x)\) is also of order less than 1. Since \(h(\lambda_n) = 0 \forall \, n\), it then follows that the ratio \([17]\)

\[(2.10) \quad \chi(x) = \frac{h(x)}{f(x)} = \frac{H(x)}{F(x)}\]

is also an entire function of order less than 1. Along the imaginary axis \(t = rq^{-\ell} \sin(\theta)\) it can be seen that \(|\exp(cx)| = |\exp(x\lambda_n^{-1})| = 1 \forall \, n\), where again
\[c = \log(2\pi) - 1 - \gamma/2, \text{ and} \]

\[\nu(x, t) = \left| \frac{F(xt)}{F(x)} \right| = \prod_{n=1}^{\infty} \left| \frac{\lambda_n - rt \sin(\theta)}{\lambda_n - r \sin(\theta)} \right|. \]

Here it should be pointed out that no factor exceeds 1, and the limit of each factor as \(r \to \infty \) is simply \(t \). Therefore \(|\nu| \leq 1 \forall r, t \). Moreover, for every fixed value of \(t < 1 \), as \(r \to \infty \) it can be seen that \(\nu \to \infty \). As such,

\[|\chi(x)| = \left| \int_{0}^{1} g(t) \frac{F(xt)}{F(x)} d_q \right| \leq \int_{0}^{1} |g(t)| |\nu(x, t)| d_q \]

is bounded, and tends to zero along the imaginary axis \(t = rq^{-\ell} \sin(\theta) \). Furthermore, suppose that \(\chi(x) \) makes an angle of \(\pi/\alpha \) at the origin, and also along the imaginary axis. By denoting the bound on \(\chi(x) \) as \(B \), such that along the imaginary axis

\[|\chi(x)| \leq B, \]

then as \(r \to \infty \), it can be seen that

\[\chi(x) = O\left(\exp(\delta r^\alpha) \right) \]

for every positive \(\delta \), uniformly in the angle. It then follows that the boundedness holds in the region where \(f \) is entire and regular for \(t = rq^{-\ell} \exp(i\theta) \). Without loss of generality, suppose that \(\theta = \pm \pi/(2\alpha) \) for the two angles \((-\pi/(2\alpha), 0) \) and \((0, \pi/(2\alpha)) \). Also, by letting

\[F(x) = \exp(-\varepsilon x^\alpha) f(x) \]

it can be seen that \(F(x) \) tends to zero on the real axis \(t = rq^{-\ell} \cos(\theta) \), and therefore has an upper bound, denoted \(B' \). Then, by denoting

\[B'' = \max(B, B'), \]
it can be seen that

\[|F(x)| = \left| \exp \left[-\varepsilon \left(r \exp(i\theta) \right)^\alpha \right] f(x) \right|, \]

where again \(\theta = \pm \pi/(2\alpha) \). It then follows that throughout the angle, and along the imaginary axis \(t = rq^{-\ell} \sin(\theta) \), that

\[|F(x)| \leq B''. \]

Here, it should be pointed out that if \(B' \leq B \), then \(|F(x)| \) assumes the value \(B' \) at any point of the real axis \(t = rq^{-\ell} \cos(\theta) \). Consequently \(B' = B'' \), \(F(x) \) reduces to a constant, and \(B = B'' \). Otherwise \(B' < B'' \), such that \(B = B'' \) regardless. Thus,

\[|F(x)| \leq B. \]

Accordingly,

\[|f(x)| \leq B|\exp(-\varepsilon x^\alpha)|. \]

Taking \(\varepsilon \to 0 \) implies that \(B = 0 \), since \(\nu \to 0 \) for every fixed \(t < 1 \) as \(r \to \infty \). Therefore,

\[\int_0^1 g(t) f(xt) dt q^{-1} t = 0. \]

However, we are interested in the class of functions of the form of Eq. (2.1), i.e.,

\[f(x) = x^{\rho(x)} \sum_{\ell=0}^{\infty} a_\ell x^\ell, \]

where \(a_\ell \neq 0 \) for any \(\ell \). As such, we assume the following [15]:

1. There exists a class of series, larger than that of series known classically as convergent, such that a sum corresponds to each series of that class;
(2) Let m and n, where $n < m$, be two positive integers. We then have the relation

\[
\frac{1 - x^n}{1 - x^m} = 1 - x^n + x^m - x^{n+m} + x^{2m} + \cdots.
\]

(2.23)

At $t = q^{-l}$, we obtain the Euler series

\[
\frac{n}{m} = 1 - 1 + 1 - 1 + 1 - \cdots
\]

(2.24)

which belongs to the class from assumption (1).

(3) Let S be the sum of the series $x^\rho(x) \sum_n a_n$ of the class, where $x^\rho(x)$ is given by Eq. (2.2). Then the series itself belongs to the class, and has the sum $x^\rho(x) S$.

(4) If the series $a_0 + a_1 + \cdots + a_n + \cdots$ has the sum S, then the series $a_1 + \cdots + a_n + \cdots$ itself has the sum $S - a_0$. As such, it can be seen that

\[
S = 1 - 1 + 1 - 1 + 1 - \cdots
\]

\[
= 1 - (1 - 1 + 1 - \cdots)
\]

(2.25)

\[
= 1 - S,
\]

from which we obtain $S = 1/2$.

Hence,

\[
\int_0^1 g(t)t^\rho(xt)^n\,dt = 0, \quad \forall \ n,
\]

(2.26)

and therefore $g(t) \equiv 0$. \qed
3. q^{-1}-Fourier Series

The q^{-1}-Fourier series of $f(xt)$ with respect to the system Eq. (1.11) is

$$f(xt) \sim \sum_n a_n(x) \varphi_n(t)$$

$$= \sum_n a_n(x) \frac{1}{\sqrt{(q^{-t})^{n+1}(1-q)}},$$

where the Fourier coefficient

$$a_n(x) = \int_0^1 f(xt) \varphi_n(t) d_{q^{-1}}t$$

$$= \frac{1}{\sqrt{(q^{-t})^{n+1}(1-q)}} \int_0^1 f(xt)f(\lambda_n t) d_{q^{-1}}t;$$

and by the Parseval completeness theorem [19], we obtain

$$P(x, x') = \int_0^1 f(xt)f(x't)d_{q^{-1}}t$$

$$= \sum_{n=1}^{\infty} a_n(x) a_n(x').$$

The following theorem gives the value of $a_n(x)$.

Theorem 3.1. If the conditions of Theorem 2.1 are satisfied, and $x \neq \lambda_n$, then

$$\int_0^1 f(xt)f(\lambda_n t)d_{q^{-1}}t = \frac{(q^{-t})^{n+1}(1-q)}{f'(\lambda_n)} \cdot \frac{f(x)}{x - \lambda_n}. $$

Proof. First, supposing that $F(x)$ is of order less than 1, we write

$$h(x) = \int_0^1 f(xt)f(\lambda_n t)d_{q^{-1}}t,$$

$$f_n(x) = \frac{f(x)}{x - \lambda_n},$$

$$g(x) = \frac{h(x)}{f_n(x)},$$

$$G(x) = \frac{g(x)}{x+1}.$$
It then follows that \(g \) is an entire function of order less than \(1 \); \(G \) is regular and of order less than \(1 \) in the half-plane \(rq^{-t} \cos(\theta) > 0 \); and

\[
G(x) = \frac{x - \lambda_n}{x + 1} \int_0^1 \frac{f(xt)}{f(x)} f(\lambda_n t) d_{q^{-1}} t
\]

is bounded, and goes to zero along the angle \(\theta = \pm \pi/4 \). It then follows in the quadrant between \(\theta = \pm \pi/4 \) that

\[
g(x) = \mathcal{O}(|x|).
\]

In a similar fashion, the same result follows for the remaining three quadrants in the complex plane \(\mathbb{C} \). Obviously, \(g \) is linear and

\[
h(x) = g(x) f_n(x) = \frac{ax + b}{x - \lambda_n} f(x).
\]

However, \(G \) goes to zero along the angle \(\theta = \pi/4 \) such that \(a = 0 \), and

\[
h(x) = \frac{b}{x - \lambda_n} f(x).
\]

The constant \(b \) can be obtained by making \(x \to \lambda_n \), to obtain Eq. (3.4). \(\square \)

4. First-Order Linear \(q^{-1} \)-Difference Equation

From Eqs. (3.1), and (3.3)-(3.4) it follows that

\[
\mathcal{P}(x, x') = \int_0^1 f(xt)f(x't)d_{q^{-1}} t = -f(x)f(x') \frac{\tau(x) - \tau(x')}{x - x'},
\]

where

\[
\tau(x) = \sum_{\ell=1}^\infty \frac{(q^{-t})^{\ell+1}(1 - q)}{\{f'(\lambda_\ell)\}^2} \left(\frac{1}{x - \lambda_\ell} + \frac{1}{\lambda_\ell} \right),
\]

such that \(\tau(0) = 0 \). Eq. (4.1) will enable us to determine \(f \). By making \(x' \to 0 \), it follows that

\[
\int_0^1 t^n f(xt)d_{q^{-1}} t = -f(x) \frac{\tau(x)}{x},
\]
i.e.,
\begin{equation}
\int_0^x u^n f(u) d_u u = -x^n f(x) \tau(x).
\end{equation}

Hence,
\begin{equation}
\tau'(0) = (q-1)q^{-\ell}[1 + \eta(q^{-\ell} - 1)].
\end{equation}

Next, we write Eq. (4.1) in the form
\begin{equation}
\int_0^x u^\rho(u) F(u)(x')^\rho(x') F(x') d_u u = -x^\rho(x) F(x)(x')^\rho(x') F(x') \frac{\tau(x) - \tau(x')}{x - x'}.
\end{equation}

Differentiating with respect to x', and evaluating at $x' = 0$, it can be seen that
\begin{equation}
\frac{\partial}{\partial x'} (x'^t)^\rho(x') F(x') \bigg|_{x'=0} = -\frac{t}{4}(2 + 2c + \gamma),
\end{equation}

\begin{equation}
-xf(x) \frac{\partial}{\partial x'} (x'^t)^\rho(x') F(x') \frac{\tau(x) - \tau(x')}{x - x'} \bigg|_{x'=0} = \frac{(2 + 2c + \gamma + 2x^{-1})\tau(x) f(x)}{4} \quad - \frac{\tau'(0)}{2} f(x).
\end{equation}

Using Eqs. (4.4)-(4.5), and by choosing $\eta = 1$ for brevity, we finally obtain the q^{-1}-integral equation for f, namely
\begin{equation}
\int_0^x u f(u) d_{q^{-1}} u = (1 - q)q^{-2\ell} x^2 f(x).
\end{equation}

By taking the q^{-1}-difference $\hat{D}_{q^{-1}}$, and using the q^{-1}-integration by parts, i.e.,
\begin{equation}
\int_0^x g(t) \left(\hat{D}_{q^{-1}} f(t) \right) d_{q^{-1}} t + \int_0^x \left(\hat{D}_{q^{-1}} g(t) \right) f(q^{-1}t) d_{q^{-1}} t = [fg](x)
\end{equation}

\begin{equation}
\hat{D}_{q^{-1}} \int_0^x u f(u) d_{q^{-1}} u = xf(x) - \lim_{\ell \to \infty} xq^\ell f(xq^\ell),
\end{equation}

it can be seen that since f and g are also q-regular at zero,
and

\begin{equation}
\hat{D}_{q^{-1}}[x^2 f(x)] = (\hat{D}_{q^{-1}} x^2) f(x) + (q^{-1} x)^2 \hat{D}_{q^{-1}} f(x).
\end{equation}

Hence, we arrive at the first-order linear q^{-1}-difference equation \cite{18}

\begin{equation}
\hat{D}_{q^{-1}} f(x) = \tilde{a}(x) f(x).
\end{equation}

Carrying out the q^{-1}-difference $\hat{D}_{q^{-1}}$ and upon making further simplifications,

\begin{equation}
f(x) = \left[\frac{q}{q + x \tilde{a}(x)(1 - q)} \right] f(q^{-1} x),
\end{equation}

where

\begin{equation}
\tilde{a}(x) = \frac{q - q^2 (q^{2x} + q)}{(q - 1) x}.
\end{equation}

Repeating the above recurrence relation N times,

\begin{equation}
f(x) = f(x_0) \prod_{t=qx_0}^x \frac{q}{q + t \tilde{a}(t)(1 - q)}.
\end{equation}

As $N \to \infty$ with $0 < q < 1$, then $q^{-N} \to \infty$, and

\begin{equation}
f(x) = f(q^{-N} x) \prod_{t=0}^{N-1} \frac{q}{q + x q^{-t} \tilde{a}(x q^{-t})(1 - q)}
\end{equation}

\begin{equation}
= f(\infty) \prod_{t=0}^{\infty} \frac{1}{q^{2t+1} + q^2}.
\end{equation}

Since by Eq. (2.1) we have $f(\infty) = 1$, it can be seen in the classical limit where $q \to 1$ and $\mathcal{A} \to \mathbb{C}$ that $f(x) = 1/2 \forall x \in \mathbb{C}$. \hfill \Box

5. Conclusion

By examining a class of entire first order q^{-1}-orthogonal functions $f \in \mathcal{L}_{q^{-1}}^2(0,1)$, it has been demonstrated that the class is indeed comprised of q^{-1}-periodic functions on the separable Hilbert space interval $(0,1)$. This was accomplished with
the q^{-1}-Fourier series, and a q^{-1}-integral equation for obtaining the value of the q^{-1}-periodic constant constituted by the class.

References
