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Abstract

We give a new sufficient condition for the invariance of the essential spectrum of

−∆+ µ, where µ is a signed Radon measure. This condition is formulated in term

of the behavior of the ratio of the |µ|-measure of compact subsets by their 2-order
capacity at infinity. Our method recovers a large class of measures.
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1 Introduction

Spectral properties of Schrödinger operators HV := −∆ + V , where V is a real potential
were extensively investigated. In the last years the case where V is replaced by a signed
measure, gained much more interest. Such operators are called generalized Schrödinger op-
erators. Many authors discussed spectral properties and dynamics of such operators. We
here cite: [AGHKH88, BM90, Bra01, BEKŠ94, Maz85, Sto94]. This list does not exhaust
the existing literature about the subject and much more relevant references can be found

∗Work supported by the Deutsche Forschungsgmeinschaft.
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in the citations.
Generalized Schrödinger operators physically occur to describe interactions between a
’quantum mechanical particle’ and potentials concentrated on surfaces (sphere, hyper-
plane), or more generally on subsets of positive capacity like d-sets (cf [JW84] for the
notion of a d-set) or on curves. They also occur as generators of a Brownian motion on Rd

superposed with a killing or jumping process on some subset of Rd.
The rigorous construction of such operators, as operators related to quadratic forms or as
self-adjoint realizations of some starting symmetric operator, was extensively discussed.
For the reader who is interested to such problems we cite [AGHKH88, Bra95, Kat95,
Maz85, Man02].
In this paper, we shall be concerned with essential spectra of operators of the type

Hµ := −∆+ µ, (1)

where µ is a suitable signed measure and Hµ is constructed via quadratic forms. We shall
be mainly interested with giving sufficient conditions that guarantee the invariance of the
essential spectrum of Hµ.

Our main result, Theorem 3.1 recovers the situation where the measure µ is absolutely
continuous w.r.t. Lebesgue measure and also the known results for singular perturbations.
The same question was already discussed by many authors [BEKŠ94, Bra01, Sto94, OS98,
Sch86] and [Hem84] in an abstract setting.

For our purpose, we shall use a potential-theoretical method. With our method, we
shall not demand from the measure |µ| to be simultaneously bounded w.r.t. the energy
form (or −∆-bounded in the absolutely continuous case) and to vanish at infinity, (cf.
[Sch86, p.84], [HS96, OS98] in the absolutely continuous case and [Bra01] in the singular
case). Instead, we shall demand from the ratio

|µ|(K)

Cap2(K)
, (2)

where Cap2 is the 2-order capacity, to vanish at infinity, in a sense to be precised later.
Proposition 3.1 shows that this condition is weaker than the first mentioned one.
Let us mention that a similar method was already adopted in [KS86, Maz85], getting par-
tial informations about the essential spectrum of −∆− µ where µ is a positive measure.

We stress that our method and techniques still work if the Laplace operator is replaced
by any second-order elliptic positive operator.

The paper is organized as follows: First we give the useful tools and preliminary results
for solving the problem. Preparing the main result, we show the invariance of the essential
spectrum if µ has compact support. Under some conditions, we approximate Hµ (in the
norm resolvent sense) by generalized Schrödinger operators whose potentials (measures)
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have compact support.
Then we give the main result about the invariance of the essential spectrum and discuss
it. At the end, we give a criteria for the validity of the assumption adopted in Theorem
3.1 (assumption (38)) and show that, in some cases, it is equivalent to the fact that the
measure µ vanishes at infinity.

2 Preliminaries

We denote by Rd the d-dimensional Euclidean space. For a positive Radon measure µ, and a
subset Ω ⊂ Rd, we denote by L2(Ω, µ) the space of measurable complex-valued (equivalence
classes of) functions defined on Ω and which are square-integrable with respect to µ. If
Ω = Rd, L2(Ω, µ) will be denoted simply by L2(µ) and if µ is the Lebesgue measure on Rd,
which we denote by dx, the latter space will be denoted by L2. We use the abbreviation
a.e. to mean dx a.e. The spaces W r,2(Rd), r > 0 are the classical Sobolev spaces and
C∞0 (Rd) is the space of infinitely differentiable functions with compact support in Rd.
For every α > 0, we denote by Hα the operator Hα := −∆ + α defined in L2, by gα its
Green function and by Eα the form associated to Hα:

D(Eα) = W 1,2(Rd), Eα[f ] =

∫

Rd
|∇f |2dx+ α

∫

Rd
|f |2dx .

The energy form is

E , D(E) =W 1,2(Rd), E [f ] =

∫

Rd
|∇f |2 dx.

For every r > 0, we denote by Vr := (−∆+ 1)−
r
2 and by Gr its kernel. We also define the

operator

V µ
r := L2 → L2(µ), V µ

r f =

∫

Rd
Gr(·, y)f(y) dy. (3)

The r-capacity, which we denote by Capr, is defined as follows [AH96, p.20-25]: For a set
E ⊂ Rd, we define

LE := {f : f ∈ L2, Vrf ≥ 1 on E} (4)

and

Capr(E) :=

{
inff∈LE

∫
Rd |f |

2 dx if LE 6= ∅
+∞ if LE = ∅

The 1-capacity will be called simply the capacity. For α > 0 and r ≥ 1 we shall occasion-
ally make use of the capacity Cap(α)

r obtained when changing Vr by V
(α)
r := (−∆+ α)−

r
2 .

We say that a property holds quasi-everywhere (q.e. for short) if it holds up to a set having
zero capacity. A q.e. defined function f on Rd is said to be quasi continuous if for every
ε > 0, there is an open subset Ω such that cap(Ω) < ε and f|Ωc is continuous. According
to [AH96, 156], every f ∈ W 1,2(Rd) can be modified so as to become quasi continuous. In
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what follows we shall assume implicitly that elements from W 1,2(Rd) have been modified
in this sense.

By S+, we designate the set of positive Radon measures charging no sets of zero ca-
pacity.
For a given µ ∈ S+ and α > 0, we define the operators

Kµ
α := L2(µ)→ L2(µ), f 7→ Kµ

αf :=

∫

Rd
gα(., y)f(y) dµ(y), (5)

and

Iµ,α := (W 1,2(Rd), E
1
2
α )→ L2(µ), f 7→ f µ− a.e. (6)

For α = 1, Iµ,α will be denoted by Iµ. Observe that since µ ∈ S+, Iµ,α is well defined and
is closed.

By [BA04, Theorem 3.1], the operator Kµ
α is bounded if and only if the following

inequality holds true:
∫

Rd
|f |2 dµ ≤ Cµ

αEα[f ], ∀ f ∈ D(E), (7)

where Cµ
α is a positive constant. Moreover the constant ‖Kµ

α‖L2(µ) is the optimal one in
the latter inequality and is equivalent to

sup{
µ(K)

Cap1(K)
: K compact}. (8)

Here the ratio is understood to be equal to zero if Cap1(K) = 0.
In other words the boundedness of Kµ

α is equivalent to the boundedness of the ’embedding’
Iµ,α. For this reason, we shall call measures from S+ satisfying the latter assumption
E-bounded measures and shall denote them by B+. Those measures µ ∈ B+ such that

Cµ := inf
α>0
‖Kµ

α‖L2(µ) = lim
α→∞

‖Kµ
α‖L2(µ) < 1. (9)

will be denoted by B+
0 .

We also recall that extending the identity (cf. [BA04, (25)]) to complex-valued functions
we get that, if µ ∈ B+, then for every f ∈ L2(µ), Kµ

αf ∈ D(E) and

Eα
(
Kµ

αf, g) =

∫

Rd
fg dµ, ∀g ∈ D(E). (10)

Let µ = µ+ − µ−, where µ+ ∈ S+ and µ− ∈ B+
0 . Define the form Eµ by

D(Eµ) =
{
f : f ∈ W 1,2(Rd),

∫

Rd
|f |2 dµ+ <∞

}
, Eµ[f ] = E [f ] +

∫

Rd
|f |2 dµ (11)
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By the KLMN theorem, the form Eµ is closed and lower semi-bounded with lower bound
equals to −α‖Kµ

α‖L2(µ), for some α > 0. We shall denote by Hµ the self-adjoint operator
associated to Eµ via the representation theorem [Kat95]:

D(Hµ) ⊂ D(Eµ), Eµ(f, g) = (Hµf, g), ∀f ∈ D(Hµ) and ∀g ∈ D(Eµ). (12)

When µ = 0, Hµ will be simply denoted by H := −∆. We set σess(Hµ) the essential
spectrum of Hµ.
For every ρ > 0 we denote by Bρ the Euclidean ball of Rd with center zero and radius ρ,
µρ the restriction of the measure µ to Bρ and µρ := µ− µρ.

In this stage, we give some auxiliary results related to the operator (Hµ+α)−1, namely
we show that it is an integral operator and give an explicit formula for the resolvent
difference (Hµ + α)−1 − (Hµ+ + α)−1. We begin with the simple:

Lemma 2.1. Let α > 0. Then the operator (Hµ+ + α)−1 is an integral operator: there is
a symmetric Borel function

gµ
+

α := Rd × Rd → (0,∞],

such that

(Hµ+ + α)−1f =

∫

Rd
gµ

+

α (·, y)f(y) dy, ∀f ∈ L2. (13)

Moreover gµ
+

α satisfies

gµ
+

α (x, y) = gα(x, y)−

∫

Rd
gα(x, z)g

µ+

α (y, z) dµ+(z). (14)

Proof. By [BM90], the exponential operator exp(−tHµ+) has a continuous symmetric ker-
nel p+

t , for every t > 0 and it satisfies

p+
t (x, y) ≤ ceβtp2t(x, y), ∀ x, y, (15)

where c, β are positive constant and pt is the kernel of exp(−tH).
Making use of the inversion formula

(Hµ+ + α)−1 =

∫ ∞

0

e−αt exp(−tHµ+) dt, ∀ α > 0, (16)

together with the estimate (15) we conclude that (Hµ+ + α)−1 has a kernel given by

gµ
+

α (x, y) =

∫ ∞

0

e−αtp+
t (x, y) dt ≤

c

2
gα−β

2

(x, y), ∀ x 6= y if d ≥ 2,

and every x, y if d = 1. The rest of the proof is easy to do.
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For α > 0, set K+
α := (Hµ+ + α)−1,

I+
α :=

(
D(Eµ

+

), ((Eµ
+

α )1/2)
)
→ L2(µ−), f 7→ f µ− a.e. (17)

and

K−
α := L2(µ−)→ L2(µ−), f 7→

∫

Rd
gµ

+

α (., y)f(y) dµ−(y). (18)

The analysis of spectra of perturbed Schrödinger operators depends sometimes on an
adequate formula for its resolvent. The following is inspired from [BEKŠ94, Lemma 2.3]
and partially generalizes it.

Lemma 2.2. Let α be such that ‖Kµ−

α ‖L2(µ−) < 1. Then

(Hµ + α)−1 −K+
α = (I+

αK
+
α )
∗(I −K−

α )
−1(I+

αK
+
α ). (19)

From the latter lemma together with Lemma 2.1 we derive that for big α, the operator
(Hµ + α)−1 is an integral operator. We shall denote by gµα its kernel.
The identity (19) implies that

0 ≤ gµ
+

α (., y) ≤ gµα(., y) q.e. (20)

Proof. Let α be such that ‖Kµ−

α ‖L2(µ−) < 1 be fixed. Then

Eµα [f ] ≥
(
1− ‖Kµ−

α ‖L2(µ−)

)
Eα[f ], ∀ f ∈ D(Eµ),

which implies that α lies in the resolvent set of Hµ. On the other hand since by (14),
gµ

+

α (., y) ≤ gα(., y) q.e. we obtain ‖K−
α ‖L2(µ−) ≤ ‖Kµ−

α ‖L2(µ−) < 1, so that I − K−
α is

invertible. Now since µ− ∈ B+
0 , we conclude that I+

α is bounded. Hence the operator on
the left hand side of (19) is bounded on L2 with range D(Eµ

+

) = D(Eµ). Thereby to prove
the lemma it suffices to prove

Eµα(K
+
α f, g) + E

µ
α((I

+
αK

+
α )
∗(I −K−

α )
−1(I+

αK
+
α )f, g) =

∫

Rd
fg dx ∀ f ∈ L2, g ∈ D(Eµ). (21)

Let f and g be such functions. Without loss of generality, we assume that they are real-
valued. A direct computation yields

Eµα(K
+
α f, g) =

∫

Rd
fg dx−

∫

Rd
K+

α fg dµ
−. (22)

and

(I+
αK

+
α )
∗f = K−

α f a.e. (23)
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Now since both (I+
αK

+
α )
∗f and K−

α f lie inW 1,2(Rd), they are quasi continuous and whence
they are equal q.e. [AH96, p.157]. Further, from µ ∈ S+ we conclude that (I+

αK
+
α )
∗f =

K−
α f µ a.e. Making use of this fact and of the identity (10), we get

Eµα((I
+
αK

+
α )
∗(I −K−

α )
−1(I+

αK
+
α )f, g) = Eµ

+

α ((I+
αK

+
α )
∗(I −K−

α )
−1(I+

αK
+
α )f, g)

−

∫

Rd
(I+

αK
+
α )
∗(I −K−

α )
−1(I+

αK
+
α )fg dµ

−

=

∫

Rd
(I −K−

α )
−1(I+

αK
+
α )fg dµ

−

−

∫

Rd
K−

α (I −K−
α )
−1(I+

αK
+
α )fg dµ

−

=

∫

Rd
I+
αK

+
α fg dµ

− =

∫

Rd
K+

α fg dµ
−, (24)

where the latter identity is justified by the fact that I+
αK

+
α f = K+

α f everywhere since
K+

α f is defined everywhere. Now putting (22) and (24) together we get what was to be
proved.

3 The essential spectrum of Hµ

We shall use known geometric characterization of the essential spectrum [HS96, Theorem
10.6 p.102] to prove the invariance of σess(Hµ), when µ has compact support.

Lemma 3.1. Let µ = µ+ − µ− ∈ S+ − B+
0 . Assume that µ has compact support. Then

σess(Hµ) = σess(H) = [0,∞).

We here emphasize that unlike [BEKŠ94, Theorem 3.1], we do not suppose that the
measure |µ| ∈ B+.

Proof. For the proof we follow the idea of Hislop-Sigal [HS96, p.137]. The key is to apply
[HS96, Theorem 10.6]. Next we shall prove that all assumptions required by this Theorem
are fulfilled.
Let α > 0. Since the operator (H + α)−1 is locally compact, i.e., for every open bounded
subset Ω ⊂ Rd, the operator χΩ(H + α)−1 is compact, it follows from the variational for-
mulation of the min-max principle and from the fact that D(Hµ+) is a core for D(Eµ

+

),
that (Hµ+ + α)−1 is also locally compact. Hence using formula (19), we conclude that
(Hµ + α)−1 is locally compact as well.
In this step we prove that assumption (10.7) of [HS96, Theorem 10.6] (see identity (29))
is satisfied.

Let φ ∈ C∞0 (Rd) such that

0 ≤ φ ≤ 1, φ = 1 on B1, supp(φ) ⊂ B2.
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Let (φn) be the sequence defined by φn(x) := φ(x/n). Set

[Hµ, φn] := Hµφn − φnHµ. (25)

Let f ∈ D(Hµ) be such that φnf ∈ D(Hµ), g ∈ D(Eµ) and α big. Then

(
[Hµ, φn]f, g

)
=

(
Hµφnf, g

)
−
(
Hµf, φng

)

= Eµ
(
φnf, g

)
− Eµ

(
f, φng

)
(26)

=

∫

Rd
(−f∆φn − 2∇f∇φn)g dx. (27)

Hence

[Hµ, φn]f = −f∆φn − 2∇f∇φn = −
1

n2
f∆φ−

2

n
∇f∇φ. (28)

From the latter identity we infer that the commutator extends to D(Hµ) and that

‖[Hµ, φn](Hµ + α)−1f‖L2 ≤
1

n2
‖∆φ‖∞‖(Hµ + α)−1‖‖f‖L2 +

1

n
‖∇φ‖∞‖|∇(Hµ + α)−1f |‖

≤
1

n2
C1‖f‖L2 +

C ′α
n

(
Eµα
[
(Hµ + α)−1f

]) 1
2

=
1

n2
C1‖f‖L2 +

C ′α
n

( ∫

Rd
f(Hµ + α)−1f dx

) 1
2 ≤

C

n
‖f‖L2.

Thereby

lim
n→∞

‖[Hµ, φn](Hµ + α)−1‖ = 0. (29)

From [HS96, Theorem 10.6] we learn that λ ∈ σess(Hµ) if and only if there is a sequence
(fn) ⊂ D(Hµ) such that

‖fn‖ = 1, supp(fn) ⊂ Bc
n and lim

n→∞
‖Hµfn − λfn‖ = 0. (30)

Let λ ∈ σess(Hµ). Take a sequence (fn) as in (30). Observe that from the definition of Hµ,
we have Hµf = −∆f + fµ in the sens of distributions for all f ∈ D(Hµ). Hence since µ
has compact support, we conclude that Hµfn = −∆fn ∈ L

2 for large n yielding fn ∈ D(H)
for large n and

‖Hµfn − λfn‖ = ‖Hfn − λfn‖ → 0, as n→∞, (31)

which implies σess(Hµ) ⊂ σess(H). The reversed inclusion can be proved exactly in the
same manner, so we omit its proof.

8



Our next purpose is to approximate the operator Hµ (in the norm resolvent sense) by
a sequence (Hνn) such that the νn’s have compact support. For this aim, we introduce the
following operators:

Let µ ∈ S+ − B+
0 and α big enough. For every n ∈ N, set

K±,n
α := L2((µ±)n)→ L2, f 7→

∫

Rd
gµα(·, y)f(y) d(µ

±)n.

and

I±,nα :=
(
D(Eµn), (Eµnα )1/2

)
→ L2((µ±)n), f 7→ f.

We claim that the operators K±,n
α and I−,nα are bounded. Indeed: The boundedness of I−,nα

follows from the fact that µ ∈ B+
0 .

Now set Gµ
α the kernel of (Hµ + α)−

1
2 , and K±,nα the operator

K±,nα := L2 → L2((µ±)n), f 7→

∫

Rd
Gµ
α(x, y)f(y) dy. (32)

From µ− ∈ B+
0 , we derive
∫

Rd
|f |2 d(µ±)n ≤ (1− ‖Kµ−

α ‖L2(µ−))
−1Eµα [f ], ∀f ∈ D(Eµ), (33)

which is equivalent to the boundedness of K±,nα . Hence their duals

(
K±,nα

)∗
:= L2((µ±)n)→ L2, f 7→

∫

Rd
Gµ
α(x, y)f(y) d(µ

±)n(y). (34)

are bounded and thereby

(Hµ + α)−
1
2

(
K±,nα

)∗
f = K±,n

α (35)

are also bounded. Moreover

sup
n
‖K±,n

α ‖ ≤ sup
n
‖K±,nα ‖ <∞, (36)

by (33)-(35).

The following lemma has a central stage in the proof of the invariance of σess(Hµ). It
also has an independent interest since it gives a condition under which the norm resolvent
convergence holds true.

Lemma 3.2. Let n and α be as above. Set µn := 1Bnµ, the restriction of the measure µ
to the open Euclidean ball of radius n and center zero and Hn := Hµn . Then
i)

(Hµ + α)−1 − (Hn + α)−1 = K−,n
α I−,nα (Hn + α)−1 −K+,n

α I+,n
α (Hn + α)−1. (37)
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ii) If moreover

lim
n→∞

sup
{ |µ|(K)

Cap2(K)
: K ⊂ Bc

n, compact
}
= 0, (38)

or equivalently

lim
n→∞

‖V
|µ|n

2 ‖L2,L2(|µ|n) = 0, (39)

then the norm resolvent convergence holds true:

lim
n→∞

‖(Hµ + α)−1 − (Hn + α)−1‖ = 0. (40)

The ratio appearing in (38) is understood to be equal to zero if Cap2(K) = 0.
The equivalence between (38) and (39) follows from the equivalence between

sup
{ |µ|(K)

Cap2(K)
: K ⊂ Bc

n, compact} and ‖V
|µ|n

2 ‖L2,L2(|µ|n) (cf. [AH96, Theorem 7.2.1]).

Proof. i) We first prove that the right hand side of (37) is bounded on L2. We have already
observed that K±,n

α and I−,nα are bounded. Thus the first operator in the right hand side
of (37) is bounded. On the other hand I+,n

α is closed, hence I+,n
α (Hn + α)−1 is closable

with domain the whole space L2, hence bounded and thereby the right hand side of (37) is
bounded on L2 as well. Now the rest of the proof is substantially similar to that of Lemma
2.2, so we omit it.

(ii) The key is to use formula (i). Fix α ≥ 1 such that

Cµ−

α := ‖Kµ−

α ‖L2(µ−) < 1.

Since by (36), supn ‖K
±,n
α ‖ <∞, proving (40) reduces to prove

lim
n→∞

‖I±,nα (Hn + α)−1‖ = 0. (41)

Set

Kα := (H + α)−1, K̃α,n := (H + µ+
n + α)−1,

g̃α,n the kernel of K̃α,n and

Jα,n :=
(
D(Eµ

+
n ), (Eµ

+
n

α )1/2
)
→ L2(µ−n ), f 7→ f.

Changing µ by µn in Lemma 2.2, we get

(Hn + α)−1 = K̃α,n + (Jα,nK̃α,n)
∗(I − K̃−

α,n)
−1(Jα,nK̃α,n). (42)
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By the choice of α we have supn ‖(I − K̃−
α,n)

−1‖ ≤
(
1 − ‖Kµ−

α ‖L2(µ−)

)−1
. On the other

hand, from g̃α,n ≤ gα we obtain supn ‖K̃α,n‖ ≤ ‖Kα‖, and a glance at the definition of Jα,n
yields supn ‖Jα,n‖ ≤ ‖K

µ−

α ‖L2(µ−).
Hence proving (41), reduces to prove

lim
n→∞

‖I±,nα K̃α,n‖ = 0. (43)

From the already established comparison of the relative kernels we have ‖I±,nα K̃α,n‖ ≤
‖I±,nα Kα,n‖. Now the latter operator is given by

I±,nα Kα,n := L2 → L2((µ±)n), f 7→

∫

Rd
gα(., y)f(y) dy. (44)

Whence by [AH96, Theorem 7.2.1], we achieve

‖I±,nα Kα,n‖ ≤ C sup{
(µ±)n(K)

Cap2(K)
: K compact}

≤ C sup{
|µ|(K)

Cap2(K)
: K compact K ⊂ Bc

n}

→ 0 as n→∞, (45)

by assumption and the proof is finished.

We are in a position now to state our main theorem:

Theorem 3.1. Let µ = µ+ − µ− ∈ S+ − B+
0 . Suppose that assumption (38) is satisfied.

Then σess(Hµ) = σess(H) = [0,∞).

Proof. Let En(λ) (respectively E(λ)) be the spectral family related to Hn (respectively to
Hµ). From the the norm resolvent convergence we derive (cf.[Kat95, p.362])

lim
n→∞

‖E(λ)− En(λ)‖ = 0. (46)

It follows that for every ε > 0,

lim
n→∞

‖En(λ+ ε)− En(λ− ε)− (E(λ+ ε)− E(λ− ε))‖ = 0, (47)

and thereby

dim R
(
En(λ+ ε)− En(λ− ε)

)
= dim R

(
E(λ+ ε)− E(λ− ε)

)
, for large n. (48)

From the characterization of the discrete spectrum [Wei80, p.202] and from Lemma 3.1
together with (48), we derive that σdisc(Hµ) ⊂ (−∞, 0) so that σess(Hµ) ⊂ [0,∞). An
other time Lemma 3.1 together with (48) imply that σ(Hµ) can not have a gap at λ > 0.
Thus σess(Hµ) = [0,∞), which was to be proved.
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We would like to compare our criteria with those given in the literature. The main
difference is that we do not assume that µ+ is bounded nor the boundedness of

Js
µ+ := W s,2(Rd)→ L2(µ+), f 7→ f, (49)

for any 1 ≤ s < 2 (cf. [Bra01, Theorem 21]. Examples of measures violating this condition,
but satisfying ours, are given on Rd, d > 4 by µ such that µ− ∈ B+

0 , µ
+ has compact support

and

µ+(Br(x)) ≥ Crβ, 0 < β < d− 2s, ∀ 0 < r ≤ 1, ∀x. (50)

For such measures we have

µ+(Br(x))

Caps(Br(x))
≥ Crβ−d+2s, ∀ 0 < r ≤ 1, (51)

so that sup{ µ+(K)
Caps(K)

, K compact} =∞ and by [AH96, p.191], J s
µ+ is unbounded for every

1 ≤ s < 2.
For d = 2, 3 the measure µ+ can be chosen as follows : Set ΣSd−1(r) the normalized surface
measure of Sd−1(r) := {x ∈ Rd : |x| = r}, r > 0. For 0 < ε < 1, define the measure

dµ+(x) := 1B1(0)(x)|x|
−εdΣSd−1(|x|).

Then µ+ is a Radon measure on Rd. Let 1 ≤ s < 2. Then

µ+
(
Sd−1(r)

)

Caps
(
Sd−1(r)

) ≥ r−ε
(
Caps

(
Sd−1(1)

))−1
, ∀ 0 < r < 1.

Recalling that Caps
(
Sd−1(1)

)
> 0 for every 1 ≤ s < 2 and d = 2, 3 (cf. [AH96, p.139]) we

conclude that Js
µ+ is unbounded, for the same considerations as before.

Many assumptions on the measure µ, in the literature, are made so as to imply the
compactness of the resolvent difference. One of these assumptions (among others) is that
|µ| ∈ B+. However, in these circumstances, arguing as in the proof of Lemma 2.2, the
resolvent difference can be written as

(Hµ + α)−1 − (H + α)−1 = −(Iα,µ(H + α)−1)∗
(
I +Kµ

α

)−1
Iα,µ(H + α)−1. (52)

for α large enough. Hence the compactness of the resolvent difference is equivalent to the
compactness of the operator Iα,µ(H +α)−1, which by [AH96, Theorem 7.3.1 p.195] implies

lim
n→∞

sup
{ µ(K)

Cap2(K)
: K ⊂ Bc

n, compact
}
= 0. (53)

Thus the compactness of the resolvent difference, for µ− = 0, implies our criteria.
So, our assumptions on the measure µ are weaker, in the absolutely continuous and in the
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singular case as well, than those existing in the literature cf. [Bra01, BEKŠ94, HS96, OS98]
for the invariance of the essential spectrum, as long as Radon measures are considered.
Moreover our conditions give supplement informations on the discrete spectrum. Namely
every negative eigenvalue λ of Hµ is the limit of eigenvalues λn such that λn ∈ σdisc(Hµn)
for large n.

Next we shall give a sufficient condition for the criteria (38) to be fulfilled. Then use it
to show that our method recovers measures vanishing at infinity, in particular finite Kato
measures and s-measures with compact support cf. [JW84].

From now on the letter K designate a nonempty compact subset of Rd.

Theorem 3.2. Let µ = µ+ − µ− ∈ S+ − B+
0 be such that (µ+)ρ ∈ B for some ρ > 0.

Assume that

lim
n→∞

sup
|x|≥n

|µ|(B1(x)) = 0 if d ≤ 3, (54)

lim
n→∞

sup
|x|≥n

∫

{|x−y|<1}

| log(|x− y|)| d|µ|(y) = 0 if d = 4, (55)

and

lim
n→∞

sup
|x|≥n

∫

{|x−y|<1}

|x− y|4−d d|µ|(y) = 0 if d > 4. (56)

Then assumption (38) is satisfied.

We observe that since for d > 4, 0 < s ≤ 2 and for every x ∈ Rd, we have

|x− y|4−d ≤ |x− y|s−d q.e. on B1(x),

then assumption (56) is still weaker than the one adopted by Schechter in [Sch86, Theorem
10.8, p.152].

Proof. We shall make the proof only for d > 4. For d ≤ 4, the proof can be done exactly
in the same way.
Let d > 4. For our purpose, we proceed to give an adequate estimate of the ratio appearing
in (38).
For every K, set PK the space of probability measures supported by K. Then making use
of the dual definition of the capacity, [AH96, Theorem 2.5.5] and arguing as in [FŌT94,
p.86-87], we conclude that

(
Cap2(K)

)−1
= inf

ν∈PK
sup
x∈Rd

∫

K

G4(x, y) dν(y). (57)
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Taking ν := |µ||K
(
|µ|(K)

)−1
we achieve

|µ|(K)

Cap2(K)
≤ sup

x∈Rd

∫

K

G4(x, y) d|µ|(y)

≤ An := sup
x∈Rd

∫

Bc
n

G4(x, y) d|µ|(y), ∀ K ⊂ Bc
n. (58)

Now we are going to prove that limn→∞An = 0. Since G4(·, y) ≤ | · −y|
4−d q.e., we have

An ≤ sup
x∈Rd

∫

Bx(1)∩{|y|≥n}

|x− y|4−d d|µ|(y) + sup
x∈Rd

∫

Bc
x(1)∩{|y|≥n}

G4(x, y) d|µ|(y). (59)

Since the kernel G4 decreases rapidly away from the diagonal, we derive

sup
x∈Rd

∫

Bx(1)∩{|y|≥n}

G4(x, y) d|µ|(y) = sup
|x|≥n

∫

Bx(1)∩{|y|≥n}

G4(x, y) d|µ|(y)

≤ sup
|x|≥n

∫

Bx(1)

|x− y|4−d d|µ(y)| → 0 as n→∞,

by assumption.
By the same way we derive

sup
x∈Rd

∫

Bc
x(1)∩{|y|≥n}

G4(x, y) d|µ|(y) = sup
|x|≥n

∫

Bc
x(1)∩{|y|≥n}

G4(x, y) d|µ|(y)

≤ sup
|x|≥n

∫

Bc
x(1)

G4(x, y) d|µ|(y). (60)

We claim that

sup
|x|≥n

∫

Bc
x(1)

G4(x, y) d|µ|(y) ≤ C sup
|x|≥n

∫

Bx(1)

|x− y|4−d d|µ|(y), (61)

where C is a constant depending only on d. Indeed:
For k ≥ 1 let B1(zj(k))1≤j≤N(k) be a covering of Sk := {k ≤ |x − y| < k + 1} such that
zj(k) ∈ Sk. We choose N(k) such that N(k) ≤ kd (which is possible). From the properties
of the Bessel kernel we infer ([Ste70, p. 133]) that there is a constant C(d) depending only
on d such that

G4(x, y) ≤ C(d)e−
|x−y|
2 , ∀ |x− y| ≥ 1. (62)
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Now we have
∫

Bc
x(1)

G4(x, y) d|µ|(y) ≤
∞∑

k=1

∫

{k≤|x−y|<k+1}

G4(x, y) d|µ|(y)

≤ C(d)

∞∑

k=1

(k + 1)d−4e−
k
2

∫

{k≤|x−y|<k+1}

|x− y|4−d d|µ|(y)

≤ C(d)

∞∑

k=1

(k + 1)d−4e−
k
2

N(k)∑

j=1

∫

{|x+zj(k)−y|<1}∩Sk

|x− y|4−d d|µ|(y)

≤ C(d)

∞∑

k=1

(k + 1)d−4e−
k
2

N(k)∑

j=1

k4−d

.

∫

{|x+zj(k)−y|<1}

|x + zj(k)− y|4−d d|µ|(y). (63)

Now taking the supremum on both side yields

sup
|x|≥n

∫

Bc
1(x)

G4(x, y) d|µ|(y) ≤ 2dC(d)
( ∞∑

k=1

kde−
k
2

)
sup
|x|≥n

∫

B1(x)

|x− y|4−d d|µ|(y)

→ 0 as n→∞, (64)

and the proof is finished.

We note that condition (38) implies that µ vanishes at infinity, i.e.:

lim
n→∞

sup
|x|≥n

|µ|
(
B1(x)

)
= 0, (65)

a condition which enters naturally for the invariance of the essential spectrum. To confirm
this observation we will show that in many cases the two conditions are equivalent to each
other.

Proposition 3.1. Let µ = µ+ − µ− ∈ S+ − B+
0 be such that |µ|ρ ∈ B+ for some ρ > 0.

Then µ vanishes at infinity if and only if condition (38) is satisfied.

Under these circumstances, it follows in particular that if µ vanishes at infinity then
σess(Hµ) = [0,∞), which generalizes a result due to Brasche [Bra01, Theorem 21].

Proof. The ’if’ part was already proved above.
We prove the ’only if’ part. Let µ be a measure vanishing at infinity. For d < 4, the result
is a direct consequence of Theorem 3.2.
Now let d > 4 (for d = 4 the proof is essentially the same, so we omit it).
Let 0 < δ < 1, then
∫

{|x−y|<1}

|x− y|4−d d|µ|(y) ≤

∫

{|x−y|<δ}

|x− y|4−d d|µ|(y) +

∫

{δ≤|x−y|<1}

|x− y|4−d d|µ|(y).
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The second integral satisfies

∫

{δ≤|x−y|<1}

|x− y|4−d d|µ|(y) ≤ δ4−d|µ|(B1(x))→ 0 as x→∞. (66)

To estimate the first integral we proceed as follows: Let n ∈ N be large enough and x such
that |x| ≥ n. The boundedness assumption on (µ+)ρ and µ−, together with [BA04] and
[AH96, Prop.5.1.4] imply

(|µ|)ρ
(
Bδ(x)

)
= |µ|

(
Bδ(x)

)
≤ CCap1

(
Bδ(x)

)
≤ C ′δd−2, ∀ 0 < δ < 1. (67)

Here the constant C ′ depends neither on x nor on δ.
So we get

∫

|x−y|<δ

|x− y|4−d d|µ|(y) =

∫ δ

0

t4−d d|µ|(Bx(t))

= (d− 4)

∫ δ

0

t3−d|µ|(Bx(t)) dt+ δ4−d|µ|(Bx(δ))

≤ (d− 4)C ′
∫ δ

0

t dt+ C ′δ2, ∀ 0 < δ ≤ 1 and ∀ x, |x| ≥ n,

which together with (66) leads to

lim
n→∞

sup
|x|≥n

∫

B1(x)

|x− y|4−d ≤ Cδ2, ∀ 0 < δ < 1. (68)

Now the result follows from Theorem 3.2-(56).

Acknowledgment: I am thankful to the referee for the helpful hints.
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