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Abstract

We present a modified version of the classical Hilbert’s space filling curve and we associate to
this curve a geodesic lamination on the disk together with a transversal measure. The lamination
helps us to understand how the points of the interval are mapped to the square. We generalize
this construction to space filling curves from the interval to the regular n-gon.

AMS subject classification (2000): 28A80, 26A27, 53C22.

1 Introduction

The first space filling curve was introduced by Peano [6] in 1890. The drawing of this curve was
shown in [7]. During the following year Hilbert [3] published another example of a space filling curve.
Later other curves were introduced, among others by Lebesgue [5], Sierpiniski [12], Schoenberg [11].
All these examples are based on the representation of the numbers on the interval in some integer
base and an iterated function system on the plane. Hilbert’s curve was done using base 4 and
Peano’s in base 9. The digits of the representation of the numbers are used to know the order in
which to apply the maps of the iterated function system. More recently, space filling curves have
been studied among others [8, 9, 10], and references within. In [10] is described the history of the
space filling curves. In a different context, in [1] another type of space filling curve was introduced.
This curve has a rich dynamical behaviour. And it has been studied later in [13, 14]. In [13] the
author constructed a geodesic lamination on the disc associated to the space filling curve defined
in [1]. This lamination helps us to understand the geometry and the dynamics involved.
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We would like to associate a geodesic lamination to a space filling curve such that points joined
by geodesics are mapped to the same point in the plane by the space filling curve. In the classical
examples it is not possible to associate a geodesic lamination to the space filling curve with these
properties as we shall explain. Therefore we modified Hilbert’s classical space filling curve. We
associate to this new curve a geodesic lamination on the disk with the desired property. This
lamination comes with a transverse measure, which helps us to understand the geometry of the
space filling curve. The symmetries of the lamination are the symmetries of the square, i.e. are
given by the dihedral group D,. The results are summarized in Theorem 1.

Geodesic laminations on the disk have been studied previously in different contexts. In [4] and
references within, geodesic laminations are used in the study of quadratic Julia sets. In [13, 15]
geodesic laminations turn up as geometric models of some type of symbolic dynamics.

In section 4 the iterated function system on the square is changed, so that the squares are visited
in a different order from the clock-wise or anti clock-wise in Hilbert’s modified curve. We obtain a
different curve, from which we get a different lamination, sharing the same properties as the previous
one. However it has fewer symmetries. We also explain that essentially these two laminations are
the only laminations associated to this type of curve on the square.

The constructions shown in this paper can be generalized to higher dimensions.

In the last section we define, in a similar way, space filling curves from the interval to the regular
n-gon. In this case we can also construct geodesic laminations with similar properties. However
there are some differences between the case n even and odd.

2 Revised version of the Hilbert’s curve

We shall describe the construction of Hilbert’s classical space filling curve, via iterated function
systems (IFS), as is done in [10].

Definition 2.1 ([2], page 80) An iterated function system or IFS consists of a complete metric
space X together with a finite set of contraction mappings.

The contraction mappings induce a map on the space of all compact subsets of X. We consider this
space provided with the Hausdorff metric, here the induced map is a contraction. Its fixed point is
called the attractor of the IFS.

Let {Ho,H;,H>,Hs} be an IFSon R = {« + iy € C|0 < z,y < 1}, where

HO (Z) =

wof

, Hi(z)=2+41%, Hy(z)=2+, Hy(z)=-Z+Li+1

Let {ho, h1, h2,hs} be an IFS on I = [0,1], where hi(t) = t/4 + k/4, for 0 < k < 3. The attractor
of the former IFS is the square R and of the latter is the interval I. This IFS on the interval
defines the numeration system base 4, i.e. t = 22021 an/4", with 0 < a, < 3 if and only if
t =limy oo by < B, ().

The space filling curve £ : I — R is defined as

éu(t) = lim Hy H,, -+ Hg,(R),

n—oo

where t = 37 | a, /4", This map is continuous and surjective.

We will consider a modified version of this curve: Let {Ho, Hy, H2, H3} be an IFS on R and
{ho, hl,hz, h3} be an IFS on I = [0, ].], where

Ho(z) = -5+, Hi(z)=5+ 15, H(z) =35+ %, Hy(z) =5+ 5%



Figure 1: The classical Hilbert’s curve.

Figure 2: The modified Hilbert’s curve.

And t 7 : 1 t 15 1
Tt+3 if 0<t<g 1t if 0<t<g
hO(t): t 1 1 hl(t): t 7 1
L2 if 0<t<i Ly3lif 0<t<t
h2(t): h3(t):
L+ if f<t<l, L+ if I<t<lL

Note that hg(t) = ho(t) + k/4 for k = 1,2,3. We will denote by I}, = [k/4,(k + 1)/4) = hy(I), for
k=0,1,2,3, these are the intervals defined by the IFS.

And the space filling curve &y : I — R is defined in a similar way, as the classical curve:
Ev(t) =limy oo Hyy Hy, - - Hy, (R), where t = limy, 00 ha, hay < -+ ha, (I). Since each hy and Hy, is
a contraction, ¢t and &y (t) are well defined. In a similar way to the classical case we can prove that
&pr is continuous and surjective. Furthermore, it can be proved that it is Hélder continuous, with
exponent 1/2.

One of the main differences in these two curves is that in the classical version {5 (0) = 0 and
& (1) = 1. And in the revised version the images of the points 0, 1/4, 1/2, 3/4, 1, i.e. the extremities
of the intervals that defined the IFS on the interval, are the same point: (1 4 4)/2, the geometrical
centre of the square R.

3 Geodesic lamination on the disk

Let D? be the closed unit disk in the plane, and S! its boundary. We identify St with I = [0,1).
Since the image of 0 and 1 are the same under the maps of the IFS on the interval. We think of the
IFS: {ho, h1,hs,hs} as acting on the boundary of the disk.



Figure 3: The geodesic lamination A.

The construction of the geodesic lamination A is as follows: We consider the extremities of the
intervals defined by the IFS, i.e. t, = k/4 with £ = 0,1,2,3. And we join pairwise consecutive
extremities, i.e. we join ¢y with t;, where j =k +1 (mod 4) for 0 < k < 3, by arcs of circles that
meet the boundary of S! perpenticularly. If we think in the hyperbolic disk, these arcs are geodesics
there. Therefore we will call these arcs geodesics.

Let a; ...a, be a word in the alphabet {0,1,2, 3}. We join by a geodesic the point hg, - hq,, (tx)
with hq, -« - hg, (tj), where j = k+ 1 (mod 4) for k = 0,1,2,3. We do this for all possible words
in this alphabet and later we take the closure in the Hausdorff topology of D?. The elements of D2
are either geodesics or points in S*. In the latter case the points are called degenerate geodesics.

Definition 3.1 A geodesic lamination on ? is a non-empty closed set of geodesics of the disk and
that any two of these geodesics do not intersect except at their end points.

Proposition 3.1 A is a geodesic lamination on D?.

Proof: Let a; -+ - ap, and by - - - b be two words in the alphabet {0,1,2,3}. Suppose that there is an
intersection between the geodesics that join the images of the ¢;’s under hg, - - hq,, and hy, - hy,.
Therefore the interiors of ha, - - ha,, hamy, (1) and hp, - - he, b, (I) have non-empty intersection, for
some 0 < apm+1,b1+1 < 3. This is not possible, unless one of the words: a; ...amam+1, b1 ... 0ibi+1
is a sub-word of the other, since the interiors of hy(I) and h;(I) are disjoint for k # j. B

Proposition 3.2 The lamination A is invariant under the group of symmetries of the square Dy.

Proof: Let Ry/4 : I — I be the rotation by 1/4. Since hy(t) = R’f/4(h0(t)), for 0 < k < 3. We have
that for any t; and any word a1 -+~ am: Ri/4(hay +* Pa,, (t)) = hoy hay +  ha,, (t;) where by = ap +1
(mod 4). So by the construction of the lamination, it follows that A is invariant under the rotation
Rya.

The symmetry related to the invariance under the reflection along the horizontal edge is equivalent
to the fact if ¢,¢' are joined then 1 —¢, 1—#' are also joined. It follows from hy(t;) = 1 —hs_g(t,(;))
for 0 < j, k < 3, where r(0) = 1, (1) = 0, r(2) = 3 and r(3) = 2. The invariance under the reflection
in the vertical axis comes from the fact: hy(t;) = (2+k)/4 — hgr1(t,(;)) for k=0,2and 0 < j < 3.
The invariance under the reflection in the diagonals is obtained in a similar way. B
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Figure 4: The construction of Cj.

Proposition 3.3 Let A be an element of A with end points b and b'. Then &y (b) = Enr (V).

Proof: By the construction of A there are geodesics A\, such that they join the images under the
IF'S of the t;’s. And they converge to A.

If the end points of Ay are by, and b}, then &n(br) = &ar(),). So by the continuity of the space
filling curve: &y (b) = Ep (D). M

However the converse of Proposition 3.3 is not true. If we take a point in the boundary between
Hi(R) and Hy1(R), different from the centre of R: (1+1¢)/2, then its preimages lie in I}, and Iy
so they cannot be joined.

These properties allow us to define a map = : A — R as follows: Let A be a geodesic of A with
end points b, b'. So Z(N) := &u(b). By Proposition 3.3 this map is well defined. The map = is
continuous and surjective since &ys has these properties.

Remark: In the classical case we do not end up with a lamination because the four points that
are mapped to the central point of the squares are not boundary points of the intervals that define
the IFS, i.e. I; with j =0,1,2,3. So if these points are joined and we iterate the process, we end
up with crossings in the geodesics. This situation is also found in the other classical space filling
curves: Peano’s, Lebesgue’s, etc.

3.1 The transverse measure to the lamination

Let § be any arc in D? joining two distinct geodesics of the lamination. It can be slid along the
geodesics towards the boundary of the disk according the two possible directions in which the
geodesics can be oriented. This procedure gives rise to a Cantor set in the boundary of the disk,
say Cys. More precisely: Let A\; and Ay be the geodesics in A that are joined by an arc §. This
procedure defines two disjoint intervals on the circle J = [b;,bs] and J' = [b},b]] where by, b}, are
the end points of \; for £k = 1,2. Let A\ be a geodesic in the lamination such that its end points lie
on the same interval J or J', we remove from J U J' the open interval whose extremities are the end
points of A. See figure 4. The set Cj is obtained in this way when all the geodesics in A with end
points in J or J' are considered.

Let 0 be any transverse arc to A. We define p(6) = M,,(Cs) where M, is the so-Hausdorff
measure and sg is the Hausdorff dimension of Cj.

Proposition 3.4 For every transverse curve ¢ to A, the Hausdorff dimension of Cs is so = 1/2.

Before proving this proposition we need to describe the structure of the sets of the form hg, - - hq, (1),
and how hq, - hq, Na,,,(I) fits in the previous set. We call cylinders all the set of the form
ha, -+ ha, (I) for a; ...a, a word in the alphabet {0,1,2,3}. In order to understand the structure
of the cylinders, we give the following model for them:

Let
O0<zi <y <y < <z3<ys<ys<axy <1



Figure 5: Different type of cylinders.

with the relations

ly2 —y1| _ 1z -l lys —as| 1
|l‘2—l‘1|+|$4—l‘3| 4’ |l‘2—l‘1|+|l‘4—l‘3| 4’
|ya — ys| B (e ol Sk ZA N |
|l‘2—l‘1|+|$4—l‘3| 4’ |l‘2—l‘1|+|l‘4—l‘3| 4’

The extremities of the cylinder associated to any word, say ai ...ay, will be the points z;’s.
And the y;’s will be the extremities of its subcylinders, i.e. the cylinders associated to the words
aj...apapy1. Let us consider [z1,x2) U [3,24), we will see all the cylinders are of this form. See
figure 5. There are two possibilities:

o If x5 = x3 we say that the cylinder is of type 1.

o If x5 < x3, we say that the cylinder is of type 2.

Starting with the intervals Iy, I>, I3, I, and using induction one can prove the following fact
about the cylinders:

If the cylinder corresponding to the word a; . ..a, is of type 1 then the cylinder corresponding
to ay -..a,j is of type 1if j = 1,2,3 and is of type 2 if j = 0. And if the cylinder corresponding to
the word a; ...a, is of type 2 then the cylinder corresponding to a; ...ayj is of type 1 if 7 = 1,3
and is of type 2 if 7 =0, 2.

Proposition 3.5 The lamination A is obtained by joining by geodesics the neighbouring extremities
of the cylinders, for all the cylinders and then taking the closure, in the Hausdorff topology, of the
untion of all these geodesics.

Proof: By joining neighbouring extremities of [, x3) U [x3,Z4) We mean joining xs with 3 and x;
with T4.

Let hg, -+« ha, (I) be a cylinder. Its extremities are of the form: either hy, - - - hq,_, () for some
0< k<3, o0r hg, - hg(t), for some 1 <[ < n, where { = 1/8, the discontinuity point of the maps
hi : I — I; note hy(f) = t;. Since the neighbouring extremities correspond to images of consecutive
tr’s. The neighbouring extremities of a cylinder are joined by geodesics, according to the definition
of the lamination A.

On the other hand. Given hg, --- hy, (t;) and he, - hp, (¢;), with j = K+ 1 (mod 4). These
points are neighbouring extremities of the cylinder hy, -+ - by, he(1). B

Proof of Proposition 3.4: Without loss of generality we can suppose that the end points of § are
on geodesics that join extreme points of the same cylinder, and we can suppose that this cylinder
is of type 2. So the cylinder is of the form [z;,22) U [x3, 1), which is subdivided into the following
cylinders: [z1,y1)U[ya, Z4), [Y2,22)U[x3,¥3), [U1, y2) and [ys, y4). In the first step of the construction
of the limit set Cj the intervals [y1,y2), [ys,ya) are removed (see figure 6).

So Cs is obtained as intersection of cylinders: Cs = Nj>0K;, where in this case Ko = [, 22) U
[3,74), K1 = K UK?, K1 = [z1,y1) U [ya,24) and K = [y2,22) U [x3,y3). Note that K| and K?
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Figure 6: The construction of Cj.
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Figure 7: The image of a cylinder under £y, and its sub-division.

are cylinders of type 2. We continue the subdivision of these cylinders in the same way as for the
parent cylinder. This process can be described in term of an IFS, {1, ¢} such that K = ¢;(Kp)
for j = 1,2. This IFS satisfies the open set condition. Since each ¢; has a contraction factor of 1/4,
the resulting Cantor set has Hausdorff dimension 1/2. Moreover it can be proved using standard
techniques that 0 < M /5(Cs) < oo. B

Proposition 3.6 Let § be any arc transversal to A whose end points are in the geodesics A\ and
A2. The image of the set Cs under & is the line segment that joins Z(\1) and Z(A\2).

Proof: Without loss of generality we can suppose that the end points of the arc § are in the
geodesics that join extreme points of a cylinder of type 2. Say [z1,22)U[zs,24). See figure 6. As we
showed in the proof of Proposition 3.4, Cy = Nj>oK; where Ko = [x1,22) U [23,24), K1 = K] UKZ,
Kl = [x1,y1) U [ys,z4] and K? = [y2,22) U [z3,y3). The cylinder K, is mapped by &y into a
sub-square of R. By the definition of the space filling curve &y (1) and &y (x2) are opposite corners
of this sub-square.

The cylinder [z1,z2) U [x3,24) is subdivided into the sub-cylinders: [z1,y1) U [ya,x4), [y2,22) U
[3,93), [y1,y2) and [y3,ys). And the image under &y of each of these cylinders corresponds to a
sub-square of {37 (Kp). All these squares have the same area and they intersect in only one point, the
centre of {ur(Ko). So {ar (K1) is the collection of two of these four sub-squares. Then & (N7_oK;)
is a collection of small squares whose diagonal are in the line segment that joins &ar(z) and Enr(x2).
So in the limit we get {a7(N;>0k ;) is the line segment that joins {yr(xy) and Epr(z2). W

Let FF: A - A be a map on the lamination, defined as follows. Let A be a geodesic on the
lamination with end points b and &' (if X is degenerate b = b'). So the image of A under F' is the
geodesic that joins f(b) and f(b') where f is the expanding map on the interval defined by the
inverses of the maps in the IFS, i.e. f(t) = h;'(t) if t € I. The continuity of F follows from the
continuity of f. On the other hand if A € A is such that it joins hg, - - - he, (tx) and he, - - - hq, (¢5),
forn >2and j =k +1 (mod4), then F(X) joins hg, - - - hq, (tx) With hg, - hg, (t;). If n =1
then F'(A) = 1/8, and it can be easily checked that this point is a degenerate geodesic. Therefore
F(A) CA.

The domain of F' can be extended to the set of equivalence classes of transverse curves to the
lamination A. Given § and ¢’ two transverse curves to A, we say that § ~ ¢’ if the end points of each



curve lie in the same pair of distinct geodesics and Cs = Cyr. Therefore u(d) = p(d'). We extend
the definition of the map F' to the transversal curves to A and their equivalence classes. The curve
F(6) is defined as a curve transversal only to all F/(A) where A are the geodesics transversal to 6. It
is clear that this definition is extended to the equivalence classes of transversal curves.

Proposition 3.7 The map F has the property Fou = 2u.

Proof: By definition F.(u(0)) = u(F~'(5)) = Ms,(Cp-1(5)). On the other hand the Cantor set
Cs is of the form N;>oK; where Kj is a finite union of closed intervals, as shown in the proof of
Proposition 3.4. So f~'(Cs) = Nj»0f ™" (K;) and Cp-1(5) = f~(Cs). Since f is 4 to 1 and each of
the branches of f=!, i.e. the maps hy’s, is a contraction with a factor of 1/4, we have

3

3
My (Cp-1(s) = Mo (fTH(C5)) = My (| he(Cs)) =D Ms, (hi(Cs)) =

k=0 k=0
= 41_80/\430 (Cs) =2M,,(Cs) = 2u(9).
Hence Fop =2p. B

We can summarize the previous results in the following Theorem:

Theorem 1 There exists a geodesic lamination A on the disk, associated to Hilbert’s modified space
filling curve &Epp. This lamination has the following properties:

1. The end points of each element of A are mapped to the same point in the square by the space
filling curve &y
2. A is invariant under the group of symmetries of the square, the dihedral group Dy.

3. The lamination has a transverse measure u and there is a continuous map F : A — A, so that
Fop =2u.

4. For any transverse arc to A, there is a limit set on the boundary of the disk, whose Hausdorff
dimension is 1/2. And, the image of this limit set under &yr is a straight line between the points,
which are the images under &y of the end points of the geodesics, joined by the transverse arc.

4 Another version of the Hilbert’s curve and the correspond-
ing lamination

In this section, we will show a variation of Hilbert’s modified space filling curve studied previously
in the paper. In a similar way as before, we construct a geodesic lamination associated to this curve,
which has the same properties as the previous one. However it has fewer symmetries. It is not
invariant under the dihedral group D4. But it is invariant under rotation by 1/4.

We consider the IFS, {iLo, iLl, iL2, iLg} on the interval:

t 1 : 15
hO(t): t 15 : 15

and fu(t) = ho(t) + k/4 for k = 1,2, or 3. Let {Ho, Hy, Hy, Hs} be the IFS on R, defined by:
Hy = Hs, Hi = Hy, H, = H, and H3 = Hy. Here H}, is the map of the IFS on the square studied
previously. But we modified the order in which the squares are visited.



Figure 8: Other version of the Hilbert’s modified curve.

Figure 9: The geodesic lamination associated to the other version of Hilbert’s curve.

The space filling curve éM : I — R is defined in the same way as before:

~ A~ A~ A~

Ev(t) = lim Hy Hg, - Hy, (R),

n— 00 "

where t = lim,, o0 fia, htay - a, (I). This map is continuous surjective and Exr(t;) = (1 + 1) /2.

Up to re-labeling of the indices of the maps of the IFS on the square, these two laminations
are the only two which support space filling curves on R. This is mainly because the space filling
curve should start and finish at the centre of the square, and the curve visits this point four times in
total. The square is subdivided into four equal sub-squares. The lamination studied in the previous
sections is obtained when the sub-squares are visited in clock-wise ( or anti clock-wise) order, as
shown in figure 2. We obtain the second lamination when we re-label the indices of the IFS on
the plane such that there is a sub-square which is followed by its diagonally opposite subsquare, as
happens in the order shown in Figure 8.

In a similar way one can obtain a space filling curve onto the cube in R®. Here the IFS consists
of 8 maps and the corresponding laminations have 8-sided hyperbolic polygons.



Figure 10: Geodesic laminations associated to space filling curves on the Hexagon.

5 Space filling curves on the n-gon and geodesic laminations

In this section we will generalize the previous constructions of space filling curve and its associated
geodesic lamination to space filling curves that map the interval to a regular n-gon. We omit the
proofs and computations since they are similar to those given in the previous sections. Let G be the
regular n-gon inscribed in the unit disk and having z = 1 as one of its vertices. There are differences
between the cases n even and odd.

Let us suppose that n is even. We will consider the following IFS on the regular n-gon:
{H}}Yk=0.  n1, where Hy(z) = e®®¥7/7(z 4 1)/2. The attractor of this IFS is the n-gon, G. Unlike
the IF'S studied in the previous sections this IFS, if n # 4, does not satisfy the open set condition,
ie. H;(G) and Hy(G) intersect in a set of positive Lebesgue measure, for some j # k. But it has the
important property: the intersection of all Hi(G) is the origin, the geometrical centre of the n-gon.
Let {hg}r=o0,...n—1 be an IFS on the interval I, where

t —1 3 1
{ £ +5 if 0<t<iid
t

2n2
(| t-25 -1 jf bl <pcq,

and hi(t) = ho(t) + k/n for k = 1,...,n — 1. In a similar way, as before, we define the space
filling curve as: &g, (t) = limy, 00 Hay Hay - Ha,,(G), where t = limy, 00 hia, hray =+ * ha,, (1). This
map is well defined, continuous and surjective. Furthermore the images of the points k/n, i.e. the
extremities of hy(I), is the origin z = 0, the center of the n-gon.

As in the previous sections, we can associate a geodesic lamination to this space filling curve.
This lamination is invariant under the dihedral group D,, i.e. it has the same symmetries as the
n-gon. We can prove in a similar way as in the previous sections that this lamination has all the
properties expounded in Theorem 1. Although the IFS on the n-gon has overlaps, Proposition 3.6 is
still valid. This is due to the fact that we eliminate the cylinders that cause overlaps on the n-gon,
when the limit set Cj is constructed. So we end up with sub-gons that do not have overlaps on their
interiors. We summarize the properties of this lamination in Theorem 2.

If we re-label the indices of the IFS on the plane so that Hy(G) are arranged anti clock-wise or
clock-wise we get the same lamination. However if we arrange the sub-gons Hy(G) such that there
is at least one sub-gon which is followed by its diagonally opposite, we obtain a different lamination.
In this case we have to define a new IFS on the interval. For instance we use the following IFS on
the n-gon, which has the desired property: {I—:Tk }e=0,... n—1, where Hy, = H,; and r is the re-label
function on the indices:

0 ifj=0
r()={ j+1-% ifn2<j<n-1
n—j ifl1 <j<n/2

10



Figure 11: Geodesic lamination associated to a space filling curve on the triangle.

We consider the IFS, {ﬁk}kzoymyn_l on the interval, where

t —2 1 41

R E-I-nn? +W if 0<t<n2—n
ho(t) = X

wome i St<

and hy(t) = ho(t) +k/nfork=1,...,n—1. In a similar way we obtain a space filling curve ég(n) and
a geodesic lamination A(n) This geodesic lamination has the same properties as the lamination
associated to {g(n). However the symmetries are different. This lamination is not invariant under
the dihedral group D,,. It is invariant under rotations by 1/n. In summary we get the following
Theorem:

Theorem 2 Let G(n) be the regular n-gon, for n even. Let &gy, fg(n) be the space filling curves
from the interval to the n-gon, defined above. Then, there are geodesic laminations A(n) and A(n) on
the disk, associated to g () and g respectively. These laminations have the following properties:

1. The end points of the elements of A(n) (A(n)) are mapped to the same point in the n-gon by
the space filling curve &g(n) (§g(n))-

2. M(n) is invariant under the group of symmetries of the n-gon, the dihedral group Dy. And
A(n) is invariant under the rotation by 1/n.

3. For any transverse arc to A(n), there is a limit set on the boundary of the disk, whose Hausdorff
dimension is so = log2/logn. And, the image of this limit set under &g, is a straight line
between the points, which are the images under &g, of the end points of the geodesics, joined
by the transverse arc. Similarly for A(n).

4. Each lamination_has a transverse measure p and there is a continuous map F : A(n) — A(n)
(or F : A(n) — A(n)), so that Fop = n'=%p.

, If n is odd, we consider the following IFS on the plane: {Hp}r=o, .. n—1, Where Hy(z) =
ek7/"(Lz +1 - L) and L = 1/(1 + cos(m/n)). The attractor of this IFS is the n-gon. Here some

11



images of G under the maps of the IF'S, overlap in a set of positive Lebesgue measure. The intersec-
tion of all Hy(G) is the origin, the centre of the n-gon G. The IFS on the interval is: {hg tk=o0,...n—1,
where
by Ly f << nionsl
%w—{

if  nionsl <p o,

and hy(t) = ho(t) + k/n for n =0,...,n — 1. We define, as before, a space filling curve with the
same properties. And we obtain a geodesic lamination on the disk, whose symmetries are given by
rotation by 1/n. Summarizing we get the following Theorem:

Theorem 3 Let G(n) be the regular n-gon, for n odd. Let {g(,) be the space filling curve from
the interval to the n-gon, defined above. Then, there is a geodesic laminations A(n) on the disk,
associated to Eg(n). This lamination has the following properties:

1. The end points of each element of A(n) are mapped to the same point in the n-gon by the space
filling curve §g () -

2. A(n) is invariant under the rotation by 1/n.

3. For any arc transverse to A(n), there is a limit set on the boundary of the disk, whose Hausdorff
dimension is sy = log2/logn.

4. Each lamination has a transverse measure pu and there is a continuous map F : A(n) — A(n),

s0 that Fep = n'=%0p.
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