Short notes on Fourier Analysis
by Emanuel Indrei

1 The Fourier integral transform

Let f denote a real-or complex- valued function of a real variable x such that $f(x)$ is defined over \mathbb{R}. The Fourier transform on f arises when considering linear integral transformations of the form

$$
\begin{equation*}
T_{\xi} f=\int_{-\infty}^{+\infty} f(x) K(x, \xi) d x \tag{1}
\end{equation*}
$$

for a "nice" function K. Let's call K the kernel of the transformation. In general there are many choices for the kernel and each is useful in its own right. In our case, the goal is to choose a kernel and the domain of the parameter ξ so that T transforms derivatives f^{\prime} (let's assume derivatives exist) into products

$$
\begin{equation*}
T_{\xi} f^{\prime}=\xi T_{\xi} f \tag{2}
\end{equation*}
$$

To this end, we assume henceforth that the functions K have derivatives in x and are bounded on \mathbb{R} whereas the functions f live in the set C_{0}^{m} of continuously differentiable functions with m derivatives and the functions together with the derivatives decay to zero sufficiently fast so that (1) converges. Ok, these are a lot of assumptions and the natural question is: can we weaken some of these conditions? The answer is "Yes!" but one would need to consider L_{p} spaces and the Lebesgue integral to achieve this task.

Definition 1. The Fourier transform of a function $f \in C_{o}^{m}$ is given by $\Phi_{\xi}(f(x))=\int_{-\infty}^{+\infty} f(x) e^{-i \xi x} d x$.
One might wonder how we picked the kernel. Well, a quick integration by parts of (1) yields $K^{\prime}(x, \xi)=-\xi K(x, \xi)$ and the exponential function satisfies this and all the other above mentioned requirements. Moreover, repeated integration by parts yields the following theorem.

Theorem 1. If $f \in C_{0}^{m}$ then $\Phi_{\xi}\left(f^{(m)}(x)\right)=(i \xi)^{m} \Phi_{\xi}(f(x))$.
Now suppose we are given the Fourier transform of a function. In general, it is not obvious what the function is so the question rises of how we can retrieve our function. The following theorem answers this question.

Theorem 2. If $f \in C_{0}^{m}$, then for all real x we have $f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \Phi_{\xi}(f(x)) e^{i \xi x} d \xi=\Phi_{\xi}^{-1}\left(\Phi_{\xi}(f(x))\right.$.
Theorem 3. (Plancherel)
Let $f \in C_{0}^{m}$. Then $\int_{-\infty}^{+\infty}|f(x)|^{2} d x=\int_{-\infty}^{+\infty}\left|\Phi_{\xi}(f(x))\right|^{2} d \xi$.
Now we list some basic properties of $\Phi_{\xi}(f)$. Assume that c is a real constant.

$$
\begin{equation*}
\Phi_{\xi}(f(x-c))=e^{-i \xi c} \Phi_{\xi}(f(x)) \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
\Phi_{\xi}(f(-x))=f(-\xi) \tag{4}\\
\Phi_{\xi}(f(c x))=\frac{1}{|c|} \Phi_{\xi}\left(\frac{\xi}{c}\right), \quad c \neq 0 \tag{5}\\
\Phi_{\xi}\left(e^{i c x} f(x)\right)=\Phi_{\xi}(\xi-c) \tag{6}
\end{gather*}
$$

2 Fourier series for functions on periodic intervals

Certain functions have the property of periodicity. A function f is said to be periodic with period L if $f(x)=f(x+L)$. Perhaps the most familiar functions with this property are the sine and cosine functions. The next theorem gives us a nice way of thinking about periodic functions:

Theorem 4. (Dirichlet's Condition)
i) f is periodic with period $2 L$ over \mathbb{R}
ii) f has at most, a finite number of local max and local min for $-L \leq x \leq L$
iii) f has at most a finite number of jump discontinuities over $[-L, L]$
then $f(x) \frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right]$, where $a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x$ and $b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x$.

By squaring the function $f(x)$ in the above theorem and its Fourier series representation and integrating both sides one can derive Parseval's theorem. Note that this just the Plancherel version for Fourier series.

Theorem 5. With f as above we have that $\frac{1}{\pi} \int_{-\pi}^{\pi}[f(x)]^{2} d x=\frac{1}{2} a_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$.
In the more general case, suppose f is a function periodic in $\left[-\frac{L}{2}, \frac{L}{2}\right]$. If one uses the complex form for the sine and cosine function then the series looks like

$$
\begin{equation*}
f(x)=\sum_{-\infty}^{\infty} c_{n} e^{i\left(\frac{2 \pi n x}{L}\right)} \tag{7}
\end{equation*}
$$

where the coefficients are given by the expression

$$
\begin{equation*}
c_{n}=\frac{1}{L} \int_{\frac{-L}{2}}^{\frac{L}{2}} f(x) e^{-i\left(\frac{2 \pi n x}{L}\right)} d x \tag{8}
\end{equation*}
$$

