
Project — Instructor: Lexing Ying

Suppose α(t) is a smooth function for t ∈ [0, 1] with 0 ≤ α(t) < 1. For any integer N , define
the function

cN (j) = dN · α(j/N)e

for 0 ≤ j ≤ N − 1. Given f0, . . . , fN−1, the partial Fourier transform of size N computes
u0, . . . , uN−1 given by

uj =
∑

0≤k<cN (j)

e2πijk/Nfk.

The goal of this small project is to design and implement (in Matlab) an algorithm that computes
{uj}0≤j≤N−1 in O(N log2 N) time. The main difficulty comes from the j-dependent summation
constraints 0 ≤ k < cN (j). If there were no summation constraints, this is simply a discrete Fourier
transform. For simplicity, let us assume that N is an integer power of 2.

Hint: (1) Define the summation domain D = {(j, k)|0 ≤ k < cN (j)}. Decompose the domain
D recursively into dyadic squares (see Figure 1).

0 200 400 600 800 1000
0

200

400

600

800

1000

j

k

0 200 400 600 800 1000
0

200

400

600

800

1000

j

k

(a) (b)

Figure 1: α(t) is a Gaussian function. (a) D is the region below the curve. (b) D is partitioned
hierarchically into dyadic squares.

(2) For each square of size s × s in the constructed decomposition, is there a fast algorithm
that performs the computation associated with this square in O(s log s) steps (see Problem 3 of
the homework)? How many squares of size s × s are there? Recall that the curve α(t) is smooth.
What is the number of steps that are used on all the squares of size s × s?

(3) How many different values of s are there? What is the total number of steps?

1


