Project - Instructor: Lexing Ying

Suppose $\alpha(t)$ is a smooth function for $t \in[0,1]$ with $0 \leq \alpha(t)<1$. For any integer N, define the function

$$
c_{N}(j)=\lceil N \cdot \alpha(j / N)\rceil
$$

for $0 \leq j \leq N-1$. Given f_{0}, \ldots, f_{N-1}, the partial Fourier transform of size N computes u_{0}, \ldots, u_{N-1} given by

$$
u_{j}=\sum_{0 \leq k<c_{N}(j)} e^{2 \pi i j k / N} f_{k}
$$

The goal of this small project is to design and implement (in Matlab) an algorithm that computes $\left\{u_{j}\right\}_{0 \leq j \leq N-1}$ in $O\left(N \log ^{2} N\right)$ time. The main difficulty comes from the j-dependent summation constraints $0 \leq k<c_{N}(j)$. If there were no summation constraints, this is simply a discrete Fourier transform. For simplicity, let us assume that N is an integer power of 2.

Hint: (1) Define the summation domain $D=\left\{(j, k) \mid 0 \leq k<c_{N}(j)\right\}$. Decompose the domain D recursively into dyadic squares (see Figure 1).

Figure 1: $\alpha(t)$ is a Gaussian function. (a) D is the region below the curve. (b) D is partitioned hierarchically into dyadic squares.
(2) For each square of size $s \times s$ in the constructed decomposition, is there a fast algorithm that performs the computation associated with this square in $O(s \log s)$ steps (see Problem 3 of the homework)? How many squares of size $s \times s$ are there? Recall that the curve $\alpha(t)$ is smooth. What is the number of steps that are used on all the squares of size $s \times s$?
(3) How many different values of s are there? What is the total number of steps?

