Introduction to Wavelet Based Numerical Homogenization

Olof Runborg

Numerical Analysis, School of Computer Science and Communication, KTH

RTG Summer School on Multiscale Modeling and Analysis University of Texas at Austin

$$
2008-07-21-2008-08-08
$$

Wavelet based numerical homogenization

[Beylkin,Brewster,Engquist,Dorobantu,Levy,Gilbert,O.R.,...]
Suppose

$$
L_{j+1} u=f, \quad L_{j+1} \in \mathcal{L}\left(V_{j+1}, V_{j+1}\right) \quad u, f \in V_{j+1}
$$

is a discretization (e.g. FD, FEM) of a differential equation on scale-level $j+1$ where L_{j+1} contains small scales.
Want to find an effective discrete operator $\bar{L}_{j^{\prime}}$, with $j^{\prime} \ll j$ that computes the coarse part of u.
C.f. classical homogenization.

Wavelet based numerical homogenization

[Beylkin,Brewster,Engquist,Dorobantu,Levy,Gilbert,O.R.,....]
Suppose

$$
L_{j+1} u=f, \quad L_{j+1} \in \mathcal{L}\left(V_{j+1}, V_{j+1}\right) \quad u, f \in V_{j+1}
$$

is a discretization (e.g. FD, FEM) of a differential equation on scale-level $j+1$ where L_{j+1} contains small scales.
Want to find an effective discrete operator $\bar{L}_{j^{\prime}}$, with $j^{\prime} \ll j$ that computes the coarse part of u.
C.f. classical homogenization.

Example (Elliptic eq, Haar)

$$
\partial_{x} r(x / \varepsilon) \partial_{x} u_{\varepsilon}=f, \quad \Rightarrow \quad L_{j+1}=\frac{1}{h^{2}} \Delta_{+} R^{\varepsilon} \Delta_{-}
$$

where R^{ε} is diagonal matrix sampling $r(x / \varepsilon)$, and $2^{j} \sim 1 / \varepsilon$. Here one could use

$$
\bar{L}_{j^{\prime}}=\frac{1}{h^{2}} \Delta_{+} \bar{R} \Delta_{-} .
$$

Wavelet transforms

Simple to extract the coarse and fine part of $u=\left\{u_{k}\right\}$:

$$
\mathcal{W} u=\binom{U_{f}}{U_{c}}, \quad u \in V_{j+1} \quad U_{f} \in W_{j}, \quad U_{c} \in V_{j}
$$

For compactly supported wavelets, \mathcal{W} is sparse. It is also orthonormal, $\mathcal{W}^{T} \mathcal{W}=I$.
In Haar basis on $[0,1]$,

$$
\mathcal{W}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccccc}
1 & -1 & 0 & \cdots & & \cdots \\
0 & 0 & 1 & -1 & 0 & \cdots \\
\vdots & \vdots & & \ddots & \ddots & \\
0 & 0 & \ldots & 0 & 1 & -1 \\
1 & 1 & 0 & \cdots & 0 & \cdots \\
0 & 0 & 1 & 1 & 0 & \\
\vdots & \vdots & & \ddots & \ddots & \\
0 & 0 & \cdots & 0 & 1 & 1
\end{array}\right) \in \mathbb{R}^{2^{j+1} \times 2^{j+1}}
$$

Wavelet based numerical homogenization

Wavelet decomposition of operator
Start from equation

$$
L_{j+1} u=f, \quad L_{j+1} \in \mathcal{L}\left(V_{j+1}, V_{j+1}\right) \quad u, f \in V_{j+1}
$$

Decompose equation in coarse and fine part (use $\mathcal{W}^{T} \mathcal{W}=I$)

$$
\begin{gathered}
\mathcal{W} L_{j+1} \mathcal{W}^{T} \mathcal{W} u=\mathcal{W} f \quad \Rightarrow \\
\left(\begin{array}{ll}
A_{j} & B_{j} \\
C_{j} & L_{j}
\end{array}\right)\binom{U^{f}}{U^{c}}=\binom{F^{f}}{F^{c}} .
\end{gathered}
$$

Wavelet based numerical homogenization

Wavelet decomposition of operator
Start from equation

$$
L_{j+1} u=f, \quad L_{j+1} \in \mathcal{L}\left(V_{j+1}, V_{j+1}\right) \quad u, f \in V_{j+1}
$$

Decompose equation in coarse and fine part (use $\mathcal{W}^{T} \mathcal{W}=I$)

$$
\begin{gathered}
\mathcal{W} L_{j+1} \mathcal{W}^{T} \mathcal{W} u=\mathcal{W} f \quad \Rightarrow \\
\left(\begin{array}{ll}
A_{j} & B_{j} \\
C_{j} & L_{j}
\end{array}\right)\binom{U^{f}}{U^{c}}=\binom{F^{f}}{F^{c}} .
\end{gathered}
$$

Eliminate U^{f},

$$
\left(L_{j}-C_{j} A_{j}^{-1} B_{j}\right) U^{c}=F^{c}-C_{j} A_{j}^{-1} F^{f}
$$

Wavelet based numerical homogenization

Wavelet decomposition of operator
Start from equation

$$
L_{j+1} u=f, \quad L_{j+1} \in \mathcal{L}\left(V_{j+1}, V_{j+1}\right) \quad u, f \in V_{j+1}
$$

Decompose equation in coarse and fine part (use $\mathcal{W}^{T} \mathcal{W}=I$)

$$
\begin{gathered}
\mathcal{W} L_{j+1} \mathcal{W}^{T} \mathcal{W} u=\mathcal{W} f \quad \Rightarrow \\
\left(\begin{array}{ll}
A_{j} & B_{j} \\
C_{j} & L_{j}
\end{array}\right)\binom{U^{f}}{U^{c}}=\binom{F^{f}}{F^{c}} .
\end{gathered}
$$

Eliminate U^{f},

$$
\left(L_{j}-C_{j} A_{j}^{-1} B_{j}\right) U^{c}=F^{c}-C_{j} A_{j}^{-1} F^{f}
$$

Supposing f smooth so $F^{f}=0$ and $F^{c}=f$.

$$
\left(L_{j}-C_{j} A_{j}^{-1} B_{j}\right) U^{c}=f
$$

Wavelet based numerical homogenization

Numerically homogenized operator

We call the matrix

$$
\bar{L}_{j}=L_{j}-C_{j} A_{j}^{-1} B_{j}, \quad \bar{L}_{j} \in \mathcal{L}\left(V_{j}, V_{j}\right)
$$

the (numerically) homogenized operator. Since

- Half the size of original L_{j+1}.
- Given \bar{L}_{j}, f we can solve for coarse part of solution, U^{c}.
- Takes influence of fine scales into account.

Compare with classical homogenization:

$$
L=\nabla R(x / \varepsilon) \nabla \quad \Rightarrow \quad \bar{L}=\nabla \int R(x) d x \nabla-\nabla \int R(x) \frac{\partial \chi}{\partial x} d x \nabla
$$

where χ solves the (elliptic) cell problem.

Wavelet based numerical homogenization

Reduction can be repeated,

$$
\bar{L}_{j} \rightarrow \bar{L}_{j-1} \rightarrow \bar{L}_{j-2} \rightarrow \ldots, \quad \bar{L}_{j} \in \mathcal{L}\left(V_{j}, V_{j}\right)
$$

to discard suitably many small scales / to get a suitably coarse grid. Also, condition number improves

$$
\kappa\left(\bar{L}_{j}\right)<\kappa\left(L_{j+1}\right)
$$

Wavelet based numerical homogenization

Problem: L sparse (banded) $\nrightarrow \bar{L}$ sparse (banded). (Must invert A_{j}.)
However: Approximation properties of wavelets imply elements of A_{j}^{-1} decay rapidly away from diagonal.

Therefore: \bar{L} diagonally dominant in many important cases and can be well approximated by a banded matrix. (Cf. a (local) differential operator.)

Different Approximation Strategies

(1) "Crude" truncation to ν diagonals,
(2) Band projection to ν diagonals, defined by

$$
\begin{gathered}
M \boldsymbol{x}=\operatorname{band}(M, \nu) \boldsymbol{x}, \quad \forall \boldsymbol{x} \in \operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{\nu}\right\} . \\
\boldsymbol{v}_{j}=\left\{1^{j-1}, 2^{j-1}, \ldots, N^{j-1}\right\}^{T}, \quad j=1, \ldots, \nu .
\end{gathered}
$$

C.f. "probing", [Chan, Mathew], [Axelsson, Pohlman, Wittum].
(0) The above methods used on the matrix H instead, where e.g.

$$
L_{j+1}=\frac{1}{h^{2}} \Delta_{+} R \Delta_{-} \quad \Rightarrow \quad \bar{L}_{j}=\frac{1}{(2 h)^{2}} \Delta_{+} H \Delta_{-} .
$$

H can be seen as the effective material coefficient.
(1) The above methods used on the matrix A_{j}^{-1} instead, where $\bar{L}_{j}=L_{j}-C_{j} A_{j}^{-1} B_{j}$. [Levy, Chertock]

Elliptic 1D case

Consider the elliptic one-dimensional problem

$$
\partial_{x} a^{\varepsilon}(x) \partial_{x} u=1, \quad u(0)=u^{\prime}(1)=0
$$

with standard second order discretization.
Try two cases:

$$
a^{\varepsilon}(x)=" \text { noise" }
$$

$$
a^{\varepsilon}(x)=\text { " narrow slit" }
$$

Elliptic 1D case - noise

Different approximation strategies

Elliptic 1D case - narrow slit

Different approximation strategies

Elliptic 1D case - narrow slit

Matrix element size

Examples

Helmholtz 2D case

Simulate a wave hitting a wall with a small opening modeld by Helmholtz

$$
\nabla a(x, y) \nabla u+\omega^{2} u=0
$$

Examples

Helmholtz 2D case

Examples

Helmholtz 2D case

Untruncated operator

$$
v=7
$$

$\mathrm{v}=5$

Helmholtz 2D case

Matrix element size

