Introduction to Wavelet Based Numerical Homogenization

Olof Runborg

Numerical Analysis, School of Computer Science and Communication, KTH

RTG Summer School on Multiscale Modeling and Analysis University of Texas at Austin 2008-07-21 – 2008-08-08

Wavelet based numerical homogenization [Beylkin,Brewster,Engquist,Dorobantu,Levy,Gilbert,O.R....]

Suppose

$$L_{j+1}u = f,$$
 $L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1})$ $u, f \in V_{j+1},$

is a discretization (e.g. FD, FEM) of a differential equation on scale-level j + 1 where L_{j+1} contains small scales.

Want to find an *effective* discrete operator $\overline{L}_{j'}$, with $j' \ll j$ that computes the coarse part of u.

C.f. classical homogenization.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Wavelet based numerical homogenization [Beylkin,Brewster,Engquist,Dorobantu,Levy,Gilbert,O.R....]

Suppose

$$L_{j+1}u = f,$$
 $L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1})$ $u, f \in V_{j+1},$

is a discretization (e.g. FD, FEM) of a differential equation on scale-level j + 1 where L_{j+1} contains small scales.

Want to find an *effective* discrete operator $\overline{L}_{j'}$, with $j' \ll j$ that computes the coarse part of u.

C.f. classical homogenization.

Example (Elliptic eq, Haar)

$$\partial_{X}r(X/\varepsilon)\partial_{X}u_{\varepsilon}=f, \qquad \Rightarrow \qquad L_{j+1}=\frac{1}{h^{2}}\Delta_{+}R^{\varepsilon}\Delta_{-}.$$

where R^{ε} is diagonal matrix sampling $r(x/\varepsilon)$, and $2^{j} \sim 1/\varepsilon$. Here one could use

$$ar{L}_{j'} = rac{1}{h^2} \Delta_+ ar{R} \Delta_-.$$

Simple to extract the coarse and fine part of $u = \{u_k\}$:

$$\mathcal{W}u = \begin{pmatrix} U_f \\ U_c \end{pmatrix}, \quad u \in V_{j+1} \quad U_f \in W_j, \quad U_c \in V_j.$$

For compactly supported wavelets, W is *sparse*. It is also orthonormal, $W^T W = I$.

In Haar basis on [0, 1],

$$\mathcal{W} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 & \cdots \\ 0 & 0 & 1 & -1 & 0 & \cdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & -1 \\ 1 & 1 & 0 & \cdots & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & \cdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{2^{j+1} \times 2^{j+1}}.$$

< ロ > < 同 > < 回 > < 回 >

Wavelet decomposition of operator

Start from equation

$$L_{j+1}u = f, \qquad L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1}) \qquad u, f \in V_{j+1}.$$

Decompose equation in coarse and fine part (use $W^T W = I$)

$$\mathcal{W}L_{j+1}\mathcal{W}^{T}\mathcal{W}u = \mathcal{W}f \qquad \Rightarrow \\ \begin{pmatrix} A_{j} & B_{j} \\ C_{j} & L_{j} \end{pmatrix} \begin{pmatrix} U^{f} \\ U^{c} \end{pmatrix} = \begin{pmatrix} F^{f} \\ F^{c} \end{pmatrix}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Wavelet decomposition of operator

Start from equation

$$L_{j+1}u = f, \qquad L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1}) \qquad u, f \in V_{j+1}.$$

Decompose equation in coarse and fine part (use $W^T W = I$)

$$\mathcal{W}L_{j+1}\mathcal{W}^{\mathsf{T}}\mathcal{W}u = \mathcal{W}f \qquad \Rightarrow \\ \begin{pmatrix} A_j & B_j \\ C_j & L_j \end{pmatrix} \begin{pmatrix} U^f \\ U^c \end{pmatrix} = \begin{pmatrix} F^f \\ F^c \end{pmatrix}.$$

Eliminate U^{f} ,

$$(L_j - C_j A_j^{-1} B_j) U^c = F^c - C_j A_j^{-1} F^f.$$

< ロ > < 同 > < 回 > < 回 >

Wavelet decomposition of operator

Start from equation

$$L_{j+1}u = f,$$
 $L_{j+1} \in \mathcal{L}(V_{j+1}, V_{j+1})$ $u, f \in V_{j+1}.$

Decompose equation in coarse and fine part (use $W^T W = I$)

$$\mathcal{W}L_{j+1}\mathcal{W}^{\mathsf{T}}\mathcal{W}u = \mathcal{W}f \implies (\mathbf{A} = \mathbf{B}) \quad (\mathbf{U}^{\mathsf{f}}) \quad (\mathbf{F}^{\mathsf{f}})$$

$$\begin{pmatrix} A_j & B_j \\ C_j & L_j \end{pmatrix} \begin{pmatrix} U' \\ U^c \end{pmatrix} = \begin{pmatrix} F' \\ F^c \end{pmatrix}.$$

Eliminate U^{f} ,

$$(L_j - C_j A_j^{-1} B_j) U^c = F^c - C_j A_j^{-1} F^f.$$

Supposing *f* smooth so $F^{f} = 0$ and $F^{c} = f$.

$$(L_j-C_jA_j^{-1}B_j)U^c=f.$$

E N 4 E N

Numerically homogenized operator

We call the matrix

$$\overline{L}_j = L_j - C_j A_j^{-1} B_j, \qquad \overline{L}_j \in \mathcal{L}(V_j, V_j),$$

the (numerically) homogenized operator. Since

- Half the size of original L_{j+1} .
- Given \overline{L}_i , *f* we can solve for coarse part of solution, U^c .
- Takes influence of fine scales into account.

Compare with classical homogenization:

$$L = \nabla R(x/\varepsilon) \nabla \quad \Rightarrow \quad \bar{L} = \nabla \int R(x) dx \nabla - \nabla \int R(x) \frac{\partial \chi}{\partial x} dx \nabla$$

where χ solves the (elliptic) cell problem.

Reduction can be repeated,

$$ar{L}_j
ightarrow ar{L}_{j-1}
ightarrow ar{L}_{j-2}
ightarrow \ldots, \qquad ar{L}_j \in \mathcal{L}(V_j, V_j),$$

to discard suitably many small scales / to get a suitably coarse grid. Also, condition number improves

$$\kappa(\overline{L}_j) < \kappa(L_{j+1}).$$

Problem: *L* sparse (banded) $\not\rightarrow \overline{L}$ sparse (banded). (Must invert A_{j} .)

However: Approximation properties of wavelets imply elements of A_j^{-1} decay rapidly away from diagonal.

Therefore: \overline{L} diagonally dominant in many important cases and can be well approximated by a banded matrix. (Cf. a (local) differential operator.)

Different Approximation Strategies

• "Crude" truncation to ν diagonals,

Band projection to v diagonals, defined by

 $M\boldsymbol{x} = \text{band}(\boldsymbol{M}, \boldsymbol{\nu})\boldsymbol{x}, \qquad \forall \boldsymbol{x} \in \text{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_{\boldsymbol{\nu}}\}.$ $\boldsymbol{v}_i = \{1^{j-1}, 2^{j-1}, \dots, N^{j-1}\}^T, \qquad j = 1, \dots, \boldsymbol{\nu}.$

C.f. "probing", [Chan, Mathew], [Axelsson, Pohlman, Wittum].
The above methods used on the matrix *H* instead, where e.g.

$$L_{j+1} = rac{1}{h^2} \Delta_+ R \Delta_- \qquad \Rightarrow \qquad ar{L}_j = rac{1}{(2h)^2} \Delta_+ H \Delta_-.$$

H can be seen as the effective material coefficient.

• The above methods used on the matrix A_j^{-1} instead, where $\bar{L}_j = L_j - C_j A_j^{-1} B_j$. [Levy, Chertock]

Elliptic 1D case

Consider the elliptic one-dimensional problem

$$\partial_x a^{\varepsilon}(x) \partial_x u = 1, \qquad u(0) = u'(1) = 0,$$

with standard second order discretization. Try two cases:

$$a^{arepsilon}(x) =$$
 " noise" $a^{arepsilon}(x) =$ " narrow slit"

Elliptic 1D case – noise

Different approximation strategies

Olof Runborg (KTH)

Wavelet Based Homogenization

Austin, August 2008 10 / 15

Elliptic 1D case – narrow slit

Different approximation strategies

Olof Runborg (KTH)

< 🗇 🕨

Elliptic 1D case – narrow slit

Matrix element size

Austin, August 2008 12 / 15

Simulate a wave hitting a wall with a small opening modeld by Helmholtz

$$\nabla a(x,y)\nabla u+\omega^2 u=0,$$

< ロ > < 同 > < 回 > < 回 >

Examples Helmholtz 2D case

< ロ > < 回 > < 回 > < 回 > < 回</p>

< ロ > < 回 > < 回 > < 回 > < 回</p>

Olof Runborg (KTH)

Wavelet Based Homogenization

Helmholtz 2D case

Matrix element size

Olof Runborg (KTH)

Austin, August 2008 15 / 15

æ