
Introduction to Wavelet Based Numerical
Homogenization

Olof Runborg

Numerical Analysis,
School of Computer Science and Communication, KTH

RTG Summer School on Multiscale Modeling and Analysis
University of Texas at Austin

2008-07-21 – 2008-08-08

Olof Runborg (KTH) Wavelet Based Homogenization Austin, August 2008 1 / 15



Wavelet based numerical homogenization
[Beylkin,Brewster,Engquist,Dorobantu,Levy,Gilbert,O.R.,. . . ]

Suppose

Lj+1u = f , Lj+1 ∈ L(Vj+1,Vj+1) u, f ∈ Vj+1,

is a discretization (e.g. FD, FEM) of a differential equation on
scale-level j + 1 where Lj+1 contains small scales.

Want to find an effective discrete operator L̄j ′ , with j ′ � j that computes
the coarse part of u.

C.f. classical homogenization.

Example (Elliptic eq, Haar)

∂x r(x/ε)∂xuε = f , ⇒ Lj+1 =
1
h2 ∆+Rε∆−.

where Rε is diagonal matrix sampling r(x/ε), and 2j ∼ 1/ε. Here one
could use

L̄j ′ =
1
h2 ∆+R̄∆−.
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Wavelet transforms

Simple to extract the coarse and fine part of u = {uk}:

Wu =

(
Uf
Uc

)
, u ∈ Vj+1 Uf ∈Wj , Uc ∈ Vj .

For compactly supported wavelets,W is sparse. It is also orthonormal,
WTW = I.
In Haar basis on [0,1],

W =
1√
2


1 −1 0 · · ·
0 0 1 −1 0 · · ·
.
.
.

.

.

.
. . .

. . .
0 0 · · · 0 1 −1
1 1 0 · · ·
0 0 1 1 0 · · ·
.
.
.

.

.

.
. . .

. . .
0 0 · · · 0 1 1

 ∈ R2j+1×2j+1
.
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Wavelet based numerical homogenization
Wavelet decomposition of operator

Start from equation

Lj+1u = f , Lj+1 ∈ L(Vj+1,Vj+1) u, f ∈ Vj+1.

Decompose equation in coarse and fine part (useWTW = I)

WLj+1WTWu =Wf ⇒(
Aj Bj
Cj Lj

)(
U f

Uc

)
=

(
F f

F c

)
.

Eliminate U f ,
(Lj − CjA−1

j Bj)Uc = F c − CjA−1
j F f .

Supposing f smooth so F f = 0 and F c = f .

(Lj − CjA−1
j Bj)Uc = f .
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Wavelet based numerical homogenization
Numerically homogenized operator

We call the matrix

L̄j = Lj − CjA−1
j Bj , L̄j ∈ L(Vj ,Vj),

the (numerically) homogenized operator. Since
Half the size of original Lj+1.
Given L̄j , f we can solve for coarse part of solution, Uc .
Takes influence of fine scales into account.

Compare with classical homogenization:

L = ∇R(x/ε)∇ ⇒ L̄ = ∇
∫

R(x)dx∇−∇
∫

R(x)
∂χ

∂x
dx∇

where χ solves the (elliptic) cell problem.
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Wavelet based numerical homogenization

Reduction can be repeated,

L̄j → L̄j−1 → L̄j−2 → . . . , L̄j ∈ L(Vj ,Vj),

to discard suitably many small scales / to get a suitably coarse grid.
Also, condition number improves

κ(L̄j) < κ(Lj+1).
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Wavelet based numerical homogenization

Problem: L sparse (banded) 6→ L̄ sparse (banded). (Must invert Aj .)

However: Approximation properties of wavelets imply elements of A−1
j

decay rapidly away from diagonal.

Therefore: L̄ diagonally dominant in many important cases and can be
well approximated by a banded matrix. (Cf. a (local) differential
operator.)
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Different Approximation Strategies

1 “Crude” truncation to ν diagonals,
2 Band projection to ν diagonals, defined by

Mx = band(M, ν)x , ∀x ∈ span{v1,v2, . . . ,vν}.

v j = {1j−1,2j−1, . . . ,N j−1}T , j = 1, . . . , ν.

C.f. “probing”, [Chan, Mathew], [Axelsson, Pohlman, Wittum].
3 The above methods used on the matrix H instead, where e.g.

Lj+1 =
1
h2 ∆+R∆− ⇒ L̄j =

1
(2h)2 ∆+H∆−.

H can be seen as the effective material coefficient.
4 The above methods used on the matrix A−1

j instead, where
L̄j = Lj − CjA−1

j Bj . [Levy, Chertock]
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Elliptic 1D case

Consider the elliptic one-dimensional problem

∂xaε(x)∂xu = 1, u(0) = u′(1) = 0,

with standard second order discretization.
Try two cases:

aε(x) = ”noise” aε(x) = ”narrow slit”
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Elliptic 1D case – noise
Different approximation strategies
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Elliptic 1D case – narrow slit
Different approximation strategies
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Elliptic 1D case – narrow slit
Matrix element size
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Examples
Helmholtz 2D case

Simulate a wave hitting a wall with
a small opening modeld by
Helmholtz

∇a(x , y)∇u + ω2u = 0, 0
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Examples
Helmholtz 2D case
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Examples
Helmholtz 2D case
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Helmholtz 2D case
Matrix element size
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