Introduction to Subdivision and Normal Meshes

Olof Runborg

Numerical Analysis, School of Computer Science and Communication, KTH

RTG Summer School on Multiscale Modeling and Analysis University of Texas at Austin 2008-07-21 – 2008-08-08

Subdivision Surfaces

- Way to represent and approximate surfaces.
- Widely used in animated movies and computer games.

(Pictures from PIXAR.)

Olof Runborg (KTH)

Subdivision Surfaces

- Way to represent and approximate surfaces.
- Widely used in animated movies and computer games.

(Pictures from PIXAR.)

Olof Runborg (KTH)

Subdivision - Basic Idea

Use simple refinement rules to construct smooth surfaces/curves from a coarse initial mesh.

(Pictures from Schroder/Zorin.)

Olof Runborg (KTH)

Subdivision and Normal Meshes

A .

- B

Subdivision – Basic Idea

Use simple refinement rules to construct smooth surfaces/curves from a coarse initial mesh.

(Pictures from Schroder/Zorin.)

Olof Runborg (KTH)

Subdivision and Normal Meshes

- Simple method for describing complex surfaces
- Arbitrary topology
- Scalability/multiresolution
- Local definition efficiency, simplicity
- Smooth surfaces

글 🕨 🖌 글

< 47 ▶

Procedure to iteratively create smooth curves and surfaces. Example in 1D: "4-point scheme:"

Curve $\sim \mathbf{y}_j = \{\mathbf{y}_{j,k}\}$ Refinement: $\mathbf{y}_{j+1} = S\mathbf{y}_j$ *S* defined as

$$y_{j+1,2k} = y_{j,k}$$

(even points)

$$y_{j+1,2k+1} = \sum_{\ell=-1}^2 s_\ell y_{j,k+\ell}$$

(odd points)

More general, let *S* be a (linear, local, stationary) *subdivision operator* such that $\mathbf{y}_{j+1} = S\mathbf{y}_j$ and

$$y_{j+1,2k} = \sum_{\ell} s_{\ell}^{\boldsymbol{o}} y_{j,k+\ell}, \qquad y_{j+1,2k+1} = \sum_{\ell} s_{\ell}^{\boldsymbol{o}} y_{j,k+\ell}.$$

where $m{s}^o = \{ s^o_\ell \}$ and $m{s}^e \{ s^e_\ell \}$ are the odd/even masks.

S is interpolating if $\mathbf{s}^e = \{\delta_\ell\}$, i.e. $y_{j+1,2k} = y_{j,k}$.

Examples:

- "2-point" (linear), $s^o = \frac{1}{2}[1, 1],$
- "4-point" (cubic), $\mathbf{s}^o = \frac{1}{16}[-1, 9, 9, -1],$
- "6-point", $\mathbf{s}^o = \frac{1}{256}[3, -25, 150, 150, -25, 3].$

3

<u>Order</u> of *S* is \mathcal{P} if *S* preserves *p*-degree polynomials for $0 \le p < \mathcal{P}$.

<u>Derived</u> subdivision schemes, $S^{[p]}$, act on divided differences of y_i ,

$$S^{[\rho]} y_j^{[\rho]} = y_{j+1}^{[\rho]}, \qquad y^{[\rho]} = D_j^{\rho} y_j.$$

(Also, $S^{[p]} = D_{j+1}^{p} S D_{j}^{-p}$.) $S^{[p]}$ well-defined for $p \leq$ order of S. A derived scheme $S^{[p]}$ is in general not interpolating even if S is. Example: If S is the 4-point scheme, then

•
$$S^{[1]}$$
: $\mathbf{s}^e = [\frac{1}{8}, 1, -\frac{1}{8}], \, \mathbf{s}^o = [-\frac{1}{8}, 1, \frac{1}{8}],$
• $S^{[2]}$: $\mathbf{s}^e = [\frac{1}{2}, \frac{1}{2}], \, \mathbf{s}^o = [-\frac{1}{4}, \frac{3}{2}, -\frac{1}{4}].$

Subdivision limit functions

Let $\tilde{y}_{j}(t)$ be linear interpolant of y_{j} . Does $\phi(t)$ exist such that

 $\lim_{j\to\infty}\tilde{y}_j(t)\to\phi(t)?$

If so, what is the regularity of $\phi(t)$?

Theorem

Let S be a subdivision scheme of order $\mathcal{P} \geq 1$. Assume C, μ exist such that

$$||\mathcal{S}^{[p]^{j}}||_{\infty} \leq C \ 2^{\mu j}, \qquad \forall j \geq 0.$$

If $\mathcal{P} \ge p > \mu$, then $\exists \phi \in C^{p-\mu-\varepsilon}$ such that $\tilde{y}_i \to \phi$ uniformly.

Ex.:

• "2-point:"
$$||S^{[1]}||_{\infty} = 1$$
 gives $p = 1, \mu = 0$, so $\phi \in C^{1-\varepsilon}$

- "4-point:" $||S^{[3]}||_{\infty} = 2$ gives $p = 3, \mu = 1$, so $\phi \in C^{2-\varepsilon}$.
- "6-point", $\phi \in C^{2.83}$.

- 31

New challenges:

- Triangular/quadrilaterals instead of intervals
- Extraordinary vertices varying number of neighbors
- Boundaries
- Piecewise smooth curves creases, corners, cusps, etc.

Butterfly algorithm:

- Work with triangulated meshes.
- Split each face in four with each refinement.

Butterfly, cont.

- Interpolating: Old vertices stay the same.
- New vertex a weighted sum of surrounding vertices:

$$\mathbf{x}_{\text{new}} = \frac{1}{2}(a_1 + a_2) + \left(\frac{1}{8} + 2w\right)(b_1 + b_2) - \left(\frac{1}{16} + w\right)(c_1 + c_2).$$

(w = tension parameter)

• Gives C^1 surfaces almost everywhere.

Olof Runborg (KTH)

Subdivision and Normal Meshes

Austin, August 2008 11 / 22

Butterfly, example

Initial mesh a pyramid:

Olof Runborg (KTH)

Subdivision and Normal Meshes

Austin, August 2008 12 / 22

э

Multiresolution Meshes

Analysis:

2

Multiresolution Meshes

Analysis:

Olof Runborg (KTH)

Subdivision and Normal Meshes

Normal meshes

Guskov, Khodakovsky, Schröder, Sweldens,...

- Multiresolution meshes (predict + detail, at each level).
- Wavelet vectors align with *normal* direction defined by coarser levels.
- Purely scalar representation (1 float/vertex) possible. Good compression properties.
- No parameterization/connectivity info (improves compression rates)
- Scalar wavelet compression codes can be used.

4 D b 4 A b

- Convergence,
- Decay of normal offsets,
- Regularity of normal parameterizaton,
- Stability.

Some results available in one dimension: Daubechies, Sweldens, O.R..

Normal meshes

Theory

Suppose the curve is given by $\Gamma(s)$ with $s \in [0, 1]$. Let the node points on level *j* be given by

$$x_{j,k} = \Gamma(k2^{-j}), \qquad 0 \leq k \leq 2^j.$$

(Note that $x_{j+1,2k} = x_{j,k}$.) The wavelet details vectors are

$$w_{j,k} = x_{j+1,2k+1} - \frac{1}{2}(x_{j,k} + x_{j,k+1}), \qquad j \ge 0.$$

(4) (5) (4) (5)

A D M A A A M M

Normal meshes

Theory

Suppose the curve is given by $\Gamma(s)$ with $s \in [0, 1]$. Let the node points on level *j* be given by

$$x_{j,k} = \Gamma(k2^{-j}), \qquad 0 \leq k \leq 2^j.$$

(Note that $x_{j+1,2k} = x_{j,k}$.) The wavelet details vectors are

$$w_{j,k} = x_{j+1,2k+1} - \frac{1}{2}(x_{j,k} + x_{j,k+1}), \qquad j \ge 0.$$

Theorem (Daubechies, Sweldens, OR)

If $\Gamma\in\textit{C}^2([0,1];\mathbb{R}^2)$ then

$$|\mathbf{r}_{j} \rightarrow \mathbf{\Gamma}, \qquad |\mathbf{w}_{j,k}| \leq \mathbf{C} \mathbf{2}^{-2j}, \qquad |\mathbf{x}_{j,k+1} - \mathbf{x}_{j,k}| \leq \mathbf{C}' \mathbf{2}^{-j}.$$

Higher order subdivision scheme as predictor

Will give faster decay of wavelet vectors and their time derivatives.

Olof Runborg (KTH)

Austin, August 2008 18 / 22

For higher order subdivision normal wavelet vectors decay faster:

Theorem (Daubechies, Sweldens, OR)

If $\Gamma\in \textit{C}^{Q+\epsilon}([0,1];\mathbb{R}^2)$ then

$$|\mathbf{W}_{j,k}| \leq C 2^{-(Q-\varepsilon)j},$$

where Q depends on the subdivision operator in a nontrivial way. Ex:

- "6-point:" Q = 3.83,
- *"8-point:" Q* = 4.55.

< ロ > < 同 > < 回 > < 回 >

Triangulated wavefront:

Subdivision and Normal Meshes

æ

Simplified normal mesh construction

Start from two adjacent triangles.

Olof Runborg (KTH)

Subdivision and Normal Meshes

Austin, August 2008 21 / 22

A (10) A (10) A (10)

Simplified normal mesh construction

- Start from two adjacent triangles.
- Construct normals to the triangles, n_1 and n_2 .

∃ >

Simplified normal mesh construction

- Start from two adjacent triangles.
- Construct normals to the triangles, n₁ and n₂.
- Compute an average normal on the connecting edge:

$$n_{\rm aver} = \frac{n_1 + n_2}{|n_1 + n_2|}$$

Simplified normal mesh construction

- Start from two adjacent triangles.
- Construct normals to the triangles, n_1 and n_2 .
- Compute an average normal on the connecting edge:

$$n_{\rm aver} = \frac{n_1 + n_2}{|n_1 + n_2|}$$

Find point where n_{aver} pierces surface.

Simplified normal mesh construction

- Start from two adjacent triangles.
- Construct normals to the triangles, n_1 and n_2 .
- Compute an average normal on the connecting edge:

$$n_{\rm aver} = \frac{n_1 + n_2}{|n_1 + n_2|}$$

- Find point where n_{aver} pierces surface.
- Do same thing for all edges.

Simplified normal mesh construction

- Start from two adjacent triangles.
- Construct normals to the triangles, n_1 and n_2 .
- Compute an average normal on the connecting edge:

$$n_{\rm aver} = \frac{n_1 + n_2}{|n_1 + n_2|}$$

- Find point where n_{aver} pierces surface.
- Do same thing for all edges.
- Connect new points to a new finer triangulation.

Olof Runborg (KTH)

Better results when using higher order subdivision schemes as predictors. Here the Butterfly scheme was used:

(Pictures from Guskov Vidimce Schröder Sweldens.)

Olof Runborg (KTH)

Subdivision and Normal Meshes

Austin, August 2008 22 / 22

Better results when using higher order subdivision schemes as predictors. Here the Butterfly scheme was used:

Figure 1: Left: original mesh (3 floats/vertex). Middle: two stages of our algorithm. Right: normal mesh (1 float/vertex). (Skull dataset courtesy Headus, Inc.)

(Pictures from Guskov Vidimce Schröder Sweldens)

.

4 A N