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Subdivision Surfaces

Way to represent and approximate surfaces.

Widely used in animated movies and computer
games.

(Pictures from PIXAR.)
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Subdivision – Basic Idea

Use simple refinement rules to construct smooth surfaces/curves from
a coarse initial mesh.

(Pictures from Schroder/Zorin.)
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Subdivision

Simple method for describing complex surfaces
Arbitrary topology
Scalability/multiresolution
Local definition – efficiency, simplicity
Smooth surfaces
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Subdivision

Procedure to iteratively create smooth curves and surfaces.

Example in 1D: “4-point scheme:”

Curve ∼ y j = {yj,k}

Refinement: y j+1 = Sy j

S defined as

yj+1,2k = yj,k

(even points)

yj+1,2k+1 =
2∑

`=−1

s`yj,k+`

(odd points)
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Subdivision, examples

More general, let S be a (linear, local, stationary) subdivision operator
such that y j+1 = Sy j and

yj+1,2k =
∑
`

se
` yj,k+`, yj+1,2k+1 =

∑
`

so
` yj,k+`.

where so = {so
` } and se{se

` } are the odd/even masks.

S is interpolating if se = {δ`}, i.e. yj+1,2k = yj,k .

Examples:
“2-point” (linear), so = 1

2 [1, 1],

“4-point” (cubic), so = 1
16 [−1, 9, 9, −1],

“6-point”, so = 1
256 [3, −25, 150, 150, −25, 3].
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More Properties of Subdivision Operators

Order of S is P if S preserves p-degree polynomials for 0 ≤ p < P.

Derived subdivision schemes, S[p], act on divided differences of y j ,

S[p]y [p]
j = y [p]

j+1, y [p] = Dp
j y j .

(Also, S[p] = Dp
j+1SD−p

j .) S[p] well-defined for p ≤ order of S.
A derived scheme S[p] is in general not interpolating even if S is.
Example: If S is the 4-point scheme, then

S[1]: se = [1
8 , 1, −1

8 ], so = [−1
8 , 1, 1

8 ],

S[2]: se = [1
2 ,

1
2 ], so = [−1

4 ,
3
2 , −

1
4 ].
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Subdivision limit functions

Let ỹj(t) be linear interpolant of y j . Does φ(t) exist such that

lim
j→∞

ỹj(t)→ φ(t)?

If so, what is the regularity of φ(t)?

Theorem
Let S be a subdivision scheme of order P ≥ 1. Assume C, µ exist
such that

||S[p]j ||∞ ≤ C 2µj , ∀j ≥ 0.

If P ≥ p > µ, then ∃φ ∈ Cp−µ−ε such that ỹj → φ uniformly.

Ex.:
“2-point:” ||S[1]||∞ = 1 gives p = 1, µ = 0, so φ ∈ C1−ε

“4-point:” ||S[3]||∞ = 2 gives p = 3, µ = 1, so φ ∈ C2−ε.
“6-point”, φ ∈ C2.83.
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Subdivision in 2D – Surfaces

New challenges:
Triangular/quadrilaterals instead of intervals
Extraordinary vertices – varying number of neighbors
Boundaries
Piecewise smooth curves – creases, corners, cusps, etc.
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Subdivision in 2D – Surfaces

Butterfly algorithm:

Work with triangulated meshes.
Split each face in four with each refinement.
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Butterfly, cont.

Interpolating: Old vertices stay the same.
New vertex a weighted sum of surrounding vertices:

xnew =
1
2

(a1 + a2) +

(
1
8

+ 2w
)

(b1 + b2)−
(

1
16

+ w
)

(c1 + c2).

(w = tension parameter)
Gives C1 surfaces almost everywhere.
Olof Runborg (KTH) Subdivision and Normal Meshes Austin, August 2008 11 / 22



Butterfly, example

Initial mesh a pyramid:
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Multiresolution Meshes

Analysis:

Synthesis:

• Predict new vertices only based on previous level.
• Add wavelet coefficient (“detail vector”) to correct.
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Normal meshes
Guskov, Khodakovsky, Schröder, Sweldens,. . .
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Normal meshes

Multiresolution meshes (predict + detail, at each level).
Wavelet vectors align with normal direction defined by coarser
levels.
Purely scalar representation (1 float/vertex) possible.
Good compression properties.
No parameterization/connectivity info (improves compression
rates)
Scalar wavelet compression codes can be used.

Olof Runborg (KTH) Subdivision and Normal Meshes Austin, August 2008 15 / 22



Mathematical Issues

Convergence,
Decay of normal offsets,
Regularity of normal parameterizaton,
Stability.

Some results available in one dimension: Daubechies, Sweldens,
O.R..
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Normal meshes
Theory

Suppose the curve is given by Γ(s) with s ∈ [0,1].
Let the node points on level j be given by

xj,k = Γ(k2−j), 0 ≤ k ≤ 2j .

(Note that xj+1,2k = xj,k .)
The wavelet details vectors are

wj,k = xj+1,2k+1 −
1
2

(xj,k + xj,k+1), j ≥ 0.

Theorem (Daubechies,Sweldens,OR)

If Γ ∈ C2([0,1]; R2) then

Γj → Γ, |wj,k | ≤ C2−2j , |xj,k+1 − xj,k | ≤ C′2−j .
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Higher order subdivision scheme as predictor

Will give faster decay of wavelet vectors and their time derivatives.
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Higher order subdivision – Theory

For higher order subdivision normal wavelet vectors decay faster:

Theorem (Daubechies,Sweldens,OR)
If Γ ∈ CQ+ε([0,1]; R2) then

|wj,k | ≤ C2−(Q−ε)j ,

where Q depends on the subdivision operator in a nontrivial way. Ex:

“4-point:” Q = 3,

“6-point:” Q = 3.83,

“8-point:” Q = 4.55.
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Two dimensions

Triangulated wavefront:
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Two dimensions
Simplified normal mesh construction

1 Start from two adjacent
triangles.

2 Construct normals to the
triangles, n1 and n2.

3 Compute an average normal
on the connecting edge:

naver =
n1 + n2

|n1 + n2|

4 Find point where naver pierces
surface.

5 Do same thing for all edges.
6 Connect new points to a new

finer triangulation.
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Two dimensions
Normal mesh example

Better results when using higher order subdivision schemes as
predictors. Here the Butterfly scheme was used:

(Pictures from Guskov, Vidimce, Schröder, Sweldens.)
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