Homework - Instructor: Lexing Ying

Problem 1. In the discussion of the fast Fourier transform, we assumed that the size of the vector n is an integer power of 2 . Derive a similar fast Fourier transform when $n=3^{k}$ for $k \in \mathbb{Z}$.

Problem 2. Assume that a matrix M is of form

$$
M=\left[\begin{array}{cccc}
y_{0} & y_{-1} & \cdots & y_{-(n-1)} \\
y_{1} & y_{0} & \ddots & \vdots \\
\vdots & \ddots & \ddots & y_{-1} \\
y_{n-1} & \cdots & y_{1} & y_{0}
\end{array}\right]
$$

Find an algorithm that computes $y=M x$ in $O(n \log n)$ steps and implement it in Matlab.
Hint: Extend M to a $2 n \times 2 n$ cyclic matrix. In Matlab, the functions fft (. . .) and ifft (. . .) implement the forward and inverse Fourier transforms.

Problem 3. Assume that M is an $n \times n$ matrix of form $M=\left(\alpha^{j k}\right)_{0 \leq j, k \leq n-1}$ where α is a fixed constant. Find an algorithm that computes $y=M x$ in $O(n \log n)$ time and implement it in Matlab.

Hint: Multiply M with two diagonal matrices, $A=\operatorname{diag}\left(\alpha^{-j^{2} / 2}\right)$ on the left and $B=\operatorname{diag}\left(\alpha^{-k^{2} / 2}\right)$ on the right. What is the resulting matrix? Can we reuse the result of Problem 2 now?

Problem 4. In the discussion of the butterfly algorithm, we assumed that, for any two intervals A, B in $[0, N]$ with widths $w^{A} w^{B}=N$ and for any $\varepsilon>0$, there exists a number r_{ε} that depends only on ε and functions $\left\{\alpha_{t}^{A B}(x)\right\}_{1 \leq t \leq r_{\varepsilon}}$ and $\left\{\beta_{t}^{A B}(\xi)\right\}_{1 \leq t \leq r_{\varepsilon}}$ such that

$$
\left|G(x, \xi)-\sum_{t=1}^{r_{\varepsilon}} \alpha_{t}^{A B}(x) \beta_{t}^{A B}(\xi)\right| \leq \varepsilon \quad \forall x \in A, \forall \xi \in B
$$

Prove this for the case of $G(x, \xi)=e^{2 \pi i x \xi / N}$.
Hint: Renormalize A and B to the interval $[0,1]$ and use Taylor expansion to the kernel $G(x, \xi)$. You also need to use the Stirling formula at a certain point.

