Tutorial notes on probability

by Ricardo Alonso
Summer School on Multiscale Modeling and Analysis
University of Texas at Austin
August, 2008

1 Basic definitions

Fix a set Ω which we refer as the sample space or the set of outcomes. We define for the sample space the following concepts:

Definition. The power set of Ω is defined as the set containing all the subsets of Ω

$$
\mathcal{P}(\Omega)=\{A: A \subseteq \Omega\} .
$$

Let $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ with the following properties:
(i) $\phi \in \mathcal{F}$.
(ii) If $A \in \mathcal{F} \rightarrow A^{c} \in \mathcal{F}$.
(iii) Let $\left\{A_{i}\right\}$ a countable family of elements of \mathcal{F}, then

$$
\bigcup_{i} A_{i} \in \mathcal{F}
$$

The family \mathcal{F} is called σ-field and its elements are called events.
Definition. A probability function is a set function $P: \mathcal{F} \rightarrow[0,1]$ with the properties:
(i) $P(\Omega)=1$.
(ii) For a mutually disjoint and countable family of events $\left\{A_{i}\right\}$

$$
P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right),
$$

Since $P\left(A_{i}\right) \geq 0$ this sum always exists.
A good way to think in a probability function is that it is a function that measures the "size" of every event in \mathcal{F}.

Definition. The triplet (Ω, \mathcal{F}, P) is called probability space.

Examples.

(1) Fix $x_{0} \in \mathbb{R}^{n}=\Omega$. Consider the set function defined as

$$
P(A)=\left\{\begin{array}{cc}
1 & x_{0} \in A \\
0 & \text { otherwise }
\end{array}\right.
$$

The function P is a probability function in Ω.
(2) Take $\Omega=[0, \infty)$ and let $f(x)=\exp (-x)$. Then, the set function defined by

$$
P(A)=\int_{A} f(s) d s
$$

is a probability function in Ω.

1.1 Basic properties

The follow properties can be deduced from the properties (i) and (ii) of the probability function. Let $A, B \in \mathcal{F}$, then
(i) $0 \leq P(A) \leq 1$.
(ii) $P(\phi)=0$.
(iii) $P\left(A^{c}\right)=1-P(A)$.
(iv) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$.

1.2 Conditional probability

Let $A, B \in \mathcal{F}$, the probability of the event B given that the event A has occurred is defined by the ratio

$$
P(B \mid A):=\frac{P(B \cap A)}{P(A)} .
$$

The idea behind the definition of conditional probability is that the knowledge that the event A has occurred converts this event into the new sample space. Thus, the probability of any event B is referred to A using the intersection and then normalized to it using the quotient.

Definition. The event B is independent of A if

$$
P(B \mid A)=P(B) .
$$

It turns out that if B is independent of A, then A is independent of B because

$$
P(A \mid B)=P(B \mid A) \frac{P(A)}{P(B)}=P(A) .
$$

Therefore, we can simply say that A and B are independent. Clearly, in this case one has

$$
P(B \cap A)=P(B) P(A) .
$$

2 Random variables

Let (Ω, \mathcal{F}, P) be a probability space, and assume that we can build a function $X: \Omega \rightarrow \mathbb{R}^{n}$ with the property that for any $A \in \mathcal{F}_{\mathbb{R}^{n}}$

$$
\{\omega: X(\omega) \in A\} \in \mathcal{F} .
$$

Here $\mathcal{F}_{\mathbb{R}^{n}}$ is a predetermined and sufficiently large σ-field of \mathbb{R}^{n} (for example all the measurable sets of \mathbb{R}^{n}). Such a function is called continuous random variable. If the range of X is contained in \mathbb{Z}^{n}, we called it discrete random variable. Thus, a discrete random variable is a particular case of a continuous random variable.

Example. Flip two coins. The sample space of this experiment is $\Omega=\{h t, t h, t t, h h\}$. All the following are different discrete random variables.
(1) $X: \Omega \rightarrow \mathbb{Z}$ such that $X(t h)=X(h t)=1, X(t t)=2, X(h h)=3$.
(2) $X: \Omega \rightarrow \mathbb{Z}$ such that $X(t h)=0, X(h t)=1, X(t t)=2, X(h h)=3$.
(3) $X: \Omega \rightarrow \mathbb{Z}^{2}$ such that $X(t h)=(0,1), X(h t)=(1,0), X(t t)=(0,0), X(h h)=$ $(1,1)$.

Random variables allow us to make computations of the probability and statistic of a particular experiment in the well-known spaces \mathbb{R}^{n}. Indeed, for any $A \in \mathcal{F}_{\mathbb{R}^{n}}$ we define the probability of A as

$$
P(A):=P(\{\omega: X(w) \in A\})
$$

2.1 Probability distribution and density

Let X be a random variable $X: \Omega \rightarrow \mathbb{R}$.
Definition. The probability distribution of X is the function defined as

$$
F(x):=P(\{\omega: X(w) \leq x\})=P(X \leq x)
$$

If F is differentiable, we can obtain the so called density distribution $f(x)$ of X from F using differentiation. Thus, we have the relation

$$
F(x)=\int_{-\infty}^{x} f(s) d s
$$

In the case of a discrete random variable $X: \Omega \rightarrow \mathbb{Z}$, we adopt for convenience a slightly different definition for the density distribution

$$
f(x):=P(X=x)
$$

which leads to the relation

$$
F(x)=P(X \leq x)=\sum_{u \leq x} f(u)
$$

Examples.

(1) $X: \Omega \rightarrow \mathbb{R}$ is normally distributed with parameters (μ, σ) if

$$
f(x)=(2 \pi \sigma)^{-1 / 2} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

(2) $X: \Omega \rightarrow\{1,2, \cdots, n\}$ is binomially distributed with parameter $0 \leq p \leq 1$ if

$$
f(x)=\binom{n}{x} p^{x}(1-p)^{n-x} .
$$

We explain the binomial distribution in the following way. Assume we have an experiment that has two outcomes: false $=0$ and true $=1$. We run the experiment n times knowing that every run is independent of the previous ones. Thus, a possible outcome or realization of our experiment would be

Assume that the probability of getting a false outcome is p, and thus, the probability of getting a true outcome is $1-p$. Since the runs are independent, the probability of one realization is $p^{x}(1-p)^{n-x}$, where x is the number of false outcomes in the realization. Now, the number of possible realizations having x false outcomes is $\binom{n}{x}$, then, we deduce that the probability of having x false outcomes in n runs is precisely

$$
\binom{n}{x} p^{x}(1-p)^{n-x}
$$

If we define the random variable X as the number of false outcomes of this experiment after n runs, we conclude that X is binomially distributed.

2.2 Join distributions and independent random variables

Let X_{i} with $i=1,2, \ldots, n$ be random variables with $X_{i}: \Omega_{i} \rightarrow \mathbb{R}$. In order to fully describe the interaction of these random variables, we put them together in a single random vector $X: \times \Omega_{i} \rightarrow \mathbb{R}^{n}$ with a uniquely defined probability function

$$
P: \times \Omega_{i} \rightarrow[0,1] .
$$

In this setting, we define the join probability distribution of X by

$$
F(x)=P\left(\bigcap_{i=1}^{n}\left\{X_{i} \leq x_{i}\right\}\right),
$$

where x_{i} is the i-entry of x. Similarly to the 1 -dimensional case, we define the join density distribution as the function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that

$$
F(x)=\int_{\cap\left\{s_{i} \leq x_{i}\right\}} f(s) d s
$$

More generally, we have

$$
P(A)=P(X \in A)=\int_{A} f(s) d s
$$

The functions F and f comprise all the statistics of the random variables X_{i} 's (including their interactions). In fact, the individual statistics of the X_{i} 's can be easily
found from the join probability function by means of averaging. Thus, we have the following

Definition. The marginal distributions of X are the functions

$$
f_{X_{i}}\left(x_{i}\right)=\int_{\mathbb{R}^{n-1}} f\left(x_{i}, s\right) d s
$$

The marginal distributions are nothing else than the density distributions of each particular X_{i}.

Definition. Let X and Y be random variables. These random variables are called independent if

$$
f(x, y)=f_{X}(x) f_{Y}(y) .
$$

3 Expected value

Let X be a random variable. Then

Definition.

(i) The expected or mean value is defined as the average

$$
E[X]:=\int_{\mathbb{R}} s f(s) d s
$$

The notation $\mu_{X}=E[X]$ is commonly used.
(ii) The variance is defined as the average

$$
\operatorname{Var}(X):=E\left[\left(X-\mu_{X}\right)^{2}\right]=\int_{\mathbb{R}}\left(s-\mu_{X}\right)^{2} f(s) d s
$$

The notation $\sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]$ is commonly used. The σ_{X} stands for the standard deviation of X.

The following are simple properties that hold for the expected value and variance
(1) $E[c X]=c E[X]$ for $c \in \mathbb{R}$.
(2) $E[X+Y]=E[X]+E[Y]$ for any two random variables X and Y.
(3) $\sigma_{X}^{2}=E\left[X^{2}\right]-\mu_{X}^{2}$.
(4) $\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)$ for $c \in \mathbb{R}$.

The following are properties that hold for any two independent random variables X and Y
(1) $E[X Y]=E[X] E[Y]$.
(2) $\operatorname{Var}(X+Y)=\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$.

An important theorem that confirms that the outcome of a random variable is unlikely to be far from its mean value in terms of the variance scale is the

Theorem 3.1. (Chebyshev's inequality) Let X be a random variable with mean value μ and variance σ^{2}, then

$$
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

Proof. Let f the probability density of X, then

$$
\begin{aligned}
P(|X-\mu| \geq k \sigma) & =\int_{\{|s-\mu| \geq k \sigma\}} f(s) d s \\
& \leq \int_{\{|s-\mu| \geq k \sigma\}}\left(\frac{|s-\mu|}{k \sigma}\right)^{2} f(s) d s \\
& \leq \frac{1}{k^{2} \sigma^{2}} \int_{\mathbb{R}}|s-\mu|^{2} f(s) d s=\frac{1}{k^{2}} .
\end{aligned}
$$

