
Tutorial notes on probability
by Ricardo Alonso

Summer School on Multiscale Modeling and Analysis
University of Texas at Austin

August, 2008

1 Basic definitions

Fix a set Ω which we refer as the sample space or the set of outcomes. We define
for the sample space the following concepts:

Definition. The power set of Ω is defined as the set containing all the subsets
of Ω

P(Ω) = {A : A ⊆ Ω} .

Let F ⊆ P(Ω) with the following properties:

(i) φ ∈ F .

(ii) If A ∈ F → Ac ∈ F .

(iii) Let {Ai} a countable family of elements of F , then⋃
i

Ai ∈ F .

The family F is called σ-field and its elements are called events.

Definition. A probability function is a set function P : F → [0, 1] with the
properties:

(i) P (Ω) = 1.

(ii) For a mutually disjoint and countable family of events {Ai}

P

(⋃
i

Ai

)
=
∑

i

P (Ai),

Since P (Ai) ≥ 0 this sum always exists.

A good way to think in a probability function is that it is a function that measures
the “size” of every event in F .

Definition. The triplet (Ω,F , P ) is called probability space.

Examples.

(1) Fix x0 ∈ Rn = Ω. Consider the set function defined as

P (A) =
{

1 x0 ∈ A
0 otherwise.

The function P is a probability function in Ω.
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(2) Take Ω = [0,∞) and let f(x) = exp(−x). Then, the set function defined by

P (A) =
∫

A
f(s)ds

is a probability function in Ω.

1.1 Basic properties

The follow properties can be deduced from the properties (i) and (ii) of the proba-
bility function. Let A,B ∈ F , then

(i) 0 ≤ P (A) ≤ 1.

(ii) P (φ) = 0.

(iii) P (Ac) = 1− P (A).

(iv) P (A ∪B) = P (A) + P (B)− P (A ∩B).

1.2 Conditional probability

Let A,B ∈ F , the probability of the event B given that the event A has occurred is
defined by the ratio

P (B|A) :=
P (B ∩A)

P (A)
.

The idea behind the definition of conditional probability is that the knowledge that
the event A has occurred converts this event into the new sample space. Thus, the
probability of any event B is referred to A using the intersection and then normal-
ized to it using the quotient.

Definition. The event B is independent of A if

P (B|A) = P (B).

It turns out that if B is independent of A, then A is independent of B because

P (A|B) = P (B|A)
P (A)
P (B)

= P (A).

Therefore, we can simply say that A and B are independent. Clearly, in this case
one has

P (B ∩A) = P (B)P (A).

2 Random variables

Let (Ω,F , P ) be a probability space, and assume that we can build a function
X : Ω → Rn with the property that for any A ∈ FRn

{ω : X(ω) ∈ A} ∈ F .
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Here FRn is a predetermined and sufficiently large σ-field of Rn (for example all the
measurable sets of Rn). Such a function is called continuous random variable. If
the range of X is contained in Zn, we called it discrete random variable. Thus, a
discrete random variable is a particular case of a continuous random variable.

Example. Flip two coins. The sample space of this experiment is Ω = {ht, th, tt, hh}.
All the following are different discrete random variables.

(1) X : Ω → Z such that X(th) = X(ht) = 1, X(tt) = 2, X(hh) = 3.

(2) X : Ω → Z such that X(th) = 0, X(ht) = 1, X(tt) = 2, X(hh) = 3.

(3) X : Ω → Z2 such that X(th) = (0, 1), X(ht) = (1, 0), X(tt) = (0, 0), X(hh) =
(1, 1).

Random variables allow us to make computations of the probability and statistic of
a particular experiment in the well-known spaces Rn. Indeed, for any A ∈ FRn we
define the probability of A as

P (A) := P ({ω : X(w) ∈ A}).

2.1 Probability distribution and density

Let X be a random variable X : Ω → R.

Definition. The probability distribution of X is the function defined as

F (x) := P ({ω : X(w) ≤ x}) = P (X ≤ x).

If F is differentiable, we can obtain the so called density distribution f(x) of X from
F using differentiation. Thus, we have the relation

F (x) =
∫ x

−∞
f(s)ds.

In the case of a discrete random variable X : Ω → Z, we adopt for convenience a
slightly different definition for the density distribution

f(x) := P (X = x),

which leads to the relation

F (x) = P (X ≤ x) =
∑
u≤x

f(u).

Examples.

(1) X : Ω → R is normally distributed with parameters (µ, σ) if

f(x) = (2πσ)−1/2 exp
(
− (x−µ)2

2σ2

)
.
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(2) X : Ω → {1, 2, · · · , n} is binomially distributed with parameter 0 ≤ p ≤ 1 if

f(x) =
(

n
x

)
px(1− p)n−x.

We explain the binomial distribution in the following way. Assume we have an
experiment that has two outcomes: false = 0 and true = 1. We run the experiment
n times knowing that every run is independent of the previous ones. Thus, a possible
outcome or realization of our experiment would be

000101100111 · · · 0010110111110︸ ︷︷ ︸
n times

Assume that the probability of getting a false outcome is p, and thus, the probability
of getting a true outcome is 1− p. Since the runs are independent, the probability
of one realization is px(1 − p)n−x, where x is the number of false outcomes in the
realization. Now, the number of possible realizations having x false outcomes is(

n
x

)
, then, we deduce that the probability of having x false outcomes in n runs

is precisely (
n
x

)
px(1− p)n−x.

If we define the random variable X as the number of false outcomes of this experi-
ment after n runs, we conclude that X is binomially distributed.

2.2 Join distributions and independent random variables

Let Xi with i = 1, 2, . . . , n be random variables with Xi : Ωi → R . In order to fully
describe the interaction of these random variables, we put them together in a single
random vector X : ×Ωi → Rn with a uniquely defined probability function

P : ×Ωi → [0, 1].

In this setting, we define the join probability distribution of X by

F (x) = P

(
n⋂

i=1

{Xi ≤ xi}

)
,

where xi is the i-entry of x. Similarly to the 1-dimensional case, we define the join
density distribution as the function f : Rn → [0,∞) such that

F (x) =
∫
∩{si≤xi}

f(s)ds.

More generally, we have

P (A) = P (X ∈ A) =
∫

A
f(s)ds.

The functions F and f comprise all the statistics of the random variables Xi’s (in-
cluding their interactions). In fact, the individual statistics of the Xi’s can be easily
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found from the join probability function by means of averaging. Thus, we have the
following

Definition. The marginal distributions of X are the functions

fXi(xi) =
∫

Rn−1

f(xi, s)ds.

The marginal distributions are nothing else than the density distributions of each
particular Xi.

Definition. Let X and Y be random variables. These random variables are
called independent if

f(x, y) = fX(x)fY (y).

3 Expected value

Let X be a random variable. Then

Definition.

(i) The expected or mean value is defined as the average

E[X] :=
∫

R
s f(s)ds.

The notation µX = E[X] is commonly used.

(ii) The variance is defined as the average

V ar(X) := E[(X − µX)2] =
∫

R
(s− µX)2 f(s)ds.

The notation σ2
X = E[(X − µX)2] is commonly used. The σX stands for the

standard deviation of X.

The following are simple properties that hold for the expected value and variance

(1) E[cX] = cE[X] for c ∈ R.

(2) E[X + Y ] = E[X] + E[Y ] for any two random variables X and Y .

(3) σ2
X = E[X2]− µ2

X .

(4) V ar(cX) = c2V ar(X) for c ∈ R.

The following are properties that hold for any two independent random variables
X and Y

(1) E[XY ] = E[X]E[Y ].

(2) V ar(X + Y ) = V ar(X − Y ) = V ar(X) + V ar(Y ).
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An important theorem that confirms that the outcome of a random variable is
unlikely to be far from its mean value in terms of the variance scale is the

Theorem 3.1. (Chebyshev’s inequality) Let X be a random variable with mean
value µ and variance σ2, then

P (|X − µ| ≥ kσ) ≤ 1
k2

.

Proof. Let f the probability density of X, then

P (|X − µ| ≥ kσ) =
∫
{|s−µ|≥kσ}

f(s)ds

≤
∫
{|s−µ|≥kσ}

(
|s− µ|

kσ

)2

f(s)ds

≤ 1
k2σ2

∫
R
|s− µ|2f(s)ds =

1
k2

.
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