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Flow in Porous Media
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Darcy’s Law and Permeability

Darcy’s empirical law (1856). The fluid velocity is
proportional to the pressure gradient

u = −K∇p

where

u(x) is the volumetric flux (the Darcy velocity)
K(x) is the measured rock permeability

divided by the fluid viscosity
p(x) is the fluid pressure

Water

p = 1

Sand

p = 0
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Governing Equations of Single-phase Flow

Combined with conservation of mass, we obtain the second order elliptic
system






u = −K∇p in Ω (Darcy’s law)

∇ · u = f in Ω (conservation)

u · ν = 0 on ∂Ω

where
f(x) is the source or sink term (i.e., wells)

Objective: Approximate u (and p) accurately.

Center for Subsurface Modeling
Institute for Computational Engineering and Sciences

The University of Texas at Austin, USA



A Variational Formulation

The differential problem:
{

−∇ · K∇p = f in Ω

−K∇p · ν = 0 on ∂Ω

Function Space:

X = H1/R =

{

w ∈ L2 : ∇w ∈ (L2)3,
∫

Ω
w dx = 0

}

(ψ,φ) =
∫

Ω
ψ(x) · φ(x) dx (Inner-product)

A variational problem:

Find p ∈ X such that

a(p, w) ≡ (K∇p,∇w) = (f, w) ∀ w ∈ X

Theorem: The two problems are equivalent, and there exists a unique
solution.
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Galerkin’s Method

Let Xh ⊂ X be a finite dimensional subspace.

An approximate variational problem:

Find ph ∈ Xh such that

a(ph, wh) = (f, wh) ∀ wh ∈ Xh

Theorem: There is C > 0 such that

‖p − ph‖1 ≤ C min
wh∈Xh

‖p − wh‖1

where

‖w‖1 =

{ ∫

Ω

(
|w|2 + |∇w|2

)
dx

}1/2

That is, up to C, the approximation is optimal.
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The Finite Element Method

Construction of Xh: Define a grid over Ω. Over

each grid element E, let wh ∈ Xh be a polynomial.
Piece them together so they are continuous.

Ω

!

"
h

Theorem: For polynomials of degree k,

min
wh∈Xh

‖p − wh‖1 ≤ C‖p‖k+1hk where ‖w‖k =

{
∑

|α|≤k

∫

Ω
|Dαw|2 dx

}1/2

Corollary: ph → p as h → 0. In fact,

‖p − ph‖1 ≤ C‖p‖k+1hk = O(hk)
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Heterogeneity and Problems of Scale
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Meter-Scale Natural Heterogeneity
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Lawyer Canyon data, meter scale
(ranges by a factor of 106)

Difficulty: Fine-scale variation in K (the permeability) leads to fine-scale
variation in the solution (u, p).
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The Problem of Scale

Suppose K varies on the scale ε. Then

|∇p| = O(ε−1) and |Dkp| = O(ε−k)

Typical error estimates. From polynomial approximation theory, the best

approximation on a finite element partition Th is

inf
q∈Pk−1(Th)

‖p − q‖0 ≤ C‖p‖khk ∼ C

(
h

ε

)k

• If h > ε, this is not small!
• To resolve p, we need a spatial discretization h < ε.

That is, we must resolve K in some way!
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Multiscale Finite Element Methods
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Multiscale Approaches

Objective. We want to solve the problem in a way that:

• does not fully incorporate the problem dynamics (i.e., solves some
global coarse scale problem to resolution H > ε),

• yet captures significant features of the solution, by taking into
account the micro-structure (to resolution h < ε).

Possible solutions. (Sorry, this is a very incomplete list!)

• Multiscale finite elements
1. Babuška, Caloz & Osborn 1994
2. Hou & Wu 1997
3. Hou, Wu & Cai 1999
4. Efendiev, Hou & Wu 2000
5. Strouboulis, Copps & Babuška 2001
6. Chen & Hou 2003
7. Aarnes 2004
8. Aarnes, Krogstad & Lie 2006

• Multiscale finite volumes
1. Jenny, Lee & Tchelepi 2003
2. He & Ren 2004

• Multiscale basis optimization
1. Rath 2007 (Ph.D. dissertation)

• Variational multiscale analysis
1. Hughes 1995
2. Hughes, Feijóo, Mazzei & Quincy

1998
3. Arbogast, Minkoff & Keenan 1998
4. Brezzi 1999
5. Arbogast 2004
6. Arbogast & Boyd 2006

• Multiscale mortar methods
1. Arbogast, Pencheva, Wheeler &

Yotov 2007

• Heterogeneous multiscale
methods
1. E & Engquist 2003

Remark. These are really the same general method!



A Fluvial Subsurface Environment—1

K =   0.1 D
K =   1.0 D
K = 10.0 D

Permeability field
(White and Horne, 1987)
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A Fluvial Subsurface Environment—2
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Water saturation
contours

Using average
parameters smears the
solution (as expected).

This is problematic for
nonlinearities!

F(avg(x)) ,= avg
(
F(x)

)
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Variational Multiscale Methods
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The Variational Multiscale Method
(Hughes et al., 1995, 1998; Brezzi, 1999)

Goal: Find the part of the solution that is unresolved in standard finite
element approximation.

Problem: Find u ∈ X such that

a(u, v) = f(v) ∀v ∈ X

Direct sum decomposition: Define coarse and fine (i.e., subgrid) scales

X = X̄ ⊕ X ′

Then u = ū + u′ is uniquely decomposed.

Separating scales: Find ū ∈ X̄ and u′ ∈ X ′ such that

a(ū + u′, v̄) = f(v̄) ∀v̄ ∈ X̄ (coarse scale)

a(ū + u′, v′) = f(v′) ∀v′ ∈ X ′ (subgrid scale)
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Closure Operator

We can define u′ : X̄ → X ′ by

a(v̄ + u′(v̄), v′) = f(v′) ∀v′ ∈ X ′

Affine representation: Define the linear operator û′ : X̄ → X ′ by

a(v̄ + û′(v̄), v′) = 0 ∀v′ ∈ X ′

and constant term ũ′ ∈ X ′ by

a(ũ′, v′) = f(v′) ∀v′ ∈ X ′

Then

u′ = u′(ū) = û′(ū) + ũ′

Remark: Given the coarse scale, we recover the fine-scale. In upscaling
theory, closure operators are often assumed rather than being derived.

Hence the term subgrid upscaling.
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Upscaling the Problem

Upscaled problem: Find ū ∈ X̄ such that

a(ū + û′(ū), v̄) = f(v̄) − a(ũ′, v̄) ∀v̄ ∈ X̄

or, in symmetric form,

a(ū + û′(ū), v̄ + û′(v̄)) = f(v̄) − a(ũ′, v̄) ∀v̄ ∈ X̄

Change of scale results in modifying both a and f :

A(ū, v̄) = F(v̄) ∀v̄ ∈ X̄

where

A : X̄ × X̄ → R is A(ū, v̄) = a(ū + û′(ū), v̄ + û′(v̄))

F : X̄ → R is F(v̄) = f(v̄) − a(ũ′, v̄)

Full two-scale solution:

u = ū + u′(ū) = ū + û′(ū) + ũ′
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Approximation

Upscaled problem: Find ū ∈ X̄ such that

a(ū + û′(ū), v̄ + û′(v̄)) = f(v̄) − a(ũ′, v̄) ∀v̄ ∈ X̄

Finite Element Approximation: Find ūh ∈ X̄h ⊂ X̄ such that

a(ūh + û′(ūh), v̄h + û′(v̄h)) = f(v̄h) − a(ũ′, v̄h) ∀v̄h ∈ X̄h

Multiscale Finite Element Space: Let

X̂h = {v̄h + û′(v̄h) : v̄h ∈ X̄h}

Note that dim X̂h = dim X̄h.

Equivalent form: Find uh ∈ X̂h + ũ′ such that

a(uh, v̂h) = f(v̂h) ∀ v̂h ∈ X̂h

Remark: The key is to find a decomposition X = X̄ ⊕ X ′ so that we can
efficiently compute the upscaling operator û′ on X̄h.
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A Simple Example—1
(Babuška and Osborn, 1983; Hou and Wu, 1997)

Differential problem.





−
d

dx

(

K
dp

dx

)

= 0, 0 < x < 1

p(0) = 0 and p(1) = 1

Standard finite elements.

0 0.25 0.5 0.75 10   
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1   

The solution p(x) ∈ X + x,

X =
{
w ∈ H1 : w(0) = w(1) = 0

}

satisfies

a(p, w) ≡ (Kpx, wx) = 0 ∀w ∈ X.

Constructing X̄h:

• Choose a uniform grid of five points: xi = i/4, i = 0,1,2,3,4.
• Let X̄h be linear on each element.

Center for Subsurface Modeling
Institute for Computational Engineering and Sciences

The University of Texas at Austin, USA



A Simple Example—2

Two-scale decomposition: X = X̄ ⊕ X ′.
Let X ′ be the “bubble functions” over the grid

X ′ = {w ∈ H1 : w(xi) = 0, i = 0,1,2,3,4}

Localization: û′(v̄) breaks into 4 small or localized problems!

a(v̄ + û′(v̄), v′) = 0 ∀v′ ∈ X ′ on (xi−1, xi), i = 1,2,3,4

Constructing Xh: ψ = w̄ + û′(w̄)





−
d

dx

(

K
dψ

dx

)

= 0 0 < x < 0.25

ψ(0) = 0 and ψ(0.25) = 1





−
d

dx

(

K
dψ

dx

)

= 0 0.25 < x < 0.5

ψ(0.25) = 1 and ψ(0.5) = 0 0 0.25 0.5 0.75 10
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0.5
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1

Multiscale basis function
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A Simple Example—3
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Mixed Variational Multiscale Methods
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Upscaling Second Order Elliptic PDE’S in Mixed Form
(Arbogast et al., 1998; Arbogast, 2000; 2004)






K−1u = −∇p in Ω (Darcy’s law)

∇ · u = f in Ω (conservation)

u · ν = 0 on ∂Ω

Spaces:

W = L2/R
V = H(div) = {v ∈ (L2)3 : ∇ · v ∈ L2, v · ν = 0 on ∂Ω}

(ψ,φ) =
∫

Ω
ψ(x) · φ(x) dx (Inner-product)

A mixed variational formulation:

Find p ∈ W and u ∈ V such that

(K−1u,v) = (p,∇ · v) ∀ v ∈ V (Darcy’s law)

(∇ · u, w) = (f, w) ∀ w ∈ W (conservation)
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A Two-Scale Expansion

Define a coarse computational grid on Ω.

Pressure space: W = W̄ ⊕ W ′

W̄ ⊃ {w̄ ∈ W : w̄ is constant ∀ coarse elements Ec}
W ′ = W̄⊥

Velocity space: V = V̄ ⊕ V′

V̄ ⊂ {v ∈ V : ∇ · v ∈ W̄} (conservation)

V′ = {v′ ∈ V : ∇ · v′ ∈ W ′, v′ · ν = 0 on ∂Ec ∀ Ec} (locality)

such that

(a) ∇ · V̄ = W̄ (coarse conservation)

(b) ∇ · V′ = W ′ (subgrid conservation)
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Separation of Scales

Separate scales uniquely via the direct sum as

u = ū + u′ ∈ V̄ ⊕ V′

p = p̄ + p′ ∈ W̄ ⊕ W ′

Coarse:

(K−1(ū + u′), v̄) = (p̄,∇ · v̄) ∀ v̄ ∈ V̄

(∇ · ū, w̄) = (f, w̄) ∀ w̄ ∈ W̄

Subgrid:

(K−1(ū + u′),v′) = (p′,∇ · v′) ∀ v′ ∈ V′

(∇ · u′, w′) = (f, w′) ∀ w′ ∈ W ′
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The Closure Operator

Constant part: Define (p̃′, ũ′) ∈ W ′ × V′ by

(K−1ũ′,v′) = (p̃′,∇ · v′) ∀ v′ ∈ V′

(∇ · ũ′, w′) = (f, w′) ∀ w′ ∈ W ′

Linear part: For v̄ ∈ V̄, define (p̂′, û′) ∈ W ′ × V′

(K−1(v̄ + û′), v′) = (p̂′,∇ · v′) ∀ v′ ∈ V′

(∇ · û′, w′) = 0 ∀ w′ ∈ W ′

Then

p′ = p̂′(ū) + p̃′

u′ = û′(ū) + ũ′
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The Upscaled Equation

The coarse scale equation, in symmetric form, is:

Find (p̄, ū) ∈ W̄ × V̄ such that

(K−1(ū + û′(ū)), (v̄ + û′(v̄)))

= (p̄,∇ · v̄) − (K−1ũ′, v̄) ∀ v̄ ∈ V̄

(∇ · ū, w̄) = (f, w̄) ∀ w̄ ∈ W̄

Full solution:

p = p̄ + p̂′(ū) + p̃′

u = ū + û′(ū) + ũ′
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Antidiffusion from the Correction Terms

We can also rewrite the problem as

Find (p̄, ū) ∈ W̄ × V̄ such that

(K−1ū, v̄) − (K−1û′(ū), û′(v̄))

= (p̄,∇ · v̄) − (K−1ũ′, v̄) ∀ v̄ ∈ V̄

(∇ · ū, w̄) = (f, w̄) ∀ w̄ ∈ W̄

Thus the subscale correction is antidiffusive on the coarse scale.
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Numerical Approximation

Choose any mixed space V̄H × W̄H on the coarse mesh.

Formulation 1: Find (ūH, p̄H) ∈ V̄H × W̄H such that

(K−1(ūH + û′(ūH)), (v̄H + û′(v̄H)))

= (p̄H,∇ · v̄H) − (K−1ũ′, v̄H) ∀ v̄H ∈ V̄H

(∇ · ūH, w̄H) = (f, w̄H) ∀ w̄H ∈ W̄H

Then
u ≈ uH = ūH + û′(ūH) + ũ′

p ≈ pH = p̄H + p̂′(ūH) + p̃′

Formulation 2: Define

V̂H = {v̄H + û′(v̄H) : v̄H ∈ V̄H}

Find uH ∈ V̂H + ũ′ and p̄H ∈ W̄H such that

(K−1uH, v̂H) = (p̄H,∇ · v̂H) ∀ v̂H ∈ V̂H

(∇ · uH, w̄H) = (f, w̄H) ∀ w̄H ∈ W̄H

Remark: We have some multiscale finite elements!
Center for Subsurface Modeling

Institute for Computational Engineering and Sciences
The University of Texas at Austin, USA



The Lowest Order Mixed Finite Elements

On a coarse element E with edge e.

Standard Raviart-Thomas (RT0) finite element.




Re = −∇ω
∇ · Re = 1/|E|

Re · ν =





1/|e| on e

0 otherwise

Variational multiscale finite element: RMS
e = Re + û′

e




RMS
e = −K∇ω

∇ · RMS
e = 1/|E|

RMS
e · ν =





1/|e| on e

0 otherwise

∇ · û′
e = 0

û′
e · ν = 0
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Boundary Conditions for Local Subproblems

Neumann BCs for

constant outflow, but
oversample. (Hou et al.,

1997, 2003) Results in a
nonconforming method.

Neumann BCs for linear outflow.

(Arbogast, 2000)

Dual element problem with source and sink

terms. (Aarnes et al., 2004)



Estimates of the Pressure
and Velocity Errors
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Optimal Error Estimates

u ≈ uH = ūH + û′(ūH) + ũ′

p ≈ pH = p̄H + p̂′(ūH) + p̃′

Theorem (A., 2004).

‖K−1/2(u − uH)‖0 ≤ inf
vH∈V̄H+V′
∇·vH=f

‖K−1/2(u − vH)‖0

∇ · uH = f

Remark: We have assumed that the upscaling operator is solved exactly,
since it can be well resolved on a fine grid.

Center for Subsurface Modeling
Institute for Computational Engineering and Sciences

The University of Texas at Austin, USA



Error Estimates from Polynomial Approximation Theory

Let L be the order of approximation of the coarse mixed finite element

velocity space used. Typically:

L = 1 for lowest order Raviart-Thomas (RT0) spaces

L = 2 for lowest order Brezzi-Douglas-Marini (BDM1) spaces

Theorem (A., 2004).

‖u − uH‖0 ≤ C‖u‖LHL = O(HL)

∇ · uH = f

‖p − pH‖0 ≤ C‖u‖LHL+1 = O(HL+1)
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Homogenization

Suppose that K is locally periodic of period ε. Then

K(x) = κ(x, x/ε)

where κ(x, y) is periodic in y of period 1 on the unit cube Y .

Let K0 be the homogenized permeability matrix, defined by

K0,ij(x) =
∫

Y
κ(x, y)

(

δij −
∂χj(x, y)

∂yi

)

dy

where, for fixed x, χj(x, y) is the Y -periodic solution of

∇y · (κ∇yχ
j) =

∂κ

∂yj

Homogenized solution: Let (u0, p0) solve





u0 = −K0∇p0 in Ω

∇ · u0 = f in Ω

u0 · ν = 0 on ∂Ω

Then (u0, p0) is a smooth “approximation” of (u, p).
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Multiscale Error Estimates

Theorem (Chen and Hou, 2003; A. and Boyd, 2005). Assuming
periodicity and the mixed variational multiscale method with L = 1

(RT0) or 2 (BDM1):

‖u − uH‖0 ≤ C

{

ε‖p0‖2 +
√
ε

H
‖p0‖1,∞ + HL

(
‖u0‖L + ‖f‖L−1

)}

= O(HL +
√
ε/H)

‖p − pH‖0 ≤ C
(
ε+ (ε/H)1/d−η + H

)
‖u − uH‖0

where d is the space dimension and η > 0 if d = 2 and η = 0 if d = 3.
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Approximation of the Subgrid

Approximate the subgrid part of the basis functions by a mixed method

on a fine grid of spacing h ∼ ε.

Ω

TH

!!""

H

""!!

Ec

Th(Ec)
!!""

h
""!!
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Composite Numerical Grid for BDM1–RT0
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Numerical Examples and Application
to Subsurface Flow Simulation
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Low Premeability Spot (10−16)

12 × 12
fine
scale

2 × 2

upscaled

2 × 2

coarse
scale

2 × 2

coarse
scale

using
coarse

average
K
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Horizontal Flood

Pressure contours for a horizontal flood

Fine 40 × 40 solution Upscaled to 10 × 10
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Application to Waterflood Simulation

Use standard equations and sequential solution.

Pressure equation: Global pressure formulation.

∂φ

∂t
+ ∇ · u = q(P)

u = −Kλ(S)
(
∇P − ρ(S)ge3

)

Upscale this equation. Use BDM1/RT0 unless otherwise noted.

Saturation equation: Kirchhoff formulation.

∂φS

∂t
+ ∇ · uw = qw(S)

uw = −K∇Q(S) + c(u, S)

Solve on the fine scale.
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A Fluvial Subsurface Environment–1

K =   0.1 D
K =   1.0 D
K = 10.0 D

Permeability field
(White & Horne, 1987)

0.75

0.65

0.6

Fine 30 × 30

0.75

0.65

0.55

Upscaled to 6 × 6

0.75

0.6

0.5

Average K 6 × 6

0.75

0.65

0.
55

Upscaled to 3 × 3
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Fluvial Water Saturation Contours at 200 days–2

30 × 30 Fine 6 × 6 BDM1/RT0 6 × 6 Dual 6 × 6 RT0/RT0

3 × 3 BDM1/RT0 3 × 3 Dual 3 × 3 RT0/RT0
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A Quarter Five-spot Oil Reservoir Waterflood—1

Logarithm of the permeability

Fine 40 × 40
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A Quarter Five-spot Oil Reservoir Waterflood—2

Water saturation contours at 100 days

Fine 40 × 40 Fully upscaled to 5 × 5
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A Quarter Five-spot Oil Reservoir Waterflood—3

Water saturation contours at 200 days

Fine 40 × 40 Fully upscaled to 5 × 5
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A Quarter Five-spot Oil Reservoir Waterflood—4

Water saturation contours at 500 days

Fine 40 × 40 Fully upscaled to 5 × 5
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A Quarter Five-spot Oil Reservoir Waterflood—5

Water saturation contours at 1000 days

Fine 40 × 40 Fully upscaled to 5 × 5
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A Quarter Five-spot Oil Reservoir Waterflood—6

Water saturation contours at 100 days

Fine 40 × 40 Fully upscaled to 2 × 2
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A Quarter Five-spot Oil Reservoir Waterflood—7

Water saturation contours at 500 days

Fine 40 × 40 Fully upscaled to 2 × 2
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A Quarter Five-spot Oil Reservoir Waterflood—8

Water saturation contours at 100 days

Fully upscaled to 5 × 5 Coarse 5 × 5
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A Quarter Five-spot Oil Reservoir Waterflood—9

Water saturation contours at 500 days

Fully upscaled to 5 × 5 Coarse 5 × 5
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Conclusions
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Conclusions—1

1. Natural porous media is highly heterogeneous, so standard finite

element (or other) approximation is inaccurate, since it fails to
resolve all the relevant scales adequately on the coarse grids we are

forced to use.
2. Multiscale finite element basis functions can partially resolve the fine

scales on coarse grids.

3. The Variational Multiscale Method is a framework that formally
separates coarse and subgrid parts of the velocity and pressure

spaces to obtain

• conservation of mass on coarse and subgrid scales (physics),

• locality of the subgrid operators (numerics).

4. The fine scales introduce antidiffusion into the system, and so
cannot be modeled in any simple way.
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Conclusions—2

5. The method achieves optimal order accuracy and accuracy with

respect to the scale of heterogeneity ε.

u p

Polynomial BDM1 H2/ε2 H3/ε2

Multiscale BDM1 H2 +
√
ε/H H3 + (ε/H)1/2+1/d

6. The method parallelizes naturally, and so is very efficient.
7. The numerical examples show that the methods can capture

significant detail on coarse grids.
8. The variational multiscale method allows us to solve the main

components of the flow for very large problems on very coarse grids,
even though we under-resolve the fine scales themselves.
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