
1

Introduction to Multiscale Modeling

Bjorn Engquist
University of Texas at Austin

Summer School on Multiscale Modeling and Analysis,
University of Texas at Austin, July 21 - August 8, 2008

Outline
I Overview of Multi-scale Modeling

1. The challenge of multi-scale problems
2. Modeling strategies
3. Classical analytical techniques
4. Numerical methods

II Heterogeneous Multi-scale Methods (HMM)
1. Structure of HMM
2. Analysis
3. Applications
4. Computational issues



2

The space and time sales in this picture vary strongly from
atomistic to  full airplane processes. Different models are typically
derived independently for the different scales. We will focus on
problems where more than one scale and model is needed and
where the micro-scale model is too computationally costly.

1. The challenge of multi-scale problems

Time (s)

Space (m)
Quantum mechanics

“Schrödinger”

Molecular dynamics
“Newton’s equations”

Kinetic theory
“Boltzmann”

Continuum theory
“Navier-Stokes”

1 Å 1
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10-15

Turbulence
models
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Multiscale functions

Examples of multiscale
Functions uε(x)

Multiscale functions

• In our analysis we will define the scales more explicitly, for
example, by a scaling law.The function uε(x) = u(x,x/ε), where
u(x,y) is 1-periodic in y, or where u(x,y)  U(x) as y  ∞, are
said to contain the scales 1 and ε.

• The scales are also naturally described by a scale-based
transform of a function as, for example, Fourier or wavelet
transforms.

• For clarity in the presentation we will mainly consider “two-scale”
problems: a macro-scale in the range of O(1) and a micro-scale
with wave-lengths O(ε) rather than full multi-scale problems or
sometimes a range of scales between O(ε) and O(1)! 

u" (x) = a0 + b j sin(2# jx) + a j cos(2# jx)
j=1

J

$
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Multiscale problems

Let us formally write the original multi-scale differential or
integral equation as,

where Fε represents the differential equations with initial and
boundary conditions. Analytically we are interested in the
following limit process

The type of  convergence could be different for different cases.

! 

F" (u" ) = 0

! 

lim
"#0

u" = u , F (u ) = 0

Computational complexity
• A major reason for deriving effective equations with a narrow

range of scales is the high computational cost of directly solving
highly oscillatory problems.

• With the size of the computational domain = L in each direction
and the smallest wavelength = ε the typical number of
operations in the solution of a multi-scale differential equation in
d dimensions for a fixed prescribed accuracy is,

! 

flop =O((N(L /")(L /")#1)dr) =O((L /")$ ), $ % d

# unknowns %O((L /")d ) [Shannon]
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With L=1 we have,

N(ε): number of unknowns per wavelength to achieve a given accuracy
(N(ε)≥2 from Shannon sampling theorem,
N(ε)≈ O(ε-1/2) for standard second order finite difference methods). N
typically scales as O(δ-s), s>0, where δ is the prescribed accuracy

ε: the shortest wavelength to be approximated
δ: prescribed accuracy
d: number of dimensions
r: exponent for number of flops per unknown in the numerical method (r=1

for explicit methods and r=3 for Gaussian elimination of dense
matrices)

! 

flop =O((N(",#)"$1)dr)

Even with the best numerical methods:, r = 1, N(ε) bounded,

    and this prohibits numerical simulation based on direct atomistic
models over sizes in the millimeter range or more.

The upper limit for a teraflop computer is thus practically ε = 10-3

with 10000 degrees of freedom in each dimension, R3+1.

New approximate effective equations must be derived or the
computation must be reduced to a small sample of the original
domain if ε is very small.

! 

flop =O("#d )
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Two basic types of problems for which the
macro-scale model fails

• Type A: Macro-scale model is accurate enough in most of computational
domain Ω1. Micro-scale model used in the complement Ω2. Compare
mesh refinement and heterogeneous domain decomposition.

• Type B: A Macro-scale model is not fully known throughout computational
domain. Sampling the micro-scale

Ω1

Ω2

2. Modeling strategies

• Modeling: analytical and numerical models
• Analytical models

– Purpose: find equations for appropriate range of scales for analysis
and numerical computations

– Use science, mathematics and experiments
(Here mainly as background for understanding the numerical
methods.)

• Numerical models
– Purpose: increase computational efficiency and accuracy
– Efficient algorithms and coupling of different models
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General mathematical modeling

1. Models derived from physical laws and engineering practice
2. Models derived from other usually more complex models via

mathematical derivations (model reduction)
3. Models derived from a predetermined form by adjusting coefficients

to match data (ex. linear models, neural nets)

The models are typically differential or integral equations but could
also be algebraic equations. There could be composite models that
couple simpler models.

Computational strategies
Let the equation below represent a multi-scale
problem with range of scales O(ε) to O(1)

! 

F" (u
"
) = 0
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In the ideal case we can find an analytic model
reduction which produces a model (effective or
homogenized equation) with a narrow range of
scales

! 

F" (u
"
) = 0

! 

F (u ) = 0

This model can then be efficiently numerically
approximated

! 

F" (u
"
) = 0

! 

F (u ) = 0

! 

F 
h
(u 

h
) = 0
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If appropriate effective equations are not available
special numerical techniques are needed. With ε
very small direct numerical simulation is too costly
and a numerical model reduction is required

! 

F" (u
"
) = 0

! 

F (u ) = 0

! 

F 
h
(u 

h
) = 0 ! 

F" ,h (u" ,h ) = 0

Computational strategies
Left: discretize homogenized or effective equation
for average or expected values
Right: discretize directly in some way

! 

F" (u
"
) = 0

! 

F (u ) = 0

! 

F 
h
(u 

h
) = 0 ! 

F" ,h (u" ,h ) = 0

! 

˜ F " ,h
( ˜ u " ,h

) = 0
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Analytical model reduction

• These techniques are often found in the physics, mechanics or in the
classical applied mathematics literature.

• They are commonly seen as part of the applied science rather than
“just” a mathematical technique.

• They have been very useful for understanding multi-scale problems
and for deriving effective equations but many have no rigorous
mathematical justification.

• Many times the different models for different ranges of scales are
derived independently and the connection between the models
developed later.

• The purpose of the reduction may be for computational purposes or for
easier analysis.

• We will only focus on methods developed in applied mathematics

3. Classical analytical techniques

Applied mathematics and mechanics related techniques

• Singular perturbations
• Stiff dynamical systems
• Homogenization methods
• Geometrical optics and geometrical theory of diffraction
• Boundary layer theory

Examples from theoretical physics

• Renormalization group methods
• Semi classical representation, path integral techniques, Wigner

distributions
• Density function theory
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Applied mathematics techniques

We will consider four classical techniques in somewhat more detail
and they are chosen to give representative examples of a variety of
analytic techniques.

• Singular perturbations of differential equations
• Stiff ordinary differential equations
• Homogenization of elliptic differential equations
• Geometrical optics

Singular perturbations

We will consider examples where the the micro scales are localized. The
purpose is the derivation of the limiting effective equations and the study
of the limiting process.

! 

"#
d
2
u#

dx
2

+ a
du#

dx
+ bu# = f (x) 0 < x <1, a > 0,

u# (0) = uL , u# (1) = uR

0 < # <<1, a,b > 0
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The formal limit of this differential equation is of first order and only
requires one boundary condition. In this case we can solve the original
problem to see which boundary condition should be kept

The inhomogeneous part of the solution uIH is smooth as ε→0. The
homogenous part uh matches the boundary conditions resulting from
subtracting uIH with z1 and z2 the roots of the characteristic equation,

! 

u" = uIH + uH

uIH (x) = exp(#(b /a)(x #$)) f ($)d$ +O(")
0

x

%

uH (x) = A1 exp(z1x) + A2 exp(z2x)

! 

"#z2 + az + b = 0

z
1

= a /(2#) + (a /2#)2 + b, z
2

= a /(2#) " (a /2#)2 + b,

Recall the form of the homogeneous part,

The coefficients A1 and A2 are determined to match the boundary
conditions

Thus uH is close to a constant away from a boundary near x=1.

! 

u
H
(x) = A1 exp(z1x) + A2 exp(z2x)

z1 = a /" +O("), z2 =O(")

! 

A1 + A2 = u
L
" u

IH
(0)

A1 exp(z1) + A2 exp(z2) = u
R
" u

IH
(1)

A1 # 0, A2 # uL " uIH (0)
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The effective equation is

and uε converges to u point wise in any domain 0≤x≤r<1, with the error
O(ε).

The inner solution and the boundary layer solution can be matched
together to form an approximation for the full interval. This type of
approximation goes under the name of matched asymptotics.

! 

a
du

dx
+ bu = f (x), 0 < x <1

u(0) = uL

! 

a
du

1

dx
+ bu

1
= f (x), u

1
(0) = uL , 0 < x "1#C($)$

#$
d
2
u
2

dx
2

+ a
du

2

dx
+ bu

2
= 0, 1#C($)$ < x <1

u
2
(1#C($)$) = u

1
(1#C($)$), u

2
(1) = uR ,

% 

& 
' 

( ' 

! 

"u

"t
+ u

"u

"x
+ v

"u

"y
+
"p

"x
=
1

R
(
" 2u

"x 2
+
" 2u

"y 2
)

"v

"t
+ u

"v

"x
+ v

"v

"y
+
"p

"y
=
1

R
(
" 2v

"x 2
+
" 2v

"y 2
)

"u

"x
+
"v

"y
= 0, y > 0, #$ < x <$, t > 0,

u(x,y,0), v(x,y,0) given initial values,

u = v = 0, y = 0, #$ < x <$,

Prandtl boundary layer equations

One classical example of an effective boundary layer equation is the
Prandtl equation as a limit of high Reynolds number Navier-Stokes
equations,
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The Prandtl assumption is that the inertia terms are balanced by the
viscous terms in the a boundary layer of thickness δ (0<y< δ).
Rescaling the independent variables y/δ → η and using the
divergence free condition,

implies the scaling u=O(1), v=O(δ). Following the tradition we will use
y for the new variable η and study the scaling of the terms in the
original equations.

! 

"

"y
#$%1

"

"&
,
"u

"x
+
"v

"y
= 0

Balancing inertia and viscous terms implies R=O(δ-2) or δ=O(R-1/2)

! 

"u

"t
+ u

"u

"x
+ v

"u

"y
+
"p

"x
=
1

R
(
" 2u

"x 2
+
" 2u

"y 2
)

1 1 # #$1 1 1 #$2

! 

"v

"t
+ u

"v

"x
+ v

"v

"y
+
"p

"y
=
1

R
(
" 2v

"x 2
+
" 2v

"y 2
)

# # # #$1 # 2 # 1
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Leading orders of δ in the second equation gives ,

We then get the Prandtl boundary layer equation from the first
equation, ! 

"p

"y
= 0 # p = P(x)

! 

"u

"t
+ u

"u

"x
+ v

"u

"y
+ Px =

" 2u

"y 2

v = #
"u

"x
d$,

0

y

%

u(x,y,0) given initial values

u(x,0,t) = 0, u(x,1,t) =U(x,t)

• This effective equation does not contain the small parameter
1/R. It has been used for analysis and numerical simulations.
There is no rigorous derivation as the limit of the Navier-Stokes
equations.

• There is a well established existence and uniqueness theory for
the case that uy > 0 initially.

• Other well known effective equations for the high Reynolds
number limit are the various turbulence models.
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Stiff dynamical systems

Analysis of certain types of stiff dynamical systems resembles that of
singular perturbations above. A system of ordinary differential
equations is said to be stiff if the eigenvalues of the matrix A below are
of strongly different magnitude or if the magnitude of the eigenvalues
are large compared to the length of interval of the independent
variable,

! 

du

dt
= Au+ f (t), u(0) = u0, 0 < t < T, u :R

1
" R

d

max#(A) >>min# (A) or Tmax# (A) >>1, Re(# (A)) $ 0

The following nonlinear system is stiff for 0 < ε << 1,

If the conditions below are valid it has resemblance to the singular
perturbation case,

! 

du"

dt
= f (u" ,v" ),

dv"

dt
= "#1g(u" ,v" ), t > 0

u" (0) = u
0
, v" (0) = v

0

! 

Re("(
#g

#v$
)) % & < 0, det(

#g

#u$
) ' 0
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From

We have the differential algebraic equations (DAE),

The original  functions have an exponential transient of order O(1)
right after t=0 before converging to (u,v). The reduced system
represents the slow manifold of the solutions of the original system.

Compare the Born-Oppenheimer approximation and the Car-Parinello
method.

! 

du"

dt
= f (u" ,v" ),

dv"

dt
= "#1g(u" ,v" )

! 

u" (t)# u(t), v" (t)# v(t), t $ t > 0, as " # 0,

%u

%t
= f (u,v), u(0) = u

0

g(u,v) = 0, defines v

Oscillatory solutions

• A typical example is finite temperature molecular dynamics.
• For nonlinear problems simple averaging does not work

 〈f(u)〉 ≠ f(〈x〉).
• Averaging must take resonance into account..
• KAM-theory analyses effect of perturbations.
• Simple oscillatory example,

• See also lectures by Richard Tsai and Gil Ariel

! 

du

dt
= "#1v,

dv

dt
= #"#1u,

dw

dt
= u

2
+ v

2
,

u(0) = 0, v(0) =1, w(0) = 0

$ u(t) = sin(t /"), v(t) = cos(t /"), w(t) = t
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Homogenization
Homogenization is an analytic technique that applies to a wide class of
multi-scale differential equations. It is used for analysis and for derivation
of effective equations.
Let us start with the example of a simple two-point boundary value
problem where aε may represent a particular property in a composite
material.

The high frequencies in aε interact with those in        to create low
frequencies.! 

d

dx
(a" (x)

du"

dx
) = f (x), 0 < x <1,

u" (0) = u" (1) = 0

a" (x) = a(x /") > 0

! 

du"

dx

If we assume a(y) to be 1-periodic then a(x/ε) is highly oscillatory with
wave length ε. The oscillations in aε will create oscillations in the solution
uε. The oscillations in aε and uε interact to create low frequencies from
these high frequencies. The effective equations can not simply be derived
by taking the arithmetic average of aε.

This example can be analyzed by explicitly deriving the solution. After
integration of the differential equation we have

! 

a" (x)
du"

dx
= f (

0

x

# $)d$ + C

u" (x) = (
0

x

# a" ($)%1( f (&)d&
0

$

# + C)d$
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The constant C is determined by the boundary conditions,

In this explicit form of the solution it is possible to take the limit as
ε → 0.

! 

0 = (
0

1

" a# ($)%1( f (&)d&
0

$

" + C))d$

C = % (
0

1

" a# ($)%1 f (&)d&
0

$

" )d$ / (
0

1

" a# ($)%1$d$

! 

lim
"#0

u" (x) = lim
"#0

"#0

(
0

x

$ a(% /")&1( f (')d'
0

%

$ + C))d% =

= a(y)
&1
dy F(%)d% + Cx

0

x

$
( 

) 
* 

+ 

, 
- 

0

1

$

Note if b1& periodic, b(% /")d% = x b(y)dy
0

1

$ + "B(x /")
0

x

$( )

The limit solution is thus,

where A is the harmonic average. Differentiations yield the effective or
homogenized equation,! 

u" (x)# u (x) = A
$1

( f (%)d%)d& + Cx
0

&

'
0

x

'
( 

) 
* 

+ 

, 
- as " # 0,

A = ( a(y)
$1

dy
0

1

' )
$1

! 

A
d
2
u 

dx
2

= f (x), 0 < x < 0,

u (0) = u (1) = 0.

" 

# 
$ 

% $ 
& F (u ) = 0( )
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Elliptic homogenization problems

For most problems there is no closed form solution and the procedure
in our simple example cannot be followed.

The typical approach in to assume an expansion of the solution in
terms of  a small parameter ε, insert the expansion into the differential
equation and then to find some closure process to achieve the
convergence result and the effective equation.

Assume the matrix a(x,y) to be positive definite and 1-periodic in y,
The function a0(x,y) is also assumed to be positive and 1-periodic in y.
The asymptotic assumption on uε is as follows,

! 

"# $ (a(x,x /%)#u% (x)) + a
0
(x,x /%)u% (x) = f (x), x & '

u% (x) = 0, x & (' boundary of ') R
d

! 

u" (x) = u
0
(x,x /") + "u

1
(x,x /") + "2u

2
(x,x /") + ...

u j (x,y), 1# periodic in y, j =1,2,...
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Introduce the variable y=x/ε and equate the different orders of ε. The
equation for the ε-2 terms is

with periodic boundary conditions in y. This implies

The equation for the ε-1 terms gives a representation of u1 in terms of
u. The terms of order O(1), O(ε), etc. couple the unknown terms in the
expansion of uε but the closure assumption that u2(x,y) is 1-periodic in
y generates the effective equation as conditions on u for existence of
u2.

! 

"#ya(x,y)# yu0(x,y) = 0

! 

u
0
(x,y) = u(x)

The effective or homogenized equations take the form,

The function κ is a solution of the cell problem,

! 

"#A(x)#u(x) + a (x)u(x) = f (x)

A : aij (x) =
1

T
(aij

T

$ (x,y) + aik

%& j
(x,y)

%yk

)dy

a (x) =
1

T
a
0

T

$ (x,y)dy

! 

"(
#

#yi
aik (x,y))

#$ j

#yk
) = "

#aij (x,y)

#yi

$ periodic bc in y
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General homogenizations

• The same technique also applies to many parabolic and elliptic
equations and can, for example, be used to derive the Darcy law
from the Stokes equations..

• By homogenizing scale by scale several different scales can be
handled ( aε=a(x,x/ε1,x/ε2,…), ε1→0,     ε2/ ε1→0,…)

• The assumption of periodicity can be replaced by stochastic
dependence.

• Compensated compactness and the theories for γ-, G-, and H-
convergence are powerful non-constructive analytic technique
for analyzing the limit process.

Geometrical optics

Geometrical optics equations are effective equations for high
frequency wave propagation. Instead of approximating highly
oscillatory functions geometrical optics gives the phase φ(x,t) and
amplitude A(x,t).

In this case the effective formulation were known long before the wave
equation form.

New variables are introduced and not just the strong or weak limit of
the original dependent variables.
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Scalar wave equation

The velocity is denoted by c and the initial values are assumed to be
highly oscillatory such that the following form is appropriate,

! 

"u2(x.t)

"t 2
= c(x)

2
#u(x, t)

u(x,0) = u
0
(x),

"u(x,0)

"t
= u

1
(x)

! 

u(x, t) = exp(i"#(x, t)) A j

"= 0

$

% (x,t)"& j
, " >>1

Insert the expansion into the wave equation and equate the different
orders of ω (=ε-1). The leading equations give the eikonal and transport
equations where there is no ω,

The traditional ray tracing can be seen as the method of
characteristics applied to the eikonal equation,! 

"#

"t
+ c(x)$# = 0, ( % = Euclidean norm)

"A
0

"t
+ c(x)

$# %$A
0

$#
+

c(x)
2&# '

" 2#

"t 2

2c(x)$#
A
0

= 0

! 

dx

dt
=" pH(x, p),

dp

dt
=" xH(x.p)

H(x.p) = c(x) p
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Generalizations

• The analysis discussion above fails at boundaries. The
geometrical theory of diffraction (GTD) adds correction terms for
diffraction at corners and the presence of creeping waves of the
shadow zone.

• The approach extends to other differential equations, for
example, linear elasticity and Maxwell’s equations.

• WKB - Schrödinger - frequency domain.
• If c(x) = c(x,x/ε) is oscillatory, homogenization (ε << ω-1),

geometrical optics (ε >> ω-1) or special expansions (ε ≈ ω-1)
apply

• See lectures by Nick Tanushev

4. Numerical methods

• These techniques are used when appropriate effective equations are
not known



26

4. Numerical methods

• These techniques are used when appropriate effective equations are
not known

• Fast methods resolving all scales (complexity → O(ε-d))
– High order methods reducing number of unknowns
– Traditional multi-scale methods: multi-grid, fast multi-pole (using

special features in operator)
– Can not be used for extreme ε

• Numerical model reduction methods starting with all scales resolved
– Multi-scale finite element methods (MSFEM)
– Wavelet based model reduction
– Can not be used for extreme ε

• Fast methods not resolving all scales (using special features in
solution, i.e. scale separation)

Traditional numerical multi-scale methods

• The multigrid methods aims at solving the fully discretized problem

by reducing the computational complexity over direct methods for
solving linear systems: r=1 in

• A hierarchy of different grids is used in this iterative method. The
different grids focus on different scales. The analytic properties of the
differential equation is taken advantage of. Smoothing is essential.

! 

F" ,h (u" ,h ) = 0

! 

flop =O((N(")"#1)dr )
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• The analytic properties of the original problem is also important
for the fast multipole method (FMM). The far field behavior of
analytic solution operator of importance

• Hierarchical domain decomposition is closely related to multigrid
• Conjugate gradient type of methods are algebraic in nature but

can, for example, take advantage of scale separation

• For these types of problems see lectures by Lexing Ying

Example: multigrid

• Solve the system of linear equation below that comes from
a discretization of an elliptic differential equation. Use a
hierarchy of grids.

! 

Ahuh = fh
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Two-grid method

• Multigrid follows by recursively solving the coarse grid problem
by the two-grid algorithm

• Different grids handle different scales → optimal computational
complexity

! 

given uh
n
" uh

#
by a few simple iterations

rh = fh $ Ahuh
#

residual

r
2h = Ih

2h
rh restriction

A
2hv2h = r

2h coarse grid problem

vh = I
2h

h
v
2h prolongation

uh
n+1

= uh
#

+ vh correction

(uh
n+1

= uh
#

+ I
2h

h
A
2h

$1
Ih
2h
( fh $ Ahuh

#
) % Ah

$1
fh )

Numerical model reduction
We will briefly mention two classes of methodologies:

• Standard model reduction of input-output systems as in control
theory

• Model reduction using compression and special basis functions

Remark. The computational cost of using these methods is at
least as large as the solution of the original full system. The gain
comes from the potential of using the same reduced system for
a large set of inputs.
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Standard model reduction
Consider the input-output system

The matrix A may be the result of a spatial discretization and the
dimension n is assumed to be much larger than m and p.

Transient and filtered modes are eliminated to produce an
approximation with lower dimensional A. SVD of A is a possible
technique. Different methods are found in the control literature.

! 

dx(t)

dt
= Ax(t) + Bu(t), x " R

n
, u" R

m

y(t) = Cx(t) + Du(t), y " R
p

Special basis functions
We will briefly consider two examples: the multi-scale finite element
method (MSFEM) [Hou] and wavelet based homogenization [E.,
Runborg] - see lectures by Olof Runborg

• In MSFEM the basis functions that are used in the finite element
method are chosen to satisfy the homogeneous form of the original
multi-scale problem.

• The wavelets in wavelet based homogenization are used to keep
the reduced operators sparse during the computation. A discretized
differential equation equation in a wavelet basis is reduced by Schur
complement

! 

A
11

A
12

A
21

A
22

" 

# 
$ 

% 

& 
' 
uH

uL

" 

# 
$ 

% 

& 
' =

f H

fL

" 

# 
$ 

% 

& 
' ( (A

22
) A

21
A
11

)1
A
12
)uL = f l ) A21A11

)1
f H
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II Heterogeneous multi-scale methods
(HMM)

The heterogeneous multi-scale method (HMM) is a framework for
developing and analyzing computational multi-scale models. A
macro-scale method is coupled to a micro-scale method.

The coupling is based on related theory for analysis of effective
equations. The gain in efficiency over applying the micro-scale
method everywhere is the restricted use of the computational
expensive technique. The micro-scale is applied only in sampled
domains.

Recall computational strategies
Left: discretize homogenized or effective equation
for average or expected values
Right: discretize directly in some way

! 

F" (u
"
) = 0

! 

F (u ) = 0

! 

F 
h
(u 

h
) = 0 ! 

F" ,h (u" ,h ) = 0

! 

˜ F " ,h
( ˜ u " ,h

) = 0
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Recall the two types of multi-scale
couplings

• Type A: Macro-scale model is accurate enough in most of
computational domain Ω1. Micro-scale model used in the
complement Ω2. Compare mesh refinement.

• Type B: A Macro-scale model is not fully known throughout
computational domain. Sampling the micro-scale

Ω1

Ω2

1. Structure of HMM

1. Design macro-scale scheme for the desired variables. The
scheme may not be valid in all of the computational domain
(type A) or components of the scheme may not be known in full
domain (type B).

2. Use micro-scale numerical simulations to supply missing data in
macro-scale model



32

Examples of other “better than O(ε-d)” multi-
scale methods based on sampling

• Quasi continuum method
• Equation-free computation
• Gas kinetic schemes
• Super-parametrization
• Ultra FFTs

HMM example 1: a nonlinear conservation law is typically based on
an empirical equation of state,

The macro-scale fluxes may, for example,be computed on the fly
by micro-scale kinetic Monte Carlo or molecular dynamics simulations,
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Estimate the flux f by replacing the Riemann solver in the Godunov
scheme by a micro-scale simulation, with appropriate initial and
boundary conditions.
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A generalized Godunov method: Set up approximation by a finite
volume scheme for the effective nonlinear conservation law,

Efficiency follows from minimal use of micro-scale model (small L)
Compare QC: representative micro-scale unit >> rep atom →
 →finite temperature OK.
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New techniques needed

• Data estimation (from micro data to macro model)
• Boundary conditions for local micro-scale simulations
• Reconstruction techniques (from macro states to micro data)

• These techniques are also needed when when a refined
simulation is used to derive fixed effective equations

New techniques

• Data estimation (from micro data to macro model)
• Boundary conditions for local micro-scale simulations
• Reconstruction techniques (from macro states to micro data)

• These techniques are also needed when when a refined
simulation is used to derive fixed effective equations
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Concurrent or sequential?

• In sequential simulations, the micro-scale computations produce
tables for the unknown data ahead of the macro-scale
simulation (parameter passing or pre-computing)

• Concurrent also known as “on the fly”
• As described HMM is concurrent. The macro- and micro-scales

are coupled throughout the simulation
• The choice is a matter of computational cost

New techniques

• Data estimation (from micro data to macro model)
• Boundary conditions for local micro-scale simulations
• Reconstruction techniques (from macro states to micro data)

• These techniques are also needed when when a refined
simulation is used to derive fixed effective equations
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Data estimation: micro → macro

• Micro to macro operator is required: compression

• Often averaging in space and/or time

• Estimation after transient and/or boundary layer (Type A, B)

! 

U =Qu, u = RU, QR = I
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New techniques

• Data estimation (from micro data to macro model)
• Boundary conditions for local micro-scale simulations
• Reconstruction techniques (from macro states to micro data)

• These techniques are also needed when when a refined
simulation is used to derive fixed effective equations
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Boundary conditions: macro ↔ micro

• Use absorbing boundary conditions as much as possible,
– Established theory for PDEs,
– Linearize and design BC to allow for outgoing waves

• Emerging theory for MD
• Periodic BC can be modified and adjusted by thermostats.

Boundary conditions: macro ↔micro

• Use absorbing boundary conditions as much as possible,
– Established theory for PDEs,
– Linearize and design BC to allow for outgoing signals

Design in phase space, continuous or discrete
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New techniques

• Data estimation (from micro data to macro model)
• Boundary conditions for local micro-scale simulations
• Reconstruction techniques (from macro states to micro data)

• These techniques are also needed when when a refined simulation is
used to derive fixed effective equations

Reconstruction: macro → micro

• Initial conditions: match macro-scale state

• For extra degrees of freedoms (to reduce transient)
– Approximate quasi-stationary state (Maxwellian)
– Use modified distribution from previous time-steps
– Uniform or random distribution - rely on transient

• Adaptivity can be used to find the level of matching (function
value, derivative ect)

! 

u = RU
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Examples of HMM simulations
• Fluid simulations: [E, Ren], contact line on multiphase fluid solid

interaction. Type A example: Continuum model valid but for contact line
where MD is applied.

• Solid simulation: [E, Li], thermal expansion.Type B example: Micro-
scale MD model needed in full domain of elasticity continuum model.

• Combustion fronts: [Sun, Eq], micro-scale simulation with chemistry to
evaluate macro scale properties at front.

• Stiff dynamical systems: [Sharp, Eq, Tsai]. intervals with short time
steps to evaluate the effective force for macro time steps.

• Epitaxial growth: [Sun, Eq], atomistic kinetic Monte Carlo micro-scale
simulation - diffusion and level-set models for macro-scale.
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2. Analysis of HMM

• FVM for hyperbolic and parabolic equations and FEM for elliptic
equations when applied to standard linear homogenization
problems.

• FVM approximating the diffusion equation as by Brownian
motion.

• FDM for selected dynamical systems and stochastic differential
equations. Both dissipative and oscillatory problems.

• Typical error estimate (p order of macro-scale method), e(HMM)
error in data from micro-scale model

! 

U
0
"UHMM # C(H

p
+ e(HMM)),

Structure of analysis

Compare Lax equivalence theorem and Strang’s proof for
convergence of FDM approximating nonlinear hyperbolic PDEs -
implicit function theorem argument.
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HMM example 2: homogenization of elliptic equation

Assume there exists a homogenized equation (not known)
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Ideally we want a FEM for the homogenized equation
based on the bilinear form

where VH is a standard finite element space (ie. P1, Dirichlet bc.).
With TH the corresponding triangulation of D we have the numerical
approximation
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The HMM strategy is now to approximate the unknown stiffness
matrix ( A(x) is not known) by constrained micro-scale simulations

Where Iδ(xl) is a cube with side length δ centered at xl. Boundary
conditions for micro-scale problem to mach gradient of VH via
Dirichlet, Neumann or periodic conditions.
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Theorem, Let h→0, a = a(x,x/ε)

 [Abdul, Schwab], [E, Ming, Zhang], [Abdul, Eqt]
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Applications

• Continuum - molecular dynamics coupling ( fluid, solid )
• Epitaxial growth
• Dynamical systems

Fluid - type A

• 2 immiscible fluids and solid surface
• Macro: Navier-Stokes with curvature determined surface tension

and no slip boundary condition away from slip-line.
• First order finite volume method with explicit interface tracking.
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• Micro:Molecular dynamics, (y) periodic boundary conditions,
(x) outer periodic boundary conditions. (z) solid and upper
repulsion (from Lennard-Jone)

• Anderson thermostat velocity constraing zones.
• Time split algorithm, replaces empirical slip and contact angle.
• Micro to macro: slip-line velocity, shear stress at end point
• Macro to micro: velocity

Solid - type B

• Time split algorithm
• Macro: finite volume formulation where empirical constitutive relations

replaced by data from local MD
• Micro: constrained (from macro) MD
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4.2 Epitaxial growth

• Part of semiconductor production
• Layer by layer deposition of atoms
• Atoms diffuse on substrate surface, merge and nucleate islands

 

 

(a) Deposition (b) Diffusion (c) Nucleation (d) Attachment
(e) Detachment (f) Edge diffusion (g) Down step diffusion
(h) Nucleation on top of islands (i) Dimer diffusion
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HMM strategy

• Macro-scale model: finite difference approximation of diffusion
equation (ρ) coupled to levelset method for interface tracking
(Γ).

• Missing data: velocity model for interface evolution and
boundary conditions at interface.

• Micro-scale model: Kinetic Monte Carlo simulation of atom
dynamics. Potentially based on  density function computations
of transition probabilities.

Masro-scale: diffusion equation and levelset
Interface tracking
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Masro-scale: diffusion equation and levelset
Interface tracking

Micro-scale: atomistic Kinetic
Monte Carlo, Initial and boundary
conditions from macro-scale,
returning front velocity and front
boundary conditions.

Roughness of interface important
for front velocity
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Dynamical systems

• Example: consider a stiff dynamical systems: dissipative and
highly oscillatory

or systems with highly oscillatory coefficients
• Potential application to molecular dynamics
• For more details, see lectures by Richard Tsai
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Example: sun-earth-moon, Newton’s equations
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