Multiscale Analysis of Vibrations of Streamers

Leszek Demkowicz Joint work with S. Prudhomme, W. Rachowicz, W. Qiu and L. Chamoin Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin Austin, Texas 78712, U.S.A. e-mail: leszek@ices.utexas.edu

Summer Workshop on Mutiscale Modeling and Analysis ICES, Austin, August 4-8, 2008

Outline of presentation

► The AP stretch - streamer system.

- ► The AP stretch streamer system.
- Determining streamer impedance.

- ► The AP stretch streamer system.
- Determining streamer impedance.
- Multiscale analysis of streamers.

- ► The AP stretch streamer system.
- Determining streamer impedance.
- Multiscale analysis of streamers.
- Dual-Mixed formulation for elasticity.

- ► The AP stretch streamer system.
- Determining streamer impedance.
- Multiscale analysis of streamers.
- Dual-Mixed formulation for elasticity.
- Additional background info:
 - Coupled elasticity-acoustics problem,
 - Exact sequence. Projection-Based Interpolation.
 - Automatic *hp*-Adaptivity and coupled multiphysics problems.

Surveying the Ocean Floor with Acoustical Streamers

An array of 8 streamers, 6km long, pulled by a tugboat

The AP Stretch - Streamer System

Geometry of the AP Stretch – Streamer System

Material Data for the Streamer

component	E(GPa)	ρ (kg.m ⁻³)	ν	Length(m)	height(m)
Connector	200	8000	0.29	0.0975	0.0307
Spacer	1.8	1200	0.30	0.075	0.021843
Rope	41.0	1400	0.30	75	0.005657
Skin	0.02	1200	0.45	75	0.0032
Gel	$E_{gel}(\omega,T)$	1040	0.45	0.165	0.021843

$$E_{gel}(\omega,T) = E_r(\omega,T) + iE_r(\omega,T).$$

At $T = 10^{\circ}C$, we have:

$$E_r(\omega, T) = 2.9 \times 10^{0.4125 \log_{10}(\omega) + 3.0871} [Pa]$$
$$E_i(\omega, T) = 2.9 \times 10^{0.3977 \log_{10}(\omega) + 2.9707} [Pa]$$

Austin, August 4-8, 2008 Streamers

Initial mesh

Austin,	August	4-8,	2008
---------	--------	------	------

Optimal mesh corresponding to 2% error in energy

Austin, August 4-8, 2008

Pressure contours for the initial mesh

Austin, A	August	4-8,	2008
-----------	--------	------	------

Streamers

Pressure contours for the optimal mesh

Austin,	August	4-8,	2008
---------	--------	------	------

Streamers

Pressure profile for the initial mesh

Pressure profile for the optimal mesh

Streamers

$$\begin{cases} \text{Find } \boldsymbol{u}, \text{p such that} \\ -\rho\omega^2 u_i - (E_{ijkl}u_{k,l})_{,j} = 0 & \text{in } \Omega_s \\ -p_{,ii} - \left(\frac{\omega}{c}\right)^2 p = 0 & \text{in } \Omega_f \\ u_i = u_{D,i}, p_{,i}n_i = \rho_f\omega^2 u_{D,i}n_i & \text{on } \Gamma_D \\ E_{ijkl}u_{k,l}n_j = -pn_i, p_{,i}n_i = \rho_f\omega^2 u_in_i & \text{on } \Gamma_I \\ + \text{ Sommerfeld radiation condition at } \infty \end{cases}$$

The structure is axisymmetric.

y z

Optimal hp mesh corresponding to 3.6 percent error

Austin, August 4-8, 2008

Streamers

Pressure distribution on the optimal mesh. Range: -20 - 133.6 dB

Austin, August 4-8, 2008

y z

Difference between coarse and fine grid pressures in dB

Austin, August 4-8, 2008

Pressure profile for the initial mesh

Pressure profile for the optimal mesh

Determining Streamer Impedance

Streamer Impedance

Define streamer impedance as $\beta = \frac{N}{u}$ where N is the force across the stretch/streamer interface, and u is the displacement of the interface. $N = \beta u$ provides a Cauchy B.C. for a 1D Stretch model. **Task:** Compute impedance β as function of frequency ω and water temperature.

Austin, August 4-8, 2008

Two D.O.F. Model of the Streamer

Impedance is singular at resonant frequencies

Streamers

Iterative Procedure to Compute the Streamer Impedance

Integrate by parts:

$$b(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega} \left(\sigma_{ij} v_{i,j} - \rho \omega^2 u_i v_i \right) dx + \int_{\Gamma_C} \beta_{ij} u_j v_i dS = \int_{\Omega} \left(\sigma_{ij,j} - \rho \omega^2 u_i \right) v_i dx + \int_{\Gamma_D} t_i v_i dS + \int_{\Gamma_C} \beta_{ij} u_j v_i dS$$

Choose a special test function $v = (v_z, v_r)$ where $v_z = 1, v_r = 0$ on Γ_D and v = 0 on the rest of the boundary. It follows that:

$$\int_{\Gamma_D} t_z dS = b(\boldsymbol{u}, \boldsymbol{v}) \approx b(\boldsymbol{u}_{hp}, \boldsymbol{v})$$

Numerical Results: 2D Elasticity Model

Streamer impedance as a function of frequency. $T = 10^{\circ}$ C

Numerical Results: 2D Coupled Model

Streamer impedance as a function of frequency. $T = 10^{\circ}$ C

Comparison of Elastic and Coupled Models

Streamer impedance as a function of frequency. $T = 10^{\circ} C$

Local Analysis of Hydrophones A Multiscale Approach

3D Model: Local Analysis of Hydrophones

Task: Analyze pressure distribution around the microphones **Issue:** How to define appropriate boundary conditions ? (Periodic ?)

In order to determine the BC on one periodic cell, we studied the response on a 75m long streamer section. We used the axisymmetric model for detailed studies, but results were confirmed on the 3D simplified model.

In particular we measured the displacement along the streamer and accross the two-end sections of one cell in the streamer. Results are shown in following slides.

Study of 75m Streamer Section

Displacement u_z (real part, imaginary part, amplitude) along streamer.
Study of 75m Streamer Section

Displacement u_r (real part, imaginary part, amplitude) across mid-section in the gel cavities before and after one spacer.

Study of 75m Streamer Section

Displacement u_z (real part, imaginary part, amplitude) across mid-section in the gel cavities before and after one spacer.

Study of 75m Streamer Section

Strain ϵ_{zz} (real part, imaginary part, amplitude) across mid-section in the gel cavities before and after one spacer.

1. This is clearly a two-scale problem:

$$u(x) = U(x) + u_s(x)$$

- 2. The small scales u_s are proportional to the large scales and not to their derivatives.
- 3.

$$u_{z}^{R} = u_{z}^{L} + C$$

$$u_{z}^{R} = u_{z}^{L} + C$$

$$\operatorname{Re}(\epsilon_{zz})^{R} = \operatorname{Re}(\epsilon_{zz})^{L} + C$$

$$\operatorname{Im}(\epsilon_{zz})^{R} \approx \operatorname{Im}(\epsilon_{zz})^{L} + C$$

4. The displacement of the small scales in one cell is symmetric with respect to the cross-section that passes through the middle of the spacer (see zoom below).

Some Mathematics

Hypothesis:

The small scale u_s satisfies periodic boundary conditions.

Case 1: Periodic kinematic BC: $u_s^R = u_s^L + \delta u$, $\epsilon_{s,zz}^R = \epsilon_{s,zz}^L$ Case 2: Periodic strain BC: $u_s^R = u_s^L$, $\epsilon_{s,zz}^R = \epsilon_{s,zz}^L + \delta \epsilon$

For a symmetric geometry of the spacer, it can be shown that Case 1 necessarily yields an antisymmetric solution and Case 2 a symmetric solution. So we choose Case 2.

 $\underline{\text{Global/local ansatz:}}\ u_s$ and u are now approximated by \bar{u}_s and \bar{u} such that

$$\bar{u}_s \approx CU$$
, with $U = (0, 0, U_z)$ and $C = \text{constant}$

so

$$\bar{u} = U + \bar{u}_s pprox u$$
 and $\delta \epsilon \propto U$

► The small scale (solution of the local problem) is driven by the large scale represented by complex constant *C* in the BC. It changes with the location of the spacer/microphone.

- ▶ The small scale (solution of the local problem) is driven by the large scale represented by complex constant *C* in the BC. It changes with the location of the spacer/microphone.
- Quantities like ratio of pressures at different locations or phase difference are independent of constant C and can be evaluated w/o its knowledge.

- ▶ The small scale (solution of the local problem) is driven by the large scale represented by complex constant *C* in the BC. It changes with the location of the spacer/microphone.
- Quantities like ratio of pressures at different locations or phase difference are independent of constant C and can be evaluated w/o its knowledge.
- ▶ Pressure (derivatives) depends mainly upon the small scale.

Comsol Problem Setting

Geometry of Hydrophone

Solution with Comsol

Min: 0.135

Pressure phase on the slice which passes on top of the hydrophone.

Austin, August 4-8, 2008

Streamers

Verification with hp3d

Goal-driven *h*-Adaptivity: 8th fine mesh, 31k elements, 730k dofs Goal: Average pressure over the microfone.

Austin, August 4-8, 2008

Streamers

35 / 49

Verification with hp3d

Pressure Over the Microfone: min/max=67/137 [dB]

Dual-Mixed Formulation for Elasticity

Dual-Mixed Formulation for Elasticity

$$\sigma_{ij} = E_{ijkl}\epsilon_{kl} = E_{ijkl}(u_{k,l} - \omega_{kl}) \Longrightarrow$$
$$C_{klij}\sigma_{ij} = u_{k,l} - \omega_{kl}$$
$$\sigma_{ij,j} + \rho\omega^2 u_i = f_i$$

$$\begin{cases} \sigma_{ij}n_j = g_i \text{ on } \Gamma_t \\ \int_{\Omega} C_{klij}\sigma_{ij}\tau_{kl} + \int_{\Omega} u_k\tau_{kl,l} + \int_{\Omega} u_k\omega_{kl}\tau_{kl} &= \int_{\Gamma_u} \bar{u}_k\tau_{kl}n_l \quad \forall \tau_{kl} : \\ \tau_{kl}n_l = 0 \text{ on } \Gamma_t \\ \int_{\Omega} \sigma_{ij,j}v_i + \rho\omega^2 \int_{\Omega} u_iv_i &= \int_{\Omega} f_iv_i \quad \forall v_i \\ \int_{\Omega} \sigma_{kl}q_{kl} &= 0 \quad \forall q_{kl} = -q_{lk} \end{cases}$$

Elasticity Complex (Arnold at al. "decoded")

$$\begin{split} \boldsymbol{W} &= \boldsymbol{K} \times \boldsymbol{V}, \quad \boldsymbol{K} = \{\omega^{ij} = \epsilon^{ijk} \Psi^k\}, \quad \boldsymbol{V} = \{\phi^i\} \\ & \Lambda^0(\boldsymbol{W}) = \{(\Phi^m, \phi^i)\} \\ & \Lambda^1(\boldsymbol{W}) = \{(E_k^m, e_k^i)\} \quad \Gamma^1 = \{(E_k^m, e_k^i) : \epsilon_{nlk} E_{k,l}^m - (e_m^n - e_k^k \delta_m^n) = 0\} \\ & \Lambda^2(\boldsymbol{W}) = \{(V_m^m, v_m^i)\} \quad \Gamma^2 = \{(0, v_m^i)\} \\ & \Lambda^3(\boldsymbol{W}) = \{(\Psi^m, \psi^i)\} \\ & \mathcal{A}_0(\Psi^m, \phi^i) = (E_k^m, e_k^i) = (\Phi_{,k}^m + \epsilon^{mk\alpha} \phi^\alpha, \phi_{,k}^i) \\ & \mathcal{A}_1(E_k^m, e_k^i) = (V_n^m, v_m^i) = (\epsilon_{nlk} E_{k,l}^m - (e_m^n - e_k^k \delta_m^n), \epsilon_{mlk} e_{k,l}^i) \\ & \mathcal{A}_2(V_n^m, v_m^i) = (\Psi^m, \psi^i) = (V_{n,n}^m - \frac{1}{2} \epsilon^{min} v_n^i, v_{m,m}^i) \end{split}$$

Austin, August 4-8, 2008

p-convergence Test

Regular Solution

Manufactured solution:

$$u_1 = \cos(x + 2y) \quad u_2 = \sin(3x + y)$$

Convergence rates (In error vs. number of d.o.f.).

Austin, August 4-8, 2008

Streamers

Singular Solution

Manufactured solution:

$$u_1 = u_2 = r^{lpha} \sin(lpha(heta+rac{\pi}{2})), \quad lpha = 1.34$$

Convergence rates (In error vs. In d.o.f.).

Austin, August 4-8, 2008

Streamers

Additional Background Info

Coupled Acoustics/Elasticity

$$\begin{cases} c^{-2}i\omega p + \rho_f w_{i,i} = \mathbf{0} \\ \rho_f i\omega w_i + p_{,i} = \mathbf{0} \end{cases} \begin{cases} -\rho_s \omega^2 u_i - \sigma_{ij,j} = \mathbf{0} \\ \sigma_{ij} = \mu(u_{i,j} + u_{j,i}) + \lambda u_{k,k} \delta_{ij} \end{cases}$$

 $i\omega u_i n_i = w_i n_i$ $\sigma_{ij} n_j = -pn_i$ on interface Γ_I + standard boundary conditions on the boundary

Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of momentum (elasticity) in a weak form:

$$-\int_{\Omega_a} \left(\frac{\omega}{c}\right)^2 pq + i\omega\rho_f v_i q_{,i} - \int_{\Gamma_I} i\omega\rho_f v_i n_i q = \mathsf{B}.\mathsf{T}. \quad \forall q \\ \int_{\Omega_e} -\omega^2 \rho u_i v_i + \sigma_{ij} v_{i,j} - \int_{\Gamma_I} \sigma_{ij} n_j v_i = \mathsf{B}.\mathsf{T}. \quad \forall v_i$$

Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of momentum (elasticity) in a weak form:

$$-\int_{\Omega_a} \left(\frac{\omega}{c}\right)^2 pq + i\omega\rho_f v_i q_{,i} - \int_{\Gamma_I} i\omega\rho_f v_i n_i q = \mathsf{B}.\mathsf{T}. \quad \forall q \\ \int_{\Omega_e} -\omega^2 \rho u_i v_i + \sigma_{ij} v_{i,j} - \int_{\Gamma_I} \sigma_{ij} n_j v_i = \mathsf{B}.\mathsf{T}. \quad \forall v_i$$

Step 2: Use the remaining equations in the strong form to eliminate fluid velocity and elastic stresses:

$$-\int_{\Omega_{e}} \left(\frac{\omega}{c}\right)^{2} pq + p_{,i}q_{,i} - \int_{\Gamma_{I}} i\omega\rho_{f}v_{i}n_{i}q = \mathsf{B}.\mathsf{T}. \ \forall q$$
$$\int_{\Omega_{e}} -\omega^{2}\rho u_{i}v_{i} + \mu(u_{i,j} + u_{j,i})v_{i,j} + \lambda u_{k,k}v_{k,k} - \int_{\Gamma_{I}} \sigma_{ij}n_{j}v_{i} = \mathsf{B}.\mathsf{T}. \ \forall v_{i}$$

Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of momentum (elasticity) in a weak form:

$$-\int_{\Omega_a} \left(\frac{\omega}{c}\right)^2 pq + i\omega\rho_f v_i q_i - \int_{\Gamma_I} i\omega\rho_f v_i n_i q = \mathsf{B}.\mathsf{T}. \quad \forall q \\ \int_{\Omega_e} -\omega^2 \rho u_i v_i + \sigma_{ij} v_{i,j} - \int_{\Gamma_I} \sigma_{ij} n_j v_i = \mathsf{B}.\mathsf{T}. \quad \forall v_i$$

Step 2: Use the remaining equations in the strong form to eliminate fluid velocity and elastic stresses:

$$-\int_{\Omega_{e}} \left(\frac{\omega}{c}\right)^{2} pq + p_{,i}q_{,i} - \int_{\Gamma_{I}} i\omega\rho_{f}v_{i}n_{i}q = \mathsf{B}.\mathsf{T}.\ \forall q$$
$$\int_{\Omega_{e}} -\omega^{2}\rho u_{i}v_{i} + \mu(u_{i,j}+u_{j,i})v_{i,j} + \lambda u_{k,k}v_{k,k} - \int_{\Gamma_{I}}\sigma_{ij}n_{j}v_{i} = \mathsf{B}.\mathsf{T}.\ \forall v_{i}$$

Step 3: Use the interface conditions to couple the two variational formulations:

$$-\int_{\Omega_a} \left(\frac{\omega}{c}\right)^2 pq + p_{,i}q_{,i} + \omega^2 \int_{\Gamma_I} \rho_f u_i n_i q = \mathsf{B}.\mathsf{T}. \quad \forall q$$

 $\int_{\Omega_e} -\omega^2 \rho u_i v_i + \mu (u_{i,j} + u_{j,i}) v_{i,j} + \lambda u_{k,k} v_{k,k} + \int_{\Gamma_I} p v_i n_i = \mathsf{B}.\mathsf{T}. \quad \forall v_i$

Abstract Variational Formulation

$$\begin{cases} \boldsymbol{u} \in \tilde{\boldsymbol{u}}_{D} + \boldsymbol{V}_{e}, \ p \in \tilde{p} + V_{a} \\ b_{ee}(\boldsymbol{u}, \boldsymbol{v}) + b_{ae}(p, \boldsymbol{v}) &= l_{e}(\boldsymbol{v}) \quad \forall \boldsymbol{v} \in \boldsymbol{V}_{e} \\ b_{ea}(\boldsymbol{u}, q) + b_{aa}(p, q) &= l_{a}(q) \quad \forall q \in V_{a} \text{ where} \end{cases}$$

$$\begin{aligned} \boldsymbol{V}_{e} &= \{ \boldsymbol{v} \in \boldsymbol{H}^{1}(\Omega_{e}) : \boldsymbol{v} = \boldsymbol{0} \text{ on } \Gamma_{De} \} \\ V_{a} &= \{ q \in H^{1}(\Omega_{a}) : q = 0 \text{ on } \Gamma_{Da} \} \end{aligned}$$

$$b_{ee}(\boldsymbol{u}, \boldsymbol{v}) = \int_{\Omega_{e}} (E_{ijkl}u_{k,l}v_{i,j} - \rho_{s}\omega^{2}u_{i}v_{i}) \ d\boldsymbol{x} + \int_{\Gamma_{Ce}} \beta_{ij}u_{i}v_{j} \ dS \end{cases}$$

$$b_{aa}(p, \boldsymbol{v}) = \int_{\Gamma_{I}} pv_{n} \ dS \\ b_{aa}(p,q) &= -\int_{\Gamma_{I}} u_{n}q \ dS \\ b_{aa}(p,q) &= \frac{1}{\omega^{2}\rho_{f}} \int_{\Omega_{a}} (\boldsymbol{\nabla}p\boldsymbol{\nabla}q - k^{2}pq) \ d\boldsymbol{x} \\ l_{e}(\boldsymbol{v}) &= \int_{\Omega_{e}} f_{i}v_{i} \ d\boldsymbol{x} + \int_{\Gamma_{Ne}\cup\Gamma_{Ce}} g_{i}v_{i} \ dS \\ l_{a}(q) &= \int_{\Omega_{a}} fq \ d\boldsymbol{x} + \int_{\Gamma_{Na}\cup\Gamma_{Ca}} gv \ dS \end{aligned}$$

For scattering problems:

$$l_e(\boldsymbol{v}) = -\int_{\Gamma_I} p^{inc} v_n \, dS, \quad l_a(q) = -\frac{1}{\omega^2 \rho_f} \int_{\Gamma_I} \frac{\partial p^{inc}}{\partial n} q \, dS$$

where the *Projection-Based Interpolation Operators* $\Pi^{\text{grad}}, \Pi^{\text{curl}}, \Pi^{\text{div}}$, and L^2 -projection P make the diagram commute.

The energy-driven mesh optimization algorithm

▶ Find optimal hp-refinements of the current coarse grid hp yielding the next coarse grid hp^{next} such that (u = u_{h/2,p+1}),

$$\frac{\|u - \Pi_{hp}u\| - \|u - \Pi_{hp^{next}}u\|}{N_{hp^{next}} - N_{hp}} \to \max$$

The energy-driven mesh optimization algorithm

▶ Find optimal hp-refinements of the current coarse grid hp yielding the next coarse grid hp^{next} such that (u = u_{h/2,p+1}),

$$\frac{\|u - \Pi_{hp}u\| - \|u - \Pi_{hp^{next}}u\|}{N_{hp^{next}} - N_{hp}} \to \max$$

- The algorithm reflects the logic of the projection-based interpolation and consists of three steps:
 - Determining optimal refinement of edges
 - Determining optimal refinement of faces
 - Determining optimal refinement of element interiors

Each of the steps sets up initial conditions for the next step, limiting the number of cases to be considered.

Coupled Multiphysics Problems

 Simultaneous use of H¹, H(curl), H(div), L²- conforming elements, C-preprocessing is used only to differentiate between the real and complex versions of the code.

Coupled Multiphysics Problems

- Simultaneous use of H¹, H(curl), H(div), L²- conforming elements, C-preprocessing is used only to differentiate between the real and complex versions of the code.
- The domain is decomposed into geometrical blocks. Each block may involve only a subset of all variables.
Coupled Multiphysics Problems

- Simultaneous use of H¹, H(curl), H(div), L²- conforming elements, C-preprocessing is used only to differentiate between the real and complex versions of the code.
- The domain is decomposed into geometrical blocks. Each block may involve only a subset of all variables.
- Problem dependent code: computation of (unconstrained) element matrices, choice of norm.

Coupled Multiphysics Problems

- Simultaneous use of H¹, H(curl), H(div), L²- conforming elements, C-preprocessing is used only to differentiate between the real and complex versions of the code.
- The domain is decomposed into geometrical blocks. Each block may involve only a subset of all variables.
- Problem dependent code: computation of (unconstrained) element matrices, choice of norm.
- Problem independent code: description of geometry and multiphysics, constrained approximation, graphics, linear solvers, adaptivity, automatic *h*-,*p*- and *hp*-adaptivity.