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Outline of presentation

» The AP stretch - streamer system.

» Determining streamer impedance.

» Multiscale analysis of streamers.

» Dual-Mixed formulation for elasticity.
» Additional background info:

e Coupled elasticity-acoustics problem,
e Exact sequence. Projection-Based Interpolation.
e Automatic hp-Adaptivity and coupled multiphysics problems.
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Surveying the Ocean Floor with Acoustical
Streamers

An array of 8 streamers, 6km long, pulled by a tugboat
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The AP Stretch - Streamer System
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Geometry of the AP Stretch — Streamer System

Streamer and Stretch

Stretch 80 identical Sections

<L

1D, 2D or 3D model of section

- con_nector- rope - gel- spacer (311 in avery sect:ion)- skdn
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Material Data for the Streamer

component | E(GPa) | p(kg.m™®) | v | Length(m) | height(m)
Connector 200 8000 0.29 0.0975 0.0307
Spacer 1.8 1200 0.30 0.075 0.021843
Rope 41.0 1400 0.30 75 0.005657
Skin 0.02 1200 0.45 75 0.0032
Gel | Ego(w,7)| 1040 | 045| 0165 | 0.021843

E

At T = 10°C', we have:

gel (W, T) =E, (w,T)+iE, (w,T).

ET ((JJ, T) - 29 X 100'4125 '°g10(w)+3-0871 [PCL]
Ei(w,T) =29 x 100-3977 logo(w)+2.9707 [Pa]
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2D Model: Axisymmetric Elasticity

Find w such that

—pw?u; — (Eijrugg) ;=0 inQ
U; = UDj; on FD
E,-jkluk,mj + z'wpfcz =0 on rc

gel skin

0.3 7

2.15
0.6 ]

LA
[ [ 1 z

11 segments
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2D Model: Axisymmetric Elasticity

- I

Initial mesh
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2D Model: Axisymmetric Elasticity

N

Optimal mesh corresponding to 2% error in energy
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2D Model: Axisymmetric Elasticity

«- NN

Pressure contours for the initial mesh
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2D Model: Axisymmetric Elasticity

Y
z

Pressure contours for the optimal mesh
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2D Model: Axisymmetric Elasticity

12872 p[dB]
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Pressure profile for the initial mesh
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2D Model: Axisymmetric Elasticity
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| |

128.30 : ] ‘ I‘ | I ‘ I' ’

L1726 ‘ | /

10622

95.17

8413

73.08 ’ ’
R F h A | / b, A k

62.04 ‘ /

51.00

19.05 ,"I ,-‘.l .".l ! -.\‘ I‘:.

28.91 | i e

Pressure profile for the optimal mesh
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2D Model: Coupled Elasticity/Acoustics

( Find u,p such that
—pw?u; — (Ejjugy) ; =0 in
—Dii — (%)217 =0 in {2
Ui = UDy, PiT = wazuD,inz’ onlp
Eijrgm; = —png, pin; = pruoumn; onl;
+ Sommerfeld radiation condition at oo

\

PML water

n segments

The structure is axisymmetric.

Austin, August 4-8, 2008 Streamers



2D Model: Coupled Elasticity/Acoustics

L3
BB

b =

N

Optimal hp mesh corresponding to 3.6 percent error
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2D Model: Coupled Elasticity/Acoustics

Pressure distribution on the optimal mesh. Range: -20 - 133.6 dB

Austin, August 4-8, 2008 Streamers



2D Model: Coupled Elasticity/Acoustics

Mo

Difference between coarse and fine grid pressures in dB
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2D Model: Coupled Elasticity/Acoustics

109.29 p[dB]
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57.57
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Pressure profile for the initial mesh
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2D Model: Coupled Elasticity/Acoustics
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Pressure profile for the optimal mesh
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Determining Streamer Impedance
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Streamer Impedance

streamer

|

bungee cord
connector

1D mede] of Stretch

.
]

/]
v

N

Wizcoelastic bar
mass

Define streamer impedance as 3 = % where N is the force across the
stretch /streamer interface , and w is the displacement of the
interface. N = Ju provides a Cauchy B.C. for a 1D Stretch model.
Task: Compute impedance 3 as function of frequency w and water

temperature.
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Two D.O.F. Model of the Streamer

Y K F mass point
A massles rigid membrane

F w?(k + iwc)

uy —w?tiwec+k

Impedance is singular at resonant frequencies

Austin, August 4-8, 2008 Streamers



lterative Procedure to Compute the Streamer

Impedance

wo=l — - voter impsciance B.C. :> impedance

at x=0
x

impedance B.C

u,=1 - .
. _ from last section

—_—

X

I
I
I
I
1
3

impedance B.C

Uy =1 _ from second section

|:|I> impedance for the Stretch
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Computation of Impedance for a Single Section

Integrate by parts:

b(u, ’U) = fQ (O'ijvm' — pwzuiv,-) dx + frc ﬁijUjUidS
= fQ (Uij,j - pwzui) U; dx + frD tivi dS + frc ﬁijUjUidS

Choose a special test function v = (v,, v,) where v, =1, v, = 0 on
I'p and v = 0 on the rest of the boundary. It follows that:

/ t.dS = b(u, v) = b(upy, v)

I'p
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Numerical Results: 2D Elasticity Model
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Streamer impedance as a function of frequency. T = 10° C
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Numerical Results: 2D Coupled Model
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Comparison of Elastic and Coupled Models
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Streamer impedance as a function of frequency. T = 10° C
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Local Analysis of Hydrophones
A Multiscale Approach
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3D Model: Local Analysis of Hydrophones

ZN = |

L[ S L L[
cavity cavity

" W "
I I I I
Periodic B.C.? Spacer Periodic B.C.?

Task: Analyze pressure distribution around the microphones
Issue: How to define appropriate boundary conditions ? (Periodic 7)
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Axi-symmetric Streamer Section

In order to determine the BC on one periodic cell, we studied the
response on a 75m long streamer section. We used the axisymmetric
model for detailed studies, but results were confirmed on the 3D
simplified model.

In particular we measured the displacement along the streamer and
accross the two-end sections of one cell in the streamer.

Results are shown in following slides.

r Free B.C. (Streamer in air)
Kinematic
boundary Impedance
condition B.C.

0 z
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Study of 75m Streamer Section
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1 e |
P e i
H /

S o |

o -
g I 1 I | I I ey
o 0 2 % 0 E) £ 7 w
2
imaginary part of U, i the midde of gl
o T T
E o W,,WM.w».-».w.w.uu,v.w.v.l,\l.w,v.l.\l.v‘M.n.\l.v.l.‘.ml.v.l:.i.vuuwmw |
§ — Wy,
2 fly, e Mk,
H Wiy, o l'm'[\’ﬁ’lf\m‘ BT
) M __ J——— (e
L ~wm-m,m«mwnmrm'ru'mn|rm’mmmmﬂ/"’ L 4
-
o 0 2 EY w0 E) ) 70 ey
2
absolue valuo of U, intho middle of gl
I : T T i
vuw,,r.w"'"m I(nh/y,«,.-mw Mv,vﬂl”'w ﬂlm‘m,\,\.‘,‘m -ﬂ'Nn’/v’f‘"“"w
i My, i Mgy il
w”, M’r W’"’ \A“"f\y‘ M‘_ﬂm
A —— model with full spacers |

Streamers




Study of 75m Streamer Section
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Displacement wu, (real part, imaginary part, amplitude)
across mid-section in the gel cavities before and after one spacer.
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Study of 75m Streamer Section

real part of U, i the micle of gel
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Study of 75m Streamer Section
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across mid-section in the gel cavities before and after one spacer.
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Observations from Numerical Study

1. This is clearly a two-scale problem:
u(z) = U(zx) + us(x)
2. The small scales w4 are proportional to the large scales and not
to their derivatives.
ult = ol
ull=ul +C
Re(e..) = Re(e..)! + C
Im(e..)" ~ Im(e..) + C
4. The displacement of the small scales in one cell is symmetric
with respect to the cross-section that passes through the middle

of the spacer (see zoom below).
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Some Mathematics

Hypothesis:
The small scale u; satisfies periodic boundary conditions.

Case 1: Periodic kinematic BC: uff = ul + u, el =€l .

Case 2: Periodic strain BC: uff = ul, e, = esL’ZZ7+ e
For a symmetric geometry of the spacer, it can be shown that Case 1
necessarily yields an antisymmetric solution and Case 2 a symmetric

solution. So we choose Case 2.

Global/local ansatz: us and u are now approximated by 4, and @
such that

us ~ CU, with U = (0,0,U,) and C' = constant
so

u=U+u,~u and dex U
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Solution of the Local Problem

» The small scale (solution of the local problem) is driven by the
large scale represented by complex constant C' in the BC. It
changes with the location of the spacer/microphone.
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Solution of the Local Problem

» The small scale (solution of the local problem) is driven by the
large scale represented by complex constant C' in the BC. It
changes with the location of the spacer/microphone.

» Quantities like ratio of pressures at different locations or phase
difference are independent of constant C' and can be evaluated
w/o its knowledge.
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Solution of the Local Problem

» The small scale (solution of the local problem) is driven by the
large scale represented by complex constant C' in the BC. It
changes with the location of the spacer/microphone.

» Quantities like ratio of pressures at different locations or phase
difference are independent of constant C' and can be evaluated
w/o its knowledge.

» Pressure (derivatives) depends mainly upon the small scale.
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Comsol Problem Setting
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Geometry of Hydrophone
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Solution with Comsol

Pressure Phase Max: 353.987

350

300

250

200

150

100

Min: 0.135

Pressure phase on the slice which passes on top of the hydrophone.

Austin, August 4-8, 2008 Streamers



=
b
=
<
=
=
c
o
=
S
-
=
o
>

LTI T T
LI T T

NG £ L

730k dofs

31k elements,

Adaptivity: 8th fine mesh,

driven h-

Goal

Goal: Average pressure over the microfone.
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Verification with hp3d

Pressure Over the Microfone: min/max=67/137 [dB]
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Dual-Mixed Formulation for Elasticity
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Dual-Mixed Formulation for Elasticity

0ij = Eijrien = Eijr(up) — wi) =
Criijoij = Uk:l — Wy
Oijj + Pw Uj = fz

OijN; = gi on Ft
fQ CrlijoijTh + fQ UgTk,l + fQ UpWEITKl = fru UpTrny  VTi
TN — 0 on I't
2 _
Jaoijivi + p® [ uivi = Jofivi  Vui
Jo Oriam =0 Var = —qik

Austin, August 4-8, 2008 Streamers



Elasticity Complex (Arnold at al. “decoded”)

dW) — A(W) 2 Aw) AL W) 2 BW) — 0
| id | id | |72 | id
oW) — AW) X A A ey o
W=KxV, K={uwl=dN Vv={¢}
(W) = {(e",¢")} .
N(W) {(Ek et Th={(ER 76%) s ek B — (e, — epon) =0}
NW) = {(V;", )} T2 ={(0,v},)}
NW) = {(v™¢")} ‘
Ao(W™,¢) = (B el) = (O +emapn o)) |
AUET ¢;) = (Vitv) = (e — (€, — €f0n,), emikel)
Ao(Vitvp,) = (W) = (V= 2€™ 0, v )
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p-convergence Test

X2

]

&1

Geometry and boundary conditions.
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Regular Solution

Manufactured solution:

uy = cos(z +2y) up =sin(3x +y)

2962
13966
6555
31.05|

14.@

35|
153]
072
034]

0.16

SCALES: nrdof*1.00, log(error)

nrdof

26 T 112 T 19 284 T 300 [ 456 1 542 1 68 1 714

Convergence rates (In error vs. number of d.o.f.).
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Singular Solution

Manufactured solution:

uy = up = rsin(a(0 + g))a a=134

17929 error

1205 SCALES: log(nrdof), log(error)
8106
5450
36.65)
U6
16.57)
11.14)

749

339

ardof
26 | 4 T 73 T 122 T 206 [ 346 [ 3580 [ 975 T 1638

Convergence rates (In error vs. In d.o.f.).
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Additional Background Info

Austin, August 4-8, 2008 Streamers



Coupled Acoustics/Elasticity

15;\'; . - ., Rt
in F
acoustics in €2, : elasticity in €2, :

{ ¢ iwp+ ppw;; =0 { —psw?u; — 0i5;, =0
pfiwwi + b: = 0 Oij = /L(Ui,j + Ujﬂ') + )\uk,k&j

iwumi =win;  Oyny = —pry on interface r[
+ standard boundary conditions on the boundary

Streamers
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Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of
momentum (elasticity) in a weak form:

2 . .
— an (%) P + WP rviq; — frl iwpruin,g = B.T. Vg
er —w2puivi + O0iVi5 — frl Oijn;v; = B.T. Vvi
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Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of
momentum (elasticity) in a weak form:

2 . :
— an (%) P + WP rviq; — frl iwpruin,g = B.T. Vg
er —w2puivi + O0iVi5 — frl Oijn;v; = B.T. Vvi

Step 2: Use the remaining equations in the strong form to eliminate
fluid velocity and elastic stresses:
w2 .
- an (;) Pq +Diqi — fr, iwpgvingg = B.T.Vq
er —w2puiv¢ + ,U(U@'J + uj,i)vi,j + )\uk,kvk,k — fr[ OiN;0; = B.T. \V/Ui
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Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of
momentum (elasticity) in a weak form:

2 . :
— an (%) P + WP rviq; — frl iwpruin,g = B.T. Vg
er —w2puivi + O0iVi5 — frl Oijn;v; = B.T. Vvi

Step 2: Use the remaining equations in the strong form to eliminate
fluid velocity and elastic stresses:
w2 .
- an (;) Pq +Diqi — fr, iwpgvingg = B.T.Vq
er —w2puiv¢ + ,U(U@'J + uj,i)vi,j + Auk,kvk,k — fr[ OiN;0; = B.T. \V/Ui

Step 3: Use the interface conditions to couple the two variational
formulations:

w)2
— an (2)" pg + pigi + w? frI pruinigg =B.T. Vg
er —wzpuivi + ,U(UiJ + U]’ﬂ')?}i’j -+ )\uk,kvk,k + fr[ pvin; = B.T. Vvi
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Abstract Variational Formulation

ueap+Ve, pep+V,
bee(u7 'U) + bae(p; 'U) = le('U) Yov € Ve
bea(w, q) + baa(p, q) =1l.(q) Vg€V, where
V.= {ve H(Q.) : v=00nTp.}
= {qeﬂl(Q) : g=00nTp.}

bee(u, 'v) fQ Z]kluk 15,5 psw2uﬂ)i) dx + fFCE 6z’juﬂ)j ds
bae(p, v) = frI pu, dS
bea(w,q) = — frI Upq dS
baa(P;0) = 2257 Jo, (VPVq = kpq) dz
e(v) - er fivi dx + ereurCe g;V; ds

o)) = Jo, fade+ [ r. gvdS
For scattering problems:

le(v) = — fr, P v, dS, la(q) = _w21pf ' ag:cq ds
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de Rham Diagram

=~ o M H(d) ¥ H@v) Y2 12— o

R
g [ [ [ |p
R \Y4 V x Vo

- Whp B th I Vhp I th — 0

where the Projection-Based Interpolation Operators 11824 _[eurt div
and L?-projection P make the diagram commute.
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A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a
given coarse grid by examining the solution on a corresponding fine
grid obtained by a global hp-refinement.

Global
hp-refinement

——-

~_ |

Coarse grid 0 Fine grid 0
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A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a
given coarse grid by examining the solution on a corresponding fine
grid obtained by a global hp-refinement.

Error estimate and

optimal

hp-refinement

Coarse grid 1 Fine grid 0
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A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a
given coarse grid by examining the solution on a corresponding fine
grid obtained by a global hp-refinement.

Global

hp-refinement

Coarse grid 1 Fine grid 1
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A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a
given coarse grid by examining the solution on a corresponding fine
grid obtained by a global hp-refinement.

Error estimate and

optimal

hp-refinement

Coarse grid 2 Fine grid 1
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A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a
given coarse grid by examining the solution on a corresponding fine
grid obtained by a global hp-refinement.

Global

Coarse grid 2 Fine grid 2
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A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a
given coarse grid by examining the solution on a corresponding fine
grid obtained by a global hp-refinement.

Coarse grid 3

p=38
o
/) ’ ‘#J";;«{(“ﬁl\ "
— g
Error estimate and {“‘"}‘3{\.“""‘ 4//17,
optimal \&g‘%
hp-refinement —
p=1

Fine grid 2
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A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a
given coarse grid by examining the solution on a corresponding fine
grid obtained by a global hp-refinement.

Global

Coarse grid 3 Fine grid 3
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The energy-driven mesh optimization algorithm

» Find optimal hp-refinements of the current coarse grid hp
yielding the next coarse grid hp™*** such that (u = up/2p41),

|u — Mppul| — |lu — Mppneatul|
thnezt - th

— MmaXx
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The energy-driven mesh optimization algorithm

» Find optimal hp-refinements of the current coarse grid hp
yielding the next coarse grid hp™*** such that (u = up/2p41),

|u — Mppul| — |lu — Mppneatul|
thnezt - th

— MmaXx

» The algorithm reflects the logic of the projection-based
interpolation and consists of three steps:

e Determining optimal refinement of edges

e Determining optimal refinement of faces

e Determining optimal refinement of element interiors
Each of the steps sets up initial conditions for the next step,
limiting the number of cases to be considered.
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Coupled Multiphysics Problems

» Simultaneous use of H', H(curl), H(div), L?- conforming
elements, C-preprocessing is used only to differentiate between
the real and complex versions of the code.
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Coupled Multiphysics Problems

» Simultaneous use of H', H(curl), H(div), L?- conforming
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Coupled Multiphysics Problems

» Simultaneous use of H', H(curl), H(div), L?- conforming
elements, C-preprocessing is used only to differentiate between
the real and complex versions of the code.

» The domain is decomposed into geometrical blocks. Each block
may involve only a subset of all variables.

» Problem dependent code: computation of (unconstrained)
element matrices, choice of norm.

» Problem independent code: description of geometry and
multiphysics, constrained approximation, graphics, linear solvers,
adaptivity, automatic h-,p- and hp-adaptivity.
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