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Outline of presentation

I The AP stretch - streamer system.

I Determining streamer impedance.

I Multiscale analysis of streamers.

I Dual-Mixed formulation for elasticity.

I Additional background info:
• Coupled elasticity-acoustics problem,
• Exact sequence. Projection-Based Interpolation.
• Automatic hp-Adaptivity and coupled multiphysics problems.

Austin, August 4-8, 2008 Streamers 2 / 49



Outline of presentation

I The AP stretch - streamer system.

I Determining streamer impedance.

I Multiscale analysis of streamers.

I Dual-Mixed formulation for elasticity.

I Additional background info:
• Coupled elasticity-acoustics problem,
• Exact sequence. Projection-Based Interpolation.
• Automatic hp-Adaptivity and coupled multiphysics problems.

Austin, August 4-8, 2008 Streamers 2 / 49



Outline of presentation

I The AP stretch - streamer system.

I Determining streamer impedance.

I Multiscale analysis of streamers.

I Dual-Mixed formulation for elasticity.

I Additional background info:
• Coupled elasticity-acoustics problem,
• Exact sequence. Projection-Based Interpolation.
• Automatic hp-Adaptivity and coupled multiphysics problems.

Austin, August 4-8, 2008 Streamers 2 / 49



Outline of presentation

I The AP stretch - streamer system.

I Determining streamer impedance.

I Multiscale analysis of streamers.

I Dual-Mixed formulation for elasticity.

I Additional background info:
• Coupled elasticity-acoustics problem,
• Exact sequence. Projection-Based Interpolation.
• Automatic hp-Adaptivity and coupled multiphysics problems.

Austin, August 4-8, 2008 Streamers 2 / 49



Outline of presentation

I The AP stretch - streamer system.

I Determining streamer impedance.

I Multiscale analysis of streamers.

I Dual-Mixed formulation for elasticity.

I Additional background info:
• Coupled elasticity-acoustics problem,
• Exact sequence. Projection-Based Interpolation.
• Automatic hp-Adaptivity and coupled multiphysics problems.

Austin, August 4-8, 2008 Streamers 2 / 49



Outline of presentation

I The AP stretch - streamer system.

I Determining streamer impedance.

I Multiscale analysis of streamers.

I Dual-Mixed formulation for elasticity.

I Additional background info:
• Coupled elasticity-acoustics problem,
• Exact sequence. Projection-Based Interpolation.
• Automatic hp-Adaptivity and coupled multiphysics problems.

Austin, August 4-8, 2008 Streamers 2 / 49



Surveying the Ocean Floor with Acoustical

Streamers

An array of 8 streamers, 6km long, pulled by a tugboat
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The AP Stretch - Streamer System
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Geometry of the AP Stretch – Streamer System
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Material Data for the Streamer

component E(GPa) ρ(kg.m−3) ν Length(m) height(m)
Connector 200 8000 0.29 0.0975 0.0307

Spacer 1.8 1200 0.30 0.075 0.021843
Rope 41.0 1400 0.30 75 0.005657
Skin 0.02 1200 0.45 75 0.0032
Gel Egel (ω, T ) 1040 0.45 0.165 0.021843

Egel (ω, T ) = Er (ω, T ) + iEr (ω, T ) .

At T = 10◦C, we have:

Er (ω, T ) = 2.9× 100.4125 log10(ω)+3.0871 [Pa]

Ei (ω, T ) = 2.9× 100.3977 log10(ω)+2.9707 [Pa]
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2D Model: Axisymmetric Elasticity


Find u such that
−ρω2ui − (Eijkluk,l),j = 0 in Ω
ui = uD,i on ΓD

Eijkluk,lnj + iωρfc
2 = 0 on ΓC

The structure is axisymmetric.
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2D Model: Axisymmetric Elasticity

Initial mesh
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2D Model: Axisymmetric Elasticity

Optimal mesh corresponding to 2% error in energy
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2D Model: Axisymmetric Elasticity

Pressure contours for the initial mesh
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2D Model: Axisymmetric Elasticity

Pressure contours for the optimal mesh
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2D Model: Axisymmetric Elasticity

Pressure profile for the initial mesh
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2D Model: Axisymmetric Elasticity

Pressure profile for the optimal mesh
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2D Model: Coupled Elasticity/Acoustics



Find u,p such that
−ρω2ui − (Eijkluk,l),j = 0 in Ωs

−p,ii −
(

ω
c

)2
p = 0 in Ωf

ui = uD,i, p,ini = ρfω
2uD,ini on ΓD

Eijkluk,lnj = −pni, p,ini = ρfω
2uini on ΓI

+ Sommerfeld radiation condition at ∞

The structure is axisymmetric.
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2D Model: Coupled Elasticity/Acoustics

Optimal hp mesh corresponding to 3.6 percent error
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2D Model: Coupled Elasticity/Acoustics

Pressure distribution on the optimal mesh. Range: -20 - 133.6 dB
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2D Model: Coupled Elasticity/Acoustics

Difference between coarse and fine grid pressures in dB
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2D Model: Coupled Elasticity/Acoustics

Pressure profile for the initial mesh
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2D Model: Coupled Elasticity/Acoustics

Pressure profile for the optimal mesh
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Determining Streamer Impedance
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Streamer Impedance

Define streamer impedance as β = N
u

where N is the force across the
stretch/streamer interface , and u is the displacement of the
interface. N = βu provides a Cauchy B.C. for a 1D Stretch model.
Task: Compute impedance β as function of frequency ω and water
temperature.
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Two D.O.F. Model of the Streamer

β =
F

u0
=

ω2(k + iωc)

−ω2 + iωc + k

Impedance is singular at resonant frequencies
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Iterative Procedure to Compute the Streamer

Impedance
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Computation of Impedance for a Single Section

Integrate by parts:

b(u, v) =
∫

Ω
(σijvi,j − ρω2uivi) dx +

∫
ΓC

βijujvidS

=
∫

Ω
(σij,j − ρω2ui) vi dx +

∫
ΓD

tivi dS +
∫

ΓC
βijujvidS

Choose a special test function v = (vz, vr) where vz = 1, vr = 0 on
ΓD and v = 0 on the rest of the boundary. It follows that:∫

ΓD

tzdS = b(u, v) ≈ b(uhp, v)
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Numerical Results: 2D Elasticity Model

Streamer impedance as a function of frequency. T = 10o C
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Numerical Results: 2D Coupled Model

Streamer impedance as a function of frequency. T = 10o C
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Comparison of Elastic and Coupled Models

Streamer impedance as a function of frequency. T = 10o C
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Local Analysis of Hydrophones
A Multiscale Approach
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3D Model: Local Analysis of Hydrophones

Task: Analyze pressure distribution around the microphones
Issue: How to define appropriate boundary conditions ? (Periodic ?)
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Axi-symmetric Streamer Section

In order to determine the BC on one periodic cell, we studied the
response on a 75m long streamer section. We used the axisymmetric
model for detailed studies, but results were confirmed on the 3D
simplified model.
In particular we measured the displacement along the streamer and
accross the two-end sections of one cell in the streamer.
Results are shown in following slides.
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Study of 75m Streamer Section

Displacement uz (real part, imaginary part, amplitude) along streamer.
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Study of 75m Streamer Section

Displacement ur (real part, imaginary part, amplitude)
across mid-section in the gel cavities before and after one spacer.
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Study of 75m Streamer Section

Strain εzz (real part, imaginary part, amplitude)
across mid-section in the gel cavities before and after one spacer.
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Observations from Numerical Study

1. This is clearly a two-scale problem:

u(x) = U(x) + us(x)

2. The small scales us are proportional to the large scales and not
to their derivatives.

3.

uR
r = uL

r

uR
z = uL

z + C
Re(εzz)

R = Re(εzz)
L + C

Im(εzz)
R ≈ Im(εzz)

L + C

4. The displacement of the small scales in one cell is symmetric
with respect to the cross-section that passes through the middle
of the spacer (see zoom below).
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Some Mathematics

Hypothesis:

The small scale us satisfies periodic boundary conditions.

Case 1: Periodic kinematic BC: uR
s = uL

s + δu, εR
s,zz = εL

s,zz

Case 2: Periodic strain BC: uR
s = uL

s , εR
s,zz = εL

s,zz + δε

For a symmetric geometry of the spacer, it can be shown that Case 1
necessarily yields an antisymmetric solution and Case 2 a symmetric
solution. So we choose Case 2.

Global/local ansatz: us and u are now approximated by ūs and ū
such that

ūs ≈ CU, with U = (0, 0, Uz) and C = constant

so

ū = U + ūs ≈ u and δε ∝ U
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Solution of the Local Problem

I The small scale (solution of the local problem) is driven by the
large scale represented by complex constant C in the BC. It
changes with the location of the spacer/microphone.

I Quantities like ratio of pressures at different locations or phase
difference are independent of constant C and can be evaluated
w/o its knowledge.

I Pressure (derivatives) depends mainly upon the small scale.
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Comsol Problem Setting

Geometry of Hydrophone
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Solution with Comsol

Pressure phase on the slice which passes on top of the hydrophone.
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Verification with hp3d

Goal-driven h-Adaptivity: 8th fine mesh, 31k elements, 730k dofs
Goal: Average pressure over the microfone.
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Verification with hp3d

Pressure Over the Microfone: min/max=67/137 [dB]
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Dual-Mixed Formulation for Elasticity
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Dual-Mixed Formulation for Elasticity

σij = Eijklεkl = Eijkl(uk,l − ωkl) =⇒
Cklijσij = uk,l − ωkl

σij,j + ρω2ui = fi
σijnj = gi on Γt∫
ΩCklijσijτkl +

∫
Ω ukτkl,l +

∫
Ω ukωklτkl =

∫
Γu
ūkτklnl ∀τkl :

τklnl = 0 on Γt∫
Ω σij,jvi + ρω2

∫
Ω uivi =

∫
Ω fivi ∀vi∫

Ω σklqkl = 0 ∀qkl = −qlk

Austin, August 4-8, 2008 Streamers 38 / 49



Elasticity Complex (Arnold at al. “decoded”)

Φ(W ) ↪→ Λ0(W )
A0−→ Λ1(W )

A1−→ Λ2(W )
A2−→ Λ3(W ) −→ 0yid yid yπ1

yπ2

yid
Φ(W ) ↪→ Λ0(W )

A0−→ Γ1 A1−→ Γ2 A2−→ Λ3(W ) −→ 0

W = K × V , K = {ωij = εijkΨk}, V = {φi}
Λ0(W ) = {(Φm, φi)}
Λ1(W ) = {(Em

k , e
i
k)} Γ1 = {(Em

k , e
i
k) : εnlkE

m
k,l − (enm − ekkδ

n
m) = 0}

Λ2(W ) = {(V m
n , vi

m)} Γ2 = {(0, vi
m)}

Λ3(W ) = {(Ψm, ψi)}
A0(Ψ

m, φi) = (Em
k , e

i
k) = (Φm

,k + εmkαφα, φi
,k)

A1(E
m
k , e

i
k) = (V m

n , vi
m) = (εnlkE

m
k,l − (enm − ekkδ

n
m), εmlke

i
k,l)

A2(V
m
n , vi

m) = (Ψm, ψi) = (V m
n,n − 1

2ε
minvi

n, v
i
m,m)
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p-convergence Test

Geometry and boundary conditions.
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Regular Solution

Manufactured solution:

u1 = cos(x + 2y) u2 = sin(3x + y)

Convergence rates (ln error vs. number of d.o.f.).
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Singular Solution

Manufactured solution:

u1 = u2 = rα sin(α(θ +
π

2
)), α = 1.34

Convergence rates (ln error vs. ln d.o.f.).
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Additional Background Info
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Coupled Acoustics/Elasticity

acoustics in Ωa :{
c−2iωp + ρfwi,i = 0

ρf iωwi + p,i = 0

elasticity in Ωe :{
−ρsω

2ui − σij,j = 0
σij = µ(ui,j + uj,i) + λuk,kδij

iωuini = wini σijnj = −pni on interface ΓI

+ standard boundary conditions on the boundary
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Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of
momentum (elasticity) in a weak form:

−
∫

Ωa

(
ω
c

)2
pq + iωρfviq,i −

∫
ΓI

iωρfviniq = B.T. ∀q∫
Ωe
−ω2ρuivi + σijvi,j −

∫
ΓI

σijnjvi = B.T. ∀vi

Step 2: Use the remaining equations in the strong form to eliminate
fluid velocity and elastic stresses:

−
∫

Ωa

(
ω
c

)2
pq + p,iq,i −

∫
ΓI

iωρfviniq = B.T. ∀q∫
Ωe
−ω2ρuivi + µ(ui,j + uj,i)vi,j + λuk,kvk,k −

∫
ΓI

σijnjvi = B.T. ∀vi

Step 3: Use the interface conditions to couple the two variational
formulations:

−
∫

Ωa

(
ω
c

)2
pq + p,iq,i + ω2

∫
ΓI

ρfuiniq = B.T. ∀q∫
Ωe
−ω2ρuivi + µ(ui,j + uj,i)vi,j + λuk,kvk,k +

∫
ΓI

pvini = B.T. ∀vi
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Abstract Variational Formulation


u ∈ ũD + V e, p ∈ p̃ + Va

bee(u, v) + bae(p, v) = le(v) ∀v ∈ V e

bea(u, q) + baa(p, q) = la(q) ∀q ∈ Va where

V e = {v ∈ H1(Ωe) : v = 0 on ΓDe}
Va = {q ∈ H1(Ωa) : q = 0 on ΓDa}

bee(u, v) =
∫

Ωe
(Eijkluk,lvi,j − ρsω

2uivi) dx +
∫

ΓCe
βijuivj dS

bae(p, v) =
∫

ΓI
pvn dS

bea(u, q) = −
∫

ΓI
unq dS

baa(p, q) = 1
ω2ρf

∫
Ωa

(∇p∇q − k2pq) dx

le(v) =
∫

Ωe
fivi dx +

∫
ΓNe∪ΓCe

givi dS

la(q) =
∫

Ωa
fq dx +

∫
ΓNa∪ΓCa

gv dS

For scattering problems:

le(v) = −
∫

ΓI
pincvn dS, la(q) = − 1

ω2ρf

∫
ΓI

∂pinc

∂n
q dS
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de Rham Diagram

IR → H1 ∇−→ H(curl)
∇×−→ H(div)

∇◦−→ L2 −→ 0yid
yΠgrad

yΠcurl

yΠdiv

yP

IR −→ Whp
∇−→ Qhp

∇×−→ Vhp
∇◦−→ Yhp −→ 0

where the Projection-Based Interpolation Operators Πgrad, Πcurl, Πdiv ,
and L2-projection P make the diagram commute.
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A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a
given coarse grid by examining the solution on a corresponding fine
grid obtained by a global hp-refinement.

Coarse grid 0

Global

hp-refinement

Fine grid 0

p = 8

p = 1
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A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a
given coarse grid by examining the solution on a corresponding fine
grid obtained by a global hp-refinement.

Coarse grid 2

Error estimate and

optimal

hp-refinement

Fine grid 1

p = 8

p = 1
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The energy-driven mesh optimization algorithm

I Find optimal hp-refinements of the current coarse grid hp
yielding the next coarse grid hpnext such that (u = uh/2,p+1),

‖u− Πhpu‖ − ‖u− Πhpnextu‖
Nhpnext −Nhp

→ max

I The algorithm reflects the logic of the projection-based
interpolation and consists of three steps:
• Determining optimal refinement of edges
• Determining optimal refinement of faces
• Determining optimal refinement of element interiors

Each of the steps sets up initial conditions for the next step,
limiting the number of cases to be considered.

Austin, August 4-8, 2008 Streamers 49 / 49



The energy-driven mesh optimization algorithm

I Find optimal hp-refinements of the current coarse grid hp
yielding the next coarse grid hpnext such that (u = uh/2,p+1),

‖u− Πhpu‖ − ‖u− Πhpnextu‖
Nhpnext −Nhp

→ max

I The algorithm reflects the logic of the projection-based
interpolation and consists of three steps:
• Determining optimal refinement of edges
• Determining optimal refinement of faces
• Determining optimal refinement of element interiors

Each of the steps sets up initial conditions for the next step,
limiting the number of cases to be considered.

Austin, August 4-8, 2008 Streamers 49 / 49



Coupled Multiphysics Problems

I Simultaneous use of H1, H(curl), H(div), L2- conforming
elements, C-preprocessing is used only to differentiate between
the real and complex versions of the code.

I The domain is decomposed into geometrical blocks. Each block
may involve only a subset of all variables.

I Problem dependent code: computation of (unconstrained)
element matrices, choice of norm.

I Problem independent code: description of geometry and
multiphysics, constrained approximation, graphics, linear solvers,
adaptivity, automatic h-,p- and hp-adaptivity.
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