Multiscale Analysis of Vibrations of Streamers

Leszek Demkowicz
 Joint work with

S. Prudhomme, W. Rachowicz, W. Qiu and L. Chamoin

Institute for Computational Engineering and Sciences (ICES)
The University of Texas at Austin
Austin, Texas 78712, U.S.A.
e-mail: leszek@ices.utexas.edu

Summer Workshop on Mutiscale Modeling and Analysis ICES, Austin, August 4-8, 2008

Outline of presentation

Outline of presentation

- The AP stretch - streamer system.

Outline of presentation

- The AP stretch - streamer system.
- Determining streamer impedance.

Outline of presentation

- The AP stretch - streamer system.
- Determining streamer impedance.
- Multiscale analysis of streamers.

Outline of presentation

- The AP stretch - streamer system.
- Determining streamer impedance.
- Multiscale analysis of streamers.
- Dual-Mixed formulation for elasticity.

Outline of presentation

- The AP stretch - streamer system.
- Determining streamer impedance.
- Multiscale analysis of streamers.
- Dual-Mixed formulation for elasticity.
- Additional background info:
- Coupled elasticity-acoustics problem,
- Exact sequence. Projection-Based Interpolation.
- Automatic hp-Adaptivity and coupled multiphysics problems.

Surveying the Ocean Floor with Acoustical Streamers

An array of 8 streamers, 6 km long, pulled by a tugboat

The AP Stretch - Streamer System

Geometry of the AP Stretch - Streamer System

Streamer and Stretch

1D, 2D or 3D model of section

\square
connector \square rope \square gel \square spacer (311 in every section) \square skin

Material Data for the Streamer

component	$\mathrm{E}(\mathrm{GPa})$	$\rho\left(\mathrm{kg} . \mathrm{m}^{-3}\right)$	ν	Length (m)	height (m)
Connector	200	8000	0.29	0.0975	0.0307
Spacer	1.8	1200	0.30	0.075	0.021843
Rope	41.0	1400	0.30	75	0.005657
Skin	0.02	1200	0.45	75	0.0032
Gel	$\mathrm{E}_{\text {gel }}(\omega, T)$	1040	0.45	0.165	0.021843

$$
E_{g e l}(\omega, T)=E_{r}(\omega, T)+i E_{r}(\omega, T) .
$$

At $T=10^{\circ} \mathrm{C}$, we have:

$$
\begin{aligned}
E_{r}(\omega, T) & =2.9 \times 10^{0.4125 \log _{10}(\omega)+3.0871}[P a] \\
E_{i}(\omega, T) & =2.9 \times 10^{0.3977 \log _{10}(\omega)+2.9707}[P a]
\end{aligned}
$$

2D Model: Axisymmetric Elasticity

2D Model: Axisymmetric Elasticity

Initial mesh

2D Model: Axisymmetric Elasticity

Optimal mesh corresponding to 2% error in energy

2D Model: Axisymmetric Elasticity

Pressure contours for the initial mesh

2D Model: Axisymmetric Elasticity

Pressure contours for the optimal mesh

2D Model: Axisymmetric Elasticity

Pressure profile for the initial mesh

2D Model: Axisymmetric Elasticity

2D Model: Coupled Elasticity/Acoustics

$$
\begin{cases}\text { Find } \boldsymbol{u}, \mathrm{p} \text { such that } & \text { in } \Omega_{s} \\ -\rho \omega^{2} u_{i}-\left(E_{i j k l} u_{k, l}\right)_{, j}=0 & \text { in } \Omega_{f} \\ -p_{, i i}-\left(\frac{\omega}{c}\right)^{2} p=0 & \text { on } \Gamma_{D} \\ u_{i}=u_{D, i}, p_{i,} n_{i}=\rho_{f} \omega^{2} u_{D, i} n_{i} & \text { on } \Gamma_{I} \\ E_{i j k l} u_{k, l}=-p n_{i}, p_{, j} n_{i}=\rho_{f} \omega^{2} u_{i} n_{i} & \\ \multicolumn{2}{c}{\text { Sommerfeld radiation condition at } \infty}\end{cases}
$$

n segments

The structure is axisymmetric.

2D Model: Coupled Elasticity/Acoustics

Optimal $h p$ mesh corresponding to 3.6 percent error

2D Model: Coupled Elasticity/Acoustics

y
z

Pressure distribution on the optimal mesh. Range: -20-133.6 dB

2D Model: Coupled Elasticity/Acoustics

Y
Z

Difference between coarse and fine grid pressures in dB

2D Model: Coupled Elasticity/Acoustics

Pressure profile for the initial mesh

2D Model: Coupled Elasticity/Acoustics

Pressure profile for the optimal mesh

Determining Streamer Impedance

Streamer Impedance

1D model of Stretch

Define streamer impedance as $\beta=\frac{N}{u}$ where N is the force across the stretch/streamer interface, and u is the displacement of the interface. $N=\beta u$ provides a Cauchy B.C. for a 1D Stretch model. Task: Compute impedance β as function of frequency ω and water temperature.

Two D.O.F. Model of the Streamer

$$
\beta=\frac{F}{u_{0}}=\frac{\omega^{2}(k+i \omega c)}{-\omega^{2}+i \omega c+k}
$$

Impedance is singular at resonant frequencies

Iterative Procedure to Compute the Streamer Impedance

impedance for the Stretch

Computation of Impedance for a Single Section

Integrate by parts:

$$
\begin{aligned}
b(\boldsymbol{u}, \boldsymbol{v}) & =\int_{\Omega}\left(\sigma_{i j} v_{i, j}-\rho \omega^{2} u_{i} v_{i}\right) d x+\int_{\Gamma_{C}} \beta_{i j} u_{j} v_{i} d S \\
& =\int_{\Omega}\left(\sigma_{i j, j}-\rho \omega^{2} u_{i}\right) v_{i} d x+\int_{\Gamma_{D}} t_{i} v_{i} d S+\int_{\Gamma_{C}} \beta_{i j} u_{j} v_{i} d S
\end{aligned}
$$

Choose a special test function $\boldsymbol{v}=\left(v_{z}, v_{r}\right)$ where $v_{z}=1, v_{r}=0$ on Γ_{D} and $\boldsymbol{v}=0$ on the rest of the boundary. It follows that:

$$
\int_{\Gamma_{D}} t_{z} d S=b(\boldsymbol{u}, \boldsymbol{v}) \approx b\left(\boldsymbol{u}_{h p}, \boldsymbol{v}\right)
$$

Numerical Results: 2D Elasticity Model

Streamer impedance as a function of frequency. $\mathrm{T}=10^{\circ} \mathrm{C}$

Numerical Results: 2D Coupled Model

Streamer impedance as a function of frequency. $\mathrm{T}=10^{\circ} \mathrm{C}$

Comparison of Elastic and Coupled Models

Streamer impedance as a function of frequency. $\mathrm{T}=10^{\circ} \mathrm{C}$

Local Analysis of Hydrophones A Multiscale Approach

3D Model: Local Analysis of Hydrophones

Task: Analyze pressure distribution around the microphones
Issue: How to define appropriate boundary conditions ? (Periodic ?)

Axi-symmetric Streamer Section

In order to determine the BC on one periodic cell, we studied the response on a 75 m long streamer section. We used the axisymmetric model for detailed studies, but results were confirmed on the 3D simplified model.
In particular we measured the displacement along the streamer and accross the two-end sections of one cell in the streamer.
Results are shown in following slides.

Study of 75 m Streamer Section

Displacement u_{z} (real part, imaginary part, amplitude) along streamer.

Study of 75 m Streamer Section

Displacement u_{r} (real part, imaginary part, amplitude) across mid-section in the gel cavities before and after one spacer.

Study of 75 m Streamer Section

Displacement u_{z} (real part, imaginary part, amplitude) across mid-section in the gel cavities before and after one spacer.

Study of 75 m Streamer Section

Strain $\epsilon_{z z}$ (real part, imaginary part, amplitude) across mid-section in the gel cavities before and after one spacer.

Observations from Numerical Study

1. This is clearly a two-scale problem:

$$
u(x)=U(x)+u_{s}(x)
$$

2. The small scales u_{s} are proportional to the large scales and not to their derivatives.
3.

$$
\begin{aligned}
& u_{r}^{R}=u_{r}^{L} \\
& u_{z}^{R}=u_{z}^{L}+C \\
& \operatorname{Re}\left(\epsilon_{z z}\right)^{R}=\operatorname{Re}\left(\epsilon_{z z}\right)^{L}+C \\
& \operatorname{Im}\left(\epsilon_{z z}\right)^{R} \approx \operatorname{Im}\left(\epsilon_{z z}\right)^{L}+C
\end{aligned}
$$

4. The displacement of the small scales in one cell is symmetric with respect to the cross-section that passes through the middle of the spacer (see zoom below).

Some Mathematics

Hypothesis:
The small scale u_{s} satisfies periodic boundary conditions.
Case 1: Periodic kinematic BC: $u_{s}^{R}=u_{s}^{L}+\delta u, \epsilon_{s, z z}^{R}=\epsilon_{s, z z}^{L}$
Case 2: Periodic strain $\mathrm{BC}: u_{s}^{R}=u_{s}^{L}, \epsilon_{s, z z}^{R}=\epsilon_{s, z z}^{L}+\delta \epsilon$
For a symmetric geometry of the spacer, it can be shown that Case 1 necessarily yields an antisymmetric solution and Case 2 a symmetric solution. So we choose Case 2.

Global/local ansatz: u_{s} and u are now approximated by \bar{u}_{s} and \bar{u} such that

$$
\bar{u}_{s} \approx C U, \text { with } U=\left(0,0, U_{z}\right) \text { and } C=\mathrm{constant}
$$

SO

$$
\bar{u}=U+\bar{u}_{s} \approx u \quad \text { and } \quad \delta \epsilon \propto U
$$

Solution of the Local Problem

- The small scale (solution of the local problem) is driven by the large scale represented by complex constant C in the BC . It changes with the location of the spacer/microphone.

Solution of the Local Problem

- The small scale (solution of the local problem) is driven by the large scale represented by complex constant C in the BC . It changes with the location of the spacer/microphone.
- Quantities like ratio of pressures at different locations or phase difference are independent of constant C and can be evaluated w/o its knowledge.

Solution of the Local Problem

- The small scale (solution of the local problem) is driven by the large scale represented by complex constant C in the BC . It changes with the location of the spacer/microphone.
- Quantities like ratio of pressures at different locations or phase difference are independent of constant C and can be evaluated w/o its knowledge.
- Pressure (derivatives) depends mainly upon the small scale.

Comsol Problem Setting

Geometry of Hydrophone

Solution with Comsol

Max: 359.987

Min: 0.135

Pressure phase on the slice which passes on top of the hydrophone.

Verification with $h p 3 d$

Goal-driven h-Adaptivity: 8th fine mesh, 31k elements, 730k dofs Goal: Average pressure over the microfone.

Verification with $h p 3 d$

Pressure Over the Microfone: $\min / \max =67 / 137$ [dB]

Dual-Mixed Formulation for Elasticity

Dual-Mixed Formulation for Elasticity

$$
\begin{aligned}
& \sigma_{i j}=E_{i j k l} \epsilon_{k l}=E_{i j k l}\left(u_{k, l}-\omega_{k l}\right) \Longrightarrow \\
& C_{k l i j} \sigma_{i j}=u_{k, l}-\omega_{k l} \\
& \sigma_{i j, j}+\rho \omega^{2} u_{i}=f_{i}
\end{aligned}
$$

$$
\left\{\begin{array}{lll}
\sigma_{i j} n_{j}=g_{i} \text { on } \Gamma_{t} & & \\
\int_{\Omega} C_{k l i j} \sigma_{i j} \tau_{k l}+\int_{\Omega} u_{k} \tau_{k l, l}+\int_{\Omega} u_{k} \omega_{k l} \tau_{k l} & =\int_{\Gamma_{u}} \bar{u}_{k} \tau_{k l} n_{l} & \forall \tau_{k l}: \\
\int_{\Omega} \sigma_{i j, j} v_{i}+\rho \omega^{2} \int_{\Omega} u_{i} v_{i} & =\int_{\Omega} f_{i} v_{i} & \forall v_{k l} n_{l}=0 \text { on } \Gamma_{t} \\
\int_{\Omega} \sigma_{k l} q_{k l} & =0 & \forall q_{k l}=-q_{l k}
\end{array}\right.
$$

Elasticity Complex (Arnold at al. "decoded")

$$
\begin{array}{cccccccccc}
\Phi(\boldsymbol{W}) & \hookrightarrow & \Lambda^{0}(\boldsymbol{W}) & \xrightarrow{\mathcal{A}_{0}} & \Lambda^{1}(\boldsymbol{W}) & \xrightarrow{\mathcal{A}_{1}} & \Lambda^{2}(\boldsymbol{W}) & \xrightarrow{\mathcal{A}_{2}} & \Lambda^{3}(\boldsymbol{W}) & \longrightarrow
\end{array} 0
$$

$$
\begin{array}{rlrl}
\boldsymbol{W}=\boldsymbol{K} \times \boldsymbol{V}, & \boldsymbol{K}=\left\{\omega^{i j}=\epsilon^{i j k} \Psi^{k}\right\}, \quad \boldsymbol{V}=\left\{\phi^{i}\right\} \\
\Lambda^{0}(\boldsymbol{W}) & =\left\{\left(\phi^{m}, \phi^{i}\right)\right\} & & \\
\Lambda^{1}(\boldsymbol{W}) & =\left\{\left(E_{k}^{m}, e_{k}^{i}\right)\right\} & \Gamma^{1}=\left\{\left(E_{k}^{m}, e_{k}^{i}\right): \epsilon_{n l k} E_{k, l}^{m}-\left(e_{m}^{n}-e_{k}^{k} \delta_{m}^{n}\right)=0\right\} \\
\Lambda^{2}(\boldsymbol{W}) & =\left\{\left(V_{n}^{m}, v_{m}^{i}\right)\right\} & \Gamma^{2}=\left\{\left(0, v_{m}^{i}\right)\right\} \\
\Lambda^{3}(\boldsymbol{W}) & =\left\{\left(\Psi^{m}, \psi^{i}\right)\right\} & & \\
\mathcal{A}_{0}\left(\Psi^{m}, \phi^{i}\right) & =\left(E_{k}^{m}, e_{k}^{i}\right) & =\left(\Phi_{, k}^{m}+\epsilon^{m k \alpha} \phi^{\alpha}, \phi_{, k}^{i}\right) \\
\mathcal{A}_{1}\left(E_{k}^{m}, e_{k}^{i}\right) & =\left(V_{n}^{m}, v_{m}^{i}\right) & =\left(\epsilon_{n l l} E_{k, l}^{m}-\left(e_{m}^{n}-e_{k}^{k} \delta_{m}^{n}\right), \epsilon_{m l k} e_{k, l}^{i}\right) \\
\mathcal{A}_{2}\left(V_{n}^{m}, v_{m}^{i}\right) & =\left(\Psi^{m}, \psi^{i}\right) & =\left(V_{n, n}^{m}-\frac{1}{2} \epsilon^{m i n} v_{n}^{i}, v_{m, m}^{i}\right)
\end{array}
$$

p-convergence Test

Geometry and boundary conditions.

Regular Solution

Manufactured solution:

$$
u_{1}=\cos (x+2 y) \quad u_{2}=\sin (3 x+y)
$$

Convergence rates (In error vs. number of d.o.f.).

Singular Solution

Manufactured solution:

$$
u_{1}=u_{2}=r^{\alpha} \sin \left(\alpha\left(\theta+\frac{\pi}{2}\right)\right), \quad \alpha=1.34
$$

Convergence rates (In error vs. In d.o.f.).

Additional Background Info

Coupled Acoustics/Elasticity

acoustics in Ω_{a} :
elasticity in Ω_{e} :

$$
\begin{gathered}
\left\{\begin{array} { c }
{ c ^ { - 2 } i \omega p + \rho _ { f } w _ { i , i } = 0 } \\
{ \rho _ { f } i \omega w _ { i } + p _ { , i } = 0 }
\end{array} \quad \left\{\begin{array}{l}
-\rho_{s} \omega^{2} u_{i}-\sigma_{i j, j}=0 \\
\sigma_{i j}=\mu\left(u_{i, j}+u_{j, i}\right)+\lambda u_{k, k} \delta_{i j}
\end{array}\right.\right. \\
i \omega u_{i} n_{i}=w_{i} n_{i} \quad \sigma_{i j} n_{j}=-p n_{i} \quad \text { on interface } \Gamma_{I} \\
+ \text { standard boundary conditions on the boundary }
\end{gathered}
$$

Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of momentum (elasticity) in a weak form:

$$
\begin{aligned}
-\int_{\Omega_{a}}\left(\frac{\omega}{c}\right)^{2} p q+i \omega \rho_{f} v_{i} q_{, i}-\int_{\Gamma_{I}} i \omega \rho_{f} v_{i} n_{i} q=\text { B.T. } & \forall q \\
\int_{\Omega_{e}}-\omega^{2} \rho u_{i} v_{i}+\sigma_{i j} v_{i, j}-\int_{\Gamma_{I}} \sigma_{i j} n_{j} v_{i}=\text { B.T. } & \forall v_{i}
\end{aligned}
$$

Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of momentum (elasticity) in a weak form:

$$
\begin{aligned}
-\int_{\Omega_{a}}\left(\frac{\omega}{c}\right)^{2} p q+i \omega \rho_{f} v_{i} q_{, i}-\int_{\Gamma_{I}} i \omega \rho_{f} v_{i} n_{i} q=\text { B.T. } & \forall q \\
\int_{\Omega_{e}}-\omega^{2} \rho u_{i} v_{i}+\sigma_{i j} v_{i, j}-\int_{\Gamma_{I}} \sigma_{i j} n_{j} v_{i}=\text { B.T. } & \forall v_{i}
\end{aligned}
$$

Step 2: Use the remaining equations in the strong form to eliminate fluid velocity and elastic stresses:

$$
\begin{aligned}
-\int_{\Omega_{a}}\left(\frac{\omega}{c}\right)^{2} p q+p_{, i} q_{, i}-\int_{\Gamma_{I}} i \omega \rho_{f} v_{i} n_{i} q & =\text { B.T. } \forall q \\
\int_{\Omega_{e}}-\omega^{2} \rho u_{i} v_{i}+\mu\left(u_{i, j}+u_{j, i}\right) v_{i, j}+\lambda u_{k, k} v_{k, k}-\int_{\Gamma_{I}} \sigma_{i j} n_{j} v_{i} & =\text { B.T. } \forall v_{i}
\end{aligned}
$$

Weak Coupling

Step 1: Formulate conservation of mass (acoustics) and balance of momentum (elasticity) in a weak form:

$$
\begin{aligned}
-\int_{\Omega_{a}}\left(\frac{\omega}{c}\right)^{2} p q+i \omega \rho_{f} v_{i} q_{, i}-\int_{\Gamma_{I}} i \omega \rho_{f} v_{i} n_{i} q=\text { B.T. } & \forall q \\
\int_{\Omega_{e}}-\omega^{2} \rho u_{i} v_{i}+\sigma_{i j} v_{i, j}-\int_{\Gamma_{I}} \sigma_{i j} n_{j} v_{i}=\text { B.T. } & \forall v_{i}
\end{aligned}
$$

Step 2: Use the remaining equations in the strong form to eliminate fluid velocity and elastic stresses:

$$
\begin{aligned}
-\int_{\Omega_{a}}\left(\frac{\omega}{c}\right)^{2} p q+p_{, i} q_{, i}-\int_{\Gamma_{I}} i \omega \rho_{f} v_{i} n_{i} q & =\text { B.T. } \forall q \\
\int_{\Omega_{e}}-\omega^{2} \rho u_{i} v_{i}+\mu\left(u_{i, j}+u_{j, i}\right) v_{i, j}+\lambda u_{k, k} v_{k, k}-\int_{\Gamma_{I}} \sigma_{i j} n_{j} v_{i} & =\text { B.T. } \forall v_{i}
\end{aligned}
$$

Step 3: Use the interface conditions to couple the two variational formulations:

$$
\begin{aligned}
-\int_{\Omega_{a}}\left(\frac{\omega}{c}\right)^{2} p q+p_{, i} q_{, i}+\omega^{2} \int_{\Gamma_{I}} \rho_{f} u_{i} n_{i} q=\text { B.T. } \quad \forall q \\
\int_{\Omega_{e}}-\omega^{2} \rho u_{i} v_{i}+\mu\left(u_{i, j}+u_{j, i}\right) v_{i, j}+\lambda u_{k, k} v_{k, k}+\int_{\Gamma_{I}} p v_{i} n_{i}=\text { B.T. } \quad \forall v_{i}
\end{aligned}
$$

Abstract Variational Formulation

$$
\left.\begin{array}{rl}
\left\{\begin{array}{l}
\boldsymbol{u} \in \tilde{\boldsymbol{u}}_{D}+\boldsymbol{V}_{e}, p \in \tilde{p}+V_{a} \\
b_{e e}(\boldsymbol{u}, \boldsymbol{v})+b_{a e}(p, \boldsymbol{v}) \quad=l_{e}(\boldsymbol{v}) \quad \forall \boldsymbol{v} \in \boldsymbol{V}_{e} \\
b_{e a}(\boldsymbol{u}, q)+b_{a a}(p, q) \quad=l_{a}(q) \quad \forall q \in V_{a}
\end{array}\right. \text { where } \\
\boldsymbol{V}_{e} & =\left\{\boldsymbol{v} \in \boldsymbol{H}^{1}\left(\Omega_{e}\right): \boldsymbol{v}=\mathbf{0} \text { on } \Gamma_{D e}\right\} \\
V_{a} & =\left\{q \in H^{1}\left(\Omega_{a}\right): q=0 \text { on } \Gamma_{D a}\right\}
\end{array}\right\} \begin{aligned}
b_{e e}(\boldsymbol{u}, \boldsymbol{v}) & =\int_{\Omega_{e}}\left(E_{i j k l} u_{k, l} v_{i, j}-\rho_{s} \omega^{2} u_{i} v_{i}\right) d \boldsymbol{x}+\int_{\Gamma_{C e}} \beta_{i j} u_{i} v_{j} d S \\
b_{a e}(p, \boldsymbol{v}) & =\int_{\Gamma_{I}} p v_{n} d S \\
b_{e a}(\boldsymbol{u}, q) & =-\int_{\Gamma_{I}} u_{n} q d S \\
b_{a a}(p, q) & =\frac{1}{\omega^{2} \rho_{f}} \int_{\Omega_{a}}\left(\nabla p \nabla q-k^{2} p q\right) d \boldsymbol{x} \\
l_{e}(\boldsymbol{v}) & =\int_{\Omega_{e}} f_{i} v_{i} d \boldsymbol{x}+\int_{\Gamma_{N e} \cup \Gamma_{C e}} g_{i} v_{i} d S \\
l_{a}(q) & =\int_{\Omega_{a}} f q d \boldsymbol{x}+\int_{\Gamma_{N a} \cup \Gamma_{C a}} g v d S
\end{aligned}
$$

For scattering problems:

$$
l_{e}(\boldsymbol{v})=-\int_{\Gamma_{I}} p^{i n c} v_{n} d S, \quad l_{a}(q)=-\frac{1}{\omega^{2} \rho_{f}} \int_{\Gamma_{I}} \frac{\partial p^{i n c}}{\partial n} q d S
$$

de Rham Diagram

$$
\left.\begin{array}{cccccccc}
\mathbb{R} & \rightarrow & H^{1} \quad \xrightarrow{\boldsymbol{\nabla}} & \boldsymbol{H}(\text { curl }) & \xrightarrow{\boldsymbol{\nabla} \times} & \boldsymbol{H}(\text { div }) & \xrightarrow{\boldsymbol{\nabla} \circ} & L^{2}
\end{array}\right] \mathbf{0} 0
$$

where the Projection-Based Interpolation Operators $\Pi^{\mathrm{grad}}, \Pi^{\mathrm{cur}}, \Pi^{\text {div }}$, and L^{2}-projection P make the diagram commute.

A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a given coarse grid by examining the solution on a corresponding fine grid obtained by a global $h p$-refinement.

Coarse grid 0

Fine grid 0

A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a given coarse grid by examining the solution on a corresponding fine grid obtained by a global $h p$-refinement.

Coarse grid 1

Fine grid 0

A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a given coarse grid by examining the solution on a corresponding fine grid obtained by a global $h p$-refinement.

Coarse grid 1

$$
p=1
$$

Fine grid 1

A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a given coarse grid by examining the solution on a corresponding fine grid obtained by a global $h p$-refinement.

Coarse grid 2

$$
p=1
$$

Fine grid 1

A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a given coarse grid by examining the solution on a corresponding fine grid obtained by a global $h p$-refinement.

Coarse grid 2

Fine grid 2

$$
p=1
$$

A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a given coarse grid by examining the solution on a corresponding fine grid obtained by a global $h p$-refinement.

Coarse grid 3

$$
p=1
$$

Fine grid 2

A Two-Grid Paradigm

Our approach is to determine an optimal refinement strategy for a given coarse grid by examining the solution on a corresponding fine grid obtained by a global $h p$-refinement.

Coarse grid 3

Global
$h p$-refinement

Fine grid 3

$$
p=1
$$

The energy-driven mesh optimization algorithm

- Find optimal hp-refinements of the current coarse grid $h p$ yielding the next coarse grid $h p^{\text {next }}$ such that ($u=u_{h / 2, p+1}$),

$$
\frac{\left\|u-\Pi_{h p} u\right\|-\left\|u-\Pi_{h p^{n e x t}} u\right\|}{N_{h p^{n e x t}}-N_{h p}} \rightarrow \max
$$

The energy-driven mesh optimization algorithm

- Find optimal hp-refinements of the current coarse grid $h p$ yielding the next coarse grid $h p^{\text {next }}$ such that ($u=u_{h / 2, p+1}$),

$$
\frac{\left\|u-\Pi_{h p} u\right\|-\left\|u-\Pi_{h p^{\text {next }}} u\right\|}{N_{h p^{n e x t}}-N_{h p}} \rightarrow \max
$$

- The algorithm reflects the logic of the projection-based interpolation and consists of three steps:
- Determining optimal refinement of edges
- Determining optimal refinement of faces
- Determining optimal refinement of element interiors

Each of the steps sets up initial conditions for the next step, limiting the number of cases to be considered.

Coupled Multiphysics Problems

- Simultaneous use of $H^{1}, H($ curl $), H($ div $), L^{2}$ - conforming elements, C-preprocessing is used only to differentiate between the real and complex versions of the code.

Coupled Multiphysics Problems

- Simultaneous use of $H^{1}, H($ curl $), H($ div $), L^{2}$ - conforming elements, C-preprocessing is used only to differentiate between the real and complex versions of the code.
- The domain is decomposed into geometrical blocks. Each block may involve only a subset of all variables.

Coupled Multiphysics Problems

- Simultaneous use of H^{1}, H (curl), H (div), L^{2} - conforming elements, C-preprocessing is used only to differentiate between the real and complex versions of the code.
- The domain is decomposed into geometrical blocks. Each block may involve only a subset of all variables.
- Problem dependent code: computation of (unconstrained) element matrices, choice of norm.

Coupled Multiphysics Problems

- Simultaneous use of $H^{1}, H($ curl $), H($ div $), L^{2}$ - conforming elements, C-preprocessing is used only to differentiate between the real and complex versions of the code.
- The domain is decomposed into geometrical blocks. Each block may involve only a subset of all variables.
- Problem dependent code: computation of (unconstrained) element matrices, choice of norm.
- Problem independent code: description of geometry and multiphysics, constrained approximation, graphics, linear solvers, adaptivity, automatic $h-, p$ - and $h p$-adaptivity.

