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Motivation

• Understanding Myosin II:
– A protein that converts biochemical energy

(ATP) to mechanical energy in the muscles
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Myosin Stroke Cycle (Lymn-Taylor)

S. Mesentean et al., JMB, 367, 591–602 (2007)
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Movie of the reaction path for the recovery stroke in myosin
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Simulation background
• Computer simulations use classical

mechanics to simulate protein dynamics
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Δt about 10-15s (a femtosecond) to maintain stability of the
algorithm.
We are interested in time scale of 10-3s (a millisecond). On a PC it
takes months to compute 100 ns (10-7s).
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The problem

• Twelve orders of magnitude difference
between the basic time steps (10-15s) and
the biological time scale (10-3s).

• How to bridge the time scale gap?
– Coarsening space and time while keeping

molecular details
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The concept of Milestones
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•Microscopic molecular motions tend to be diffusive at long time scales

•Following in detail individual trajectories is computationally expensive

•Can we compute the trajectories in pieces? The pieces will give us a
coarse grained model.
••Is it correct?Is it correct? Is it computationally efficient?Is it computationally efficient?

The interfaces between which we compute the pieces of the
trajectories are called MilestonesMilestones
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Is computing trajectory pieces
more efficient than computing

it as a whole?
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Chopping trajectories is
computationally efficient (I)
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Parallelization Pieces of trajectories are trivial to parallelize.
Speed up proportional to the number of processorsSpeed up proportional to the number of processors
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Chopping trajectories is
computationally efficient (II)
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Diffusive processes The time t to diffuse a path of length L is
proportional to L2 . If we divide the path to N segments the time
becomes (L/M)2. There are M Milestones and therefore the time
required is M*(L/M)2=L2/M. Speed up factor of M number of
Milestones.
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Chopping trajectories is computationally
efficient (III)

R
P

Activated process If one of N1 trajectories that starts in R
reaches q1, and one of N2 trajectories that starts at q1 reaches q2
the total number of trajectories that we need to sample q2
starting from R is N1*N2. Using Milestoning we only need N1+N2
Speed up exponential in the number of Milestones - MSpeed up exponential in the number of Milestones - M
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Building a coarse grained model (which is equation-free):
What do we keep from the short chopped trajectories?

R P    
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1. Initialize trajectories at the Milestones from a stationary time-
independent distribution assumed known (e.g. canonical).

2. Compute trajectories between any pair of Milestones (i,j) with
a shared volume, estimate the first passage time distribution
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The local first passage time distribution

Kij !( )"  The probability density that a trajectory that starts

               at Milestone i will terminate exactly after time !  at

               Milestone  j

Kij !( ) #d!
0

$

% = pij "  The probability that a trajectory that was

              initiated at Milestone i will terminate at Milestone j

pij
j

& = 1  --  A normalization condition on pij  (all traj terminate)

This is all the microscopic information needed. No mechanical model
is required.
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              Example for a typical Kij
!( )
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What do we want to compute from the coarse
model?

R P    

P
i!1

t( ) P
i
t( ) P

i+1
t( )

P
i
t( ) microscopically it is the probability of being somewhere

between Milestones i-1 and i+1 at time t such that the last
Milestone passed by the trajectory is Milestone i.

Provides a blurred (coarse) spatial description without
reducing the number of degrees of freedom
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• Define             : prob of being at i at time t

• Define          : prob of transition to i at t

• Define               : conditional probability of a transition from
i to j after incubation time τ.

•Then hopping dynamics are defined by:

             The QK picture
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          With the matrix
determined, compute long time kinetics
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• by direct integration
• by Laplace transform (Shalloway)
• by trajectory statistics (Vanden Eijnden)
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Computing the average first passage time from
Milestone 1 to N
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The limit           is considered
The N state is absorbing 
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To average over τ…
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Compute  <τ>

Define a random matrix T( )
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The last tricks to compute <τ>
For L!" the trajectory is absorbed at Milestone N .

Since the time at N does not count (#NN = 0) $  #̂ L+1
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I % P( )#̂ = T1 (remove eigenvector 1 from the set), 

T1 = 0  (I - P)1 = 0, define, I ,P,T  of size N %1( ) ' N %1( )). 

T  is a random matrix and the average first passage time 

is obtained by avergaing over elements of T . T( )
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Only the first moments of # ij  are required to compute #̂ . 
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Is Milestoning correct (or what
are the assumptions)?
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Assumption

Let Sj  be the hypersurface of Milestone j. 

Let Xj  be a coordinate vector Xj !R
3Nand Xj !Sj . 

" Xj( )  is the distribution at Sj  initiating the short trajectories.

#ij Xi( )  is the distribution obtained from first passage traj on Sj

if initiated at Si  according to " Xi( )

Assumption :  #ij Xi( ) = " Xj( )

Sj

S
i

X
j

X
i

Implies:
• Loss of memory
• committers
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Committers are special surfaces with equal probability of
reaching for the first time the product and the not the

reactants

p1 p2 p3

R

P

Committer surfaces can be calculated exactly (solving
partial differential equations) in 2-3 dimensions for
Brownian dynamics and approximated at higher
dimensions and other types of equations of motion.
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Or a tunnel picture

Relaxation in planes faster than transition between planes.
General but heuristic.
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Toy model: 1D box simulation

• Microscopic dynamics are Brownian
• Simulations run at various temperatures

and for 4, 8, and 16 milestones
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1D reaction curves (5000 trajs/MLST)
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2D simulation
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Memory loss demonstration
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Alanine Dipeptide

JCP, 126, 145104 (2007)
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Reflecting boundary conditions

Absorbing boundary condition

Preparing initial conditions by sampling
q !"
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Torsion velocity auto-correlation indicates when
milestoning assumption is being violated
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Average Incubation Times vs. Velocity Relaxation Time
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Rate Results
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Reaction curves
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• Milestoning divides RC into fragments whose kinetics
can be computed independently then “glued” together

• Provides factor of       improvement in computational
efficiency on serial machines, plus exp bootstrapping

• Uses LFPTDs from microscopic dynamics:
• System distribution          given by simple integral

equations that can be easily solved numerically
• Correct kinetics for solvated alanine dipeptide (x 9

speedup)
• Predicts microsecond Scapharca rate with ~10 ns total

serial time
• Sub-millisecond rate for myosin recovery stroke with

total run time (serial) - speedup : more than 10,000

Summary
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Milestoning papers
• Ron Elber, "A milestoning study of the kinetics of an allosteric

transition: Atomically detailed simulations of deoxy Scapharca
hemoglobin", Biophysical J. ,2007 92: L85-L87

• Anthony M.A. West, Ron Elber, and David Shalloway, "Extending
molecular dynamics timescales with milestoning: Example of
complex kinetics in a solvated peptide", J. Chem. Phys.
126,145104(2007)

•  Anton K. Faradjian and Ron Elber, "Computing time scales from
reaction coordinates by milestoning", J. Chem. Phys. 120:10880-
10889(2004)

• Code (moil + zmoil) available from
https://wiki.ices.utexas.edu/clsb/wiki


