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Introduction

Goal: To obtain improved estimates of the material parameters
that describe sequence-dependent shape of DNA.

Approach: Refine parameters through hydrodynamic diffusion
modeling and experiments.
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Geometric model of DNA
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Y = relative displacement for dimer step XY.

6*Y = relative rotation for dimer step XY.

r = radius of tubular surface.

n={Yle R* 0={60"YYcR* reR.



Geometric model of DNA

Construction

Axial curve v(S,n,0).

Reference points ¢,(S,n,0).

Tubular surface 1'(S,n,0,r).

(assumed rigid)



Diffusion model:
single molecule drift dynamics
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Governing equation

M € R®*®  Stokes mobility matrix
determined by shape of DNA molecule.



Diffusion model:

single molecule mobility matrix v w
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Stokes equations

pAu = Vp in R°\B '{(YX), P(x)
V-g = 0 in R°\B
u = U,o] on OB
u,p — 0 as |x| — oo.

BCs, loads
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Diffusion model:
collective drift dynamics

Setup
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o = DNA concentration in config space.
hext = (f,7)°** = external loads. M = Stokes mobility matrix.

Governing equation

or+9g'V-(gJ)=0 in 02xA, t>0

J-n=0 on (0f2)x A, t>0
J -n  periodic on 2x(0A), t>0
o =0y in 2 x A, t=0.

J=—DVo+ocCh™, D=pbMb', C=0bMec.
(8 = Boltzmann factor. g,b,c = geometric factors.

D,C € R%*% local diffusion, convection
matrices determined by shape of DNA molecule.



Diffusion model:
example experiment

Ultracentrifuge

t=0 t>0

concentration

2 b 2 Te(D) b

Governing eq (dimless).
oy =g V. [gD(g)va - gac(g)hext} in 02 x A

e << 1.

Leading-order approx.
op 10 [ dp 2,.2
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Result.
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Diffusion model:
summary

e Different diffusion experiments can measure different com-
ponents of D,C € R®*®, or equivalently, M € R°*°.

e A typical measurable quantity is the translational diffusion
coefficient

D, = gtr(Ml) where M = [Ml M3] :

My My

e M and D; can be predicted by solving Stokes flow equations
around given molecular geometry.



Application

Measured values of D; on sequences of different length.
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Radius r of (hydrated) DNA using two different geometrical
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Sequence-dependent model.




dimensionless Dt x n

Results for idealized model:
Diffusion coefficient vs length
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e Symbols: experiments (ultracentrifuge, light scattering,
electrophoresis).

e Curves: numerics w/r = 10,11,...,15A (top to bottom).

e Results predict DNA radius of » = 10 — 15A4.




dimensionless Dt x n
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Results for sequence-dependent model:
Diffusion coefficient vs length
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Curves: straight tube w/r = 10,11,...,15A4 (top to bottom).
Crosses: random sequences of prescribed lengths w/r = 10A.

Pluses: random sequences of prescribed lengths w/r = 15A.

Results show systematic offset.

Results now predict DNA radius of » = 12 — 17A.



Closing remarks

Simplest model of sequence-dependent DNA geometry in-
volves many parameters (n € R*°,0 € R*°,r ¢ R).

Estimates for all parameters exist, but there is little consen-
Sus.

Hydrodynamic modeling offers interesting approach to vali-
date/refine parameters.

Successful realization of approach poses many challenges.
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