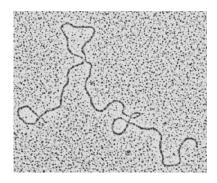
Predicting local geometric properties of DNA from hydrodynamic diffusion data

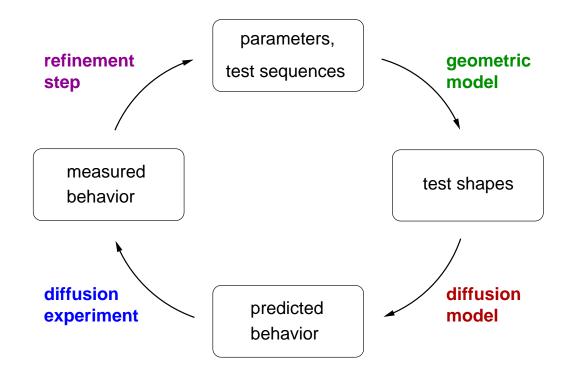
O. Gonzalez, J. Li Department of Mathematics University of Texas, Austin

Introduction

Goal: To obtain improved estimates of the material parameters that describe sequence-dependent shape of DNA.



Approach: Refine parameters through hydrodynamic diffusion modeling and experiments.



Outline

Geometric model

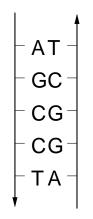
Diffusion model

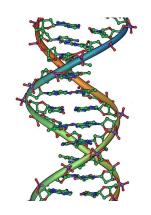
Application

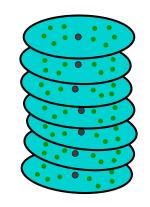
Results

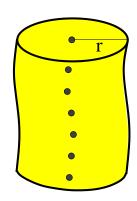
Geometric model of DNA

Definition

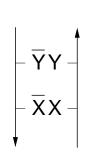


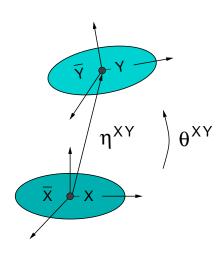






Parameters





		Υ			
		Α	Т	G	С
X	Т	(*,*,*)	(*,*,*)	(*,*,*)	(*,*,*)
	Α	(*,*,*)	(*,*,*)	(*,*,*)	(*,*,*)
	С	(*,*,*)	(*,*,*)	(*,*,*)	(*,*,*)
	G	(*,*,*) (*,*,*) (*,*,*) (*,*,*)	(*,*,*)	(*,*,*)	(*,*,*)

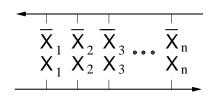
 η^{XY} = relative displacement for dimer step XY. θ^{XY} = relative rotation for dimer step XY. r = radius of tubular surface.

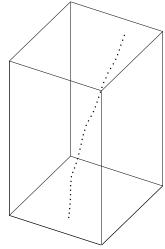
$$\eta = \{\eta^{XY}\} \in \mathbb{R}^{26}, \quad \theta = \{\theta^{XY}\} \in \mathbb{R}^{26}, \quad r \in \mathbb{R}.$$

Geometric model of DNA

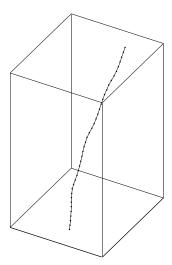
Construction

$$S = \mathsf{X}_1 \mathsf{X}_2 \cdots \mathsf{X}_n$$

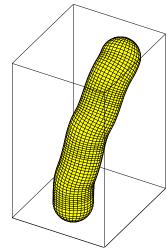




Reference points $q_a(S, \eta, \theta)$.

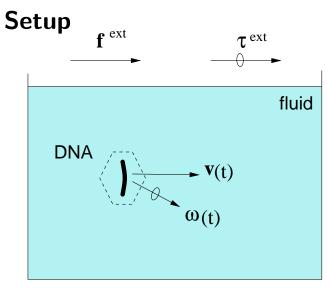


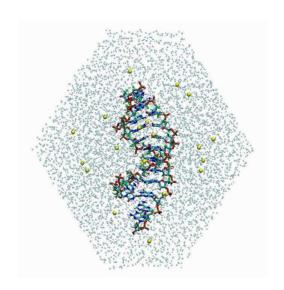
Axial curve $\gamma(S, \eta, \theta)$.



Tubular surface $\Gamma(S, \eta, \theta, r)$. (assumed rigid)

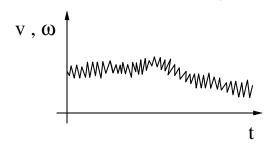
Diffusion model: single molecule drift dynamics

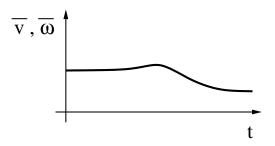




Drift velocities

$$\overline{v}(t), \overline{\omega}(t) = \frac{1}{T} \int_t^{t+T} v(s), \omega(s) \; ds. \qquad T = \text{window size}.$$





Governing equation

$$\left\lceil \frac{\overline{v}}{\omega} \right\rceil = M \left\lceil \frac{f}{\tau} \right\rceil^{\text{ext}}.$$

 $M \in I\!\!R^{6 \times 6}$ Stokes mobility matrix determined by shape of DNA molecule.

Diffusion model:

$$\begin{array}{rcl} \mu \Delta \overline{u} & = & \nabla \overline{p} & & \text{in } \mathbf{R}^3 \backslash B \\ \nabla \cdot \overline{u} & = & 0 & & \text{in } \mathbf{R}^3 \backslash B \\ \overline{u} & = & \overline{U}[\overline{v}, \overline{\omega}] & & \text{on } \partial B \\ \overline{u}, \overline{p} & \to & 0 & & \text{as } |x| \to \end{array}$$

in
$$R^3 \backslash B$$

in $R^3 \backslash B$
on ∂B
as $|x| \to \infty$.

С

BCs, loads

$$\overline{U}[\overline{v}, \overline{\omega}] = \overline{v} + \overline{\omega} \times (x - c)$$

$$\overline{\sigma}_{ij}[\overline{u}, \overline{p}] = -\overline{p}\delta_{ij} + \mu \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i}\right)$$

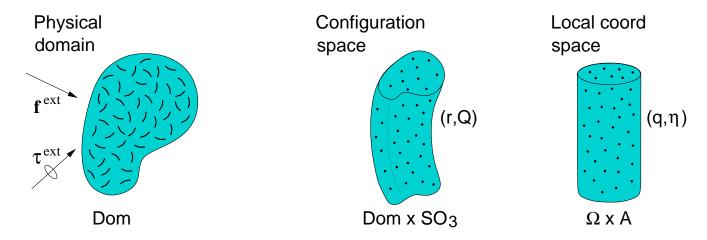
$$\overline{f}[\overline{\sigma}] = \int_{\partial B} \overline{\sigma} n \, dA, \qquad \overline{\tau}[\overline{\sigma}] = \int_{\partial B} (x - c) \times \overline{\sigma} n \, dA.$$

Hydrodynamic matrices

$$\begin{bmatrix} \overline{f} \\ \overline{\tau} \end{bmatrix} = - \underbrace{\begin{bmatrix} L_1 & L_3 \\ L_2 & L_4 \end{bmatrix}}_{L} \begin{bmatrix} \overline{v} \\ \overline{\omega} \end{bmatrix}, \qquad \begin{bmatrix} \overline{v} \\ \overline{\omega} \end{bmatrix} = - \underbrace{\begin{bmatrix} M_1 & M_3 \\ M_2 & M_4 \end{bmatrix}}_{M} \begin{bmatrix} \overline{f} \\ \overline{\tau} \end{bmatrix}.$$

<u>Diffusion model:</u> <u>collective drift dynamics</u>

Setup



 $\sigma = {\sf DNA} \ \ {\sf concentration} \ \ {\sf in} \ \ {\sf config} \ \ {\sf space}.$ $h^{\rm ext} = (f,\tau)^{\rm ext} = \ \ {\sf external} \ \ {\sf loads}. \quad M = \ \ {\sf Stokes} \ \ {\sf mobility} \ \ {\sf matrix}.$

Governing equation

$$\begin{array}{lll} \sigma_t + g^{-1} \nabla \cdot (gJ) = 0 & \text{ in } & \Omega \times A, & t > 0 \\ J \cdot n = 0 & \text{ on } & (\partial \Omega) \times A, & t \geq 0 \\ J \cdot n & \text{periodic} & \text{ on } & \Omega \times (\partial A), & t \geq 0 \\ \sigma = \sigma_0 & \text{ in } & \Omega \times A, & t = 0. \end{array}$$

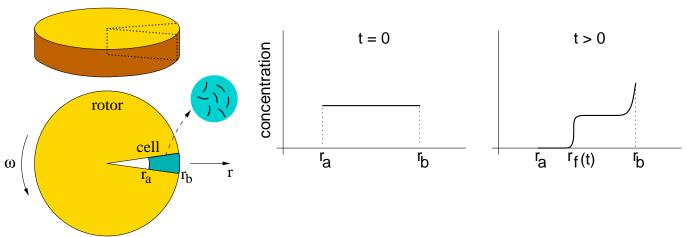
$$J = -D\nabla\sigma + \sigma Ch^{\text{ext}}, \quad D = \beta bMb^T, \quad C = bMc.$$

$$\beta = {\sf Boltzmann} \ {\sf factor}. \qquad g,b,c = {\sf geometric} \ {\sf factors}.$$

 $D,C\in {I\!\!R}^{6 imes 6}$ local diffusion, convection matrices determined by shape of DNA molecule.

<u>Diffusion model:</u> <u>example experiment</u>

Ultracentrifuge



Governing eq (dimless).

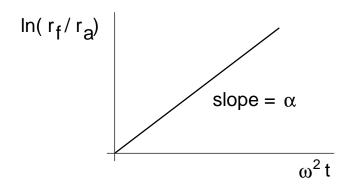
$$\sigma_t = g^{-1} \nabla \cdot \left[gD(\frac{1}{\varepsilon}) \nabla \sigma - g\sigma C(\frac{1}{\varepsilon}) h^{\text{ext}} \right] \quad \text{in} \quad \Omega \times A.$$

$$\varepsilon << 1.$$

Leading-order approx.

$$\begin{split} \frac{\partial \rho}{\partial t} &= \frac{1}{r} \frac{\partial}{\partial r} \Big[\kappa \, r \frac{\partial \rho}{\partial r} - \alpha \, \omega^2 r^2 \rho \Big] \quad \text{in} \quad [r_a, r_b]. \\ \kappa &= f(D), \qquad \alpha = \widehat{f}(C). \end{split}$$

Result.



<u>Diffusion model:</u> <u>summary</u>

- Different diffusion experiments can measure different components of $D, C \in \mathbb{R}^{6 \times 6}$, or equivalently, $M \in \mathbb{R}^{6 \times 6}$.
- A typical measurable quantity is the translational diffusion coefficient

$$D_t = rac{eta}{3} \operatorname{tr}(M_1)$$
 where $M = \begin{bmatrix} M_1 & M_3 \\ M_2 & M_4 \end{bmatrix}$.

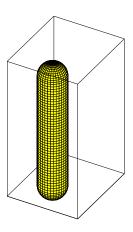
• M and D_t can be predicted by solving Stokes flow equations around given molecular geometry.

Application

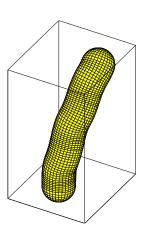
Given: Measured values of D_t on sequences of different length.

Find: Radius r of (hydrated) DNA using two different geometrical models:

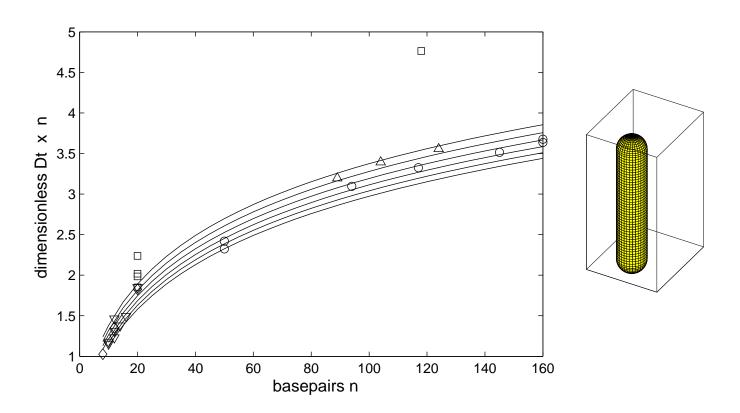
Idealized (straight) model.



Sequence-dependent model.

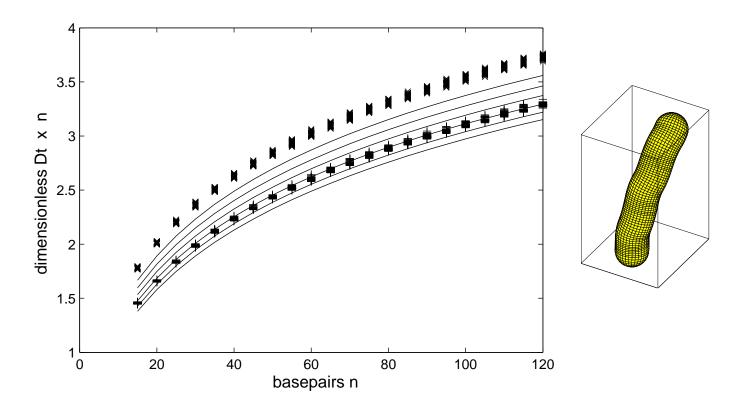


Results for idealized model: Diffusion coefficient vs length



- Symbols: experiments (ultracentrifuge, light scattering, electrophoresis).
- Curves: numerics $\mathbf{w}/r = 10, 11, \dots, 15 \mathring{A}$ (top to bottom).
- Results predict DNA radius of $r = 10 15 \mathring{A}$.

Results for sequence-dependent model: <u>Diffusion coefficient vs length</u>



- Curves: straight tube ${\sf w}/r=10,11,\ldots,15\mathring{A}$ (top to bottom).
- ullet Crosses: random sequences of prescribed lengths ${
 m w}/r=10\mbox{\normalfont\AA}.$
- Pluses: random sequences of prescribed lengths $w/r = 15 \mathring{A}$.
- Results show systematic offset.
- Results now predict DNA radius of $r = 12 17\mathring{A}$.

Closing remarks

- Simplest model of sequence-dependent DNA geometry involves many parameters $(\eta \in I\!\!R^{26}, \theta \in I\!\!R^{26}, r \in I\!\!R)$.
- Estimates for all parameters exist, but there is little consensus.
- Hydrodynamic modeling offers interesting approach to validate/refine parameters.
- Successful realization of approach poses many challenges.

Support NSF