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Outline

• The first approach: hp-adaptive Quasicontinuum
Method (QCM), its success and its limitations

• Step and Flash Imprint Lithography, the base
model and the goal of the modeling process

• Our method: Combining adaptivity with QCM and
Numerical Homogenization
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The Base Model
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Step and Flash Imprint Lithography (SFIL)

Step and Flash Imprint Lithography: A New Approach to High-resolution 

Patterning – Willson Research Group, The University of Texas at Austin,

in Proceedings of SPIE/Emerging Lithographic Technologies III – 1999.

An electron microscope
image of patterns in SFIL

A magnified chip

A schematic of the SFIL process
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The SFIL Process

Dispense

Expose

Imprint

UV Cure

Separate

Breakthrough

Etch

Transfer Etch

Transfer Layer

Template

Etch Barrier

Release Layer

44% Gelest SIA-0210

37% t-Butyl Acrylate

15% Ethylene Glycol
Diacrylate

1-4% Darocur 1173

The etch barrier constituents

Polymerized
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SFIL – The Goal and the Challenges

Analyze the mechanical behavior of the polymerized etch
barrier solution forming the 3D relief patterns in SFIL

Slump due to volume change

Surface roughness

Changes in side angle

Volume change

Achieving this goal using just the base model is challenging due to

• Large number of DOFs, on the order of millions
• Geometric and material nonlinearity
• Fast variation in material properties
• Multiple scales − of the goal and that of the material
• Nonconvexity
• Stochasticity
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The Base Model – Polymerization

Initiation

Termination by combination

Propagation

I hν
→ R • + R •

R • + M → P •

P • + M → P •

P • + P • → P

J. E. Meiring, Mesoscale Simulation of the Photoresist Process and Hydrogel Biosensor Array Platform Indexed

by Shape, PhD thesis, The University of Texas at Austin, 2005.

(a) (b) (c)

R

VoidInitiator

Cross-LinkerMonomer 1 or 2

(a) An initiator can change to a radical
(b) A bond can form between two monomers or cross-linkers
(c) A molecule can move to an empty lattice site
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The Base Model – Lattice Topology

A small 2D lattice

A few “cells” in 2D

The output of the Monte Carlo polymerization model is

• A topological distribution of bonds and molecules
but unknown geometry

• Monomers form the vertices of the cubical lattice

• Monomers interact via central pair potentials

• Bonds along 18 directions to nearest neighbors

• Covalent bonds forming the polymer backbone

• Weaker Lennard-Jones bonds where covalent
bonds are absent
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P. T. Bauman, Adaptive Multiscale Modeling of Polymeric Materials Using Goal-Oriented Error Estimation, Arlequin

Coupling, and Goals Algorithms, PhD thesis, The University of Texas at Austin, 2008.

Equilibrium

21× 101× 21 lattice

The Base Model – Molecular Statics

Let x := {{{xijk}N1−1
i=0 }N2−1

j=0 }N3−1
k=0 be the set of all

molecular positions (DOFs) for a cube and

J(x) :=
1

2

∑

xijk ∈x

∑

xlmn∈x

xlmn
�xijk

E
(∣∣∣∣xlmn − xijk

∣∣∣∣)

−
∑

xijk∈x

3∑

p=1
(i,j,k,p)

f ijkp xijkp

E is a bond potential function and f denotes the
set of forces. Equilibrium configuration is found by
minimizing J as a function of x.
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The Base Model – Trust-Region Iterations
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The Research Goal

Devise an efficient numerical method for solving
large-scale nonlinear lattice-based problems

with fine-scale material features

(by combining homogenization and mesh-adaptivity)
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hp-adaptivity and QCM
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Generalizing Quasicontinuum Method to hp meshes

1. R. E. Miller and E. B. Tadmor, The Quasicontinuum Method: Overview, applications, and current directions, 

Journal of Computer-Aided Design, v. 9, 2002.

2. C. Woźniak and M. Kleiber, Nonlinear Mechanics of Structures, Kluwer Academic Publishers, 1991

hj = 2

Element j

hj+1 = 4

Element j + 1

pj = 1
pj+1 = 2

Element j + 1Element j

hj+1 = 2hj = 3

3. C. Jhurani and L. Demkowicz, Dimensional reduction for a lattice-like mass-spring polymer model using     

hp-adaptivity, Computer Methods in Material Science, v. 6, 2006.

The Quasicontinuum Method1 is a
dimensional reduction technique 2 that
constrains element-interior DOFs by
linearly interpolating the corner DOFs.

We have generalized the scheme to
use higher order polynomial
interpolation to constrain interior
(edge/face/volume) DOFs3.
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Interpolation – Effective Stiffness and Load

Effective stiffness
matrix

Effective
load

Consider an abstract finite-dimensional minimization problem.

min
v∈RN

J(v) where J(v) :=
1

2
vTKv − vT f

Let A : RM → RN be a global interpolation operator. We minimize in range(A).

min
v̂∈RM

J(Av̂)

This can be written as

min
v̂∈RM

1

2
v̂T (ATKA) v̂ − v̂T (AT f).
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Goal-driven hp-adaptivity Results in 1D

(a)

8

7

6

5

4

3

2

1

p

(b) (c)

(b) Error in goal

(c) Solution

(a) Mesh with 2.5% error

1024 harmonic springs in 1D
with variable stiffnesses,
goal = u341 − u682
(relative displacement).



16/53

A 2D Linear Test Problem and Adaptivity

• 64 cells on each side
• pre-strain l [1− sin (y/64)] /2 in each spring.
• Spring constants depend on y. k = 1 + sin (y/64) .
• A force 1̂i on the top-right corner.

Lattice topology Exact solution
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8

7

6

5

4

3

2

1

p

hp mesh Current solution

hp-adaptivity – Iteration 1

Polynomial
degree
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8

7

6

5

4

3

2

1

p

hp mesh Current solution

hp-adaptivity – Iteration 2

Polynomial
degree
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8

7

6

5

4

3

2

1

p

hp mesh Current solution

hp-adaptivity – Iteration 3

Polynomial
degree
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8
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p

hp mesh Current solution

hp-adaptivity – Iteration 4

Polynomial
degree
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p

hp mesh Current solution

hp-adaptivity – Iteration 5

Polynomial
degree
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hp mesh Current solution

hp-adaptivity – Iteration 6

Polynomial
degree
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8

7

6

5

4

3

2

1

p

hp mesh Current solution
Error estimate = 1.5%

hp-adaptivity – Iteration 7

Polynomial
degree
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hp-adaptivity – Limitations

8

7

6

5

4

3

2

1

p

Rough material data leads to refinements everywhere
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Numerical Homogenization
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Homogenization – A Classical Example

Assume periodic material properties.

a(x) := 1 + α sin(2πnx)

where |α| < 1 and n ∈ N.

u(1) = F

∫ 1

0

1

1 + α sin(2πns)
ds =

F√
1− α2

The effective “a”, defined here as F/u(1), is
√

1− α2.

Consider the linear second order ODE

(a(x)u′(x))
′

= 0, x ∈ (0, 1),

with boundary conditions u(0) = 0 and a(1)u′(1) = F.

F
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Homogenization – Interpolate & Minimize?

Energy functional for the previous ODE is

J(u) :=
1

2

∫ 1

0

a(x)u′(x)2dx− Fu(1).

The exact solution can be found by solving

min
u

J(u) such that u(0) = 0.

We try an approximate solution of the form uh(x) := cx.

min
c

1

2

∫ 1

0

a(x)c2dx− Fc.

c = F
∫ 1
0
a(x)dx = F and effective “a” is F/u(1) = 1.

=⇒ The relative error is unbounded as α→ 1.
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Homogenization – A Discrete 1D Problem

k1 ki kN

x1 xi−1 xi xi+1 xN

ki+1

x0

F

For N springs in 1D connected in series and pulled on
end-points, matching the end-point displacements leads
to averaging of the inverse stiffnesses.

1

keff
=

N∑

i=1

1

ki

Instead, if we linearly interpolate and minimize energy,
we get the wrong effective stiffness.

keff =
1

N2

N∑

i=1

ki
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Homogenization – Effects of Interpolation

Problems with minimizing in a subspace (via simple interpolation)

• Not suitable for fast variations in material properties

• Effects of fine-scale ignored

• Interpolation averages the stiffness and not the solution

• It gives meaningful results even if a spring constant tends to zero
(or if ‘a(x)’ is zero in a region for the continuous problems)
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Homogenization – A Literature Review

Classical Homogenization − Effective equations in periodic/random media

Numerical Homogenization − Upscaling − Subgrid modeling − Multiscale FEM

• Variational multiscale method and projections − Hughes et al.

• Wavelets to compute effective homogenized operators − Dorobantu,
Engquist et al.

• Numerical upscaling for two-phase flow in porous media − Arbogast

• Solve local problems to get operator-dependent basis functions − Hou et
al.

• Operator-dependent interpolation for multigrid methods − Knapek

• Estimate effective stiffness matrix at quadrature points (heterogeneous
multiscale methods) − E and Engquist
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Homogenization – Change of Focus

We change our focus to get locally best effective material properties

Local coarse-scale
problems

Discretize

Homogenize

Our approach

Solution

Fine-scale problem
A global coarse-scale
problem

Homogenize

Discretize

Classical homogenization approach
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Homogenization – A Schematic

Homogenization for
a specific coarse mesh

Define a coarse
mesh

Separate

Fine-scale
Element

Homogenized
Element

Assembled
homogenized

Elements

????
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Homogenization – The Linearized Problem

• K̂ ∈ RM×M , symmetric.
• K̂ has a non-trivial null-space.
• û, f̂ ∈ RM .
• f̂ is self-equilibrated.
• f̂ is sum of internal load and

unknown interaction with the
rest of the coarse mesh.

Local coarse scale equation:

K̂û = f̂ . What should
K̂ be?

• K ∈ RN×N , symmetric.
• K has a non-trivial null-space.
• u, f ∈ RN .
• f is self-equilibrated.
• f is sum of internal load and

unknown interaction with the
rest of the lattice.

Local fine scale equation:

Ku = f.

Fine-scale
Element
N = 18

Homogenized
Element
M = 8

Let A ∈ RN×M be the bilinear interpolation operator.
Approximate fine scale solution = Aû.
Restriction of fine scale load to the coarse scale = AT f =: f̂ .
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“†” denotes the Moore-Penrose pseudoinverse.

Homogenization – A Definition of the Error

Fine-scale
Element

Homogenized
Element

K u = f

u = K†f + u0.

K̂û = AT f

û = K̂†AT f + û0.

Thus, up to a constant, the error in the local solution for a local load f is

e := u−Aû

= K†f −A K̂†AT f

=
(
K† −AK̂†AT

)
f.

We want to choose K̂ such that e is small.
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A Brief Digression – Pseudoinverses

• Also called generalized inverses
• Studied by Fredholm, Hilbert, and many others for integral and differential

operators.
• Introduced by E. H. Moore for matrices in 1920 using projections.

Trivia: E. H. Moore was R. L. Moore’s advisor (no relation).
• Rediscovered by Roger Penrose in 1955 using an “axiomatic” approach.

Hence we have many ways of defining/introducing pseudoinverses.

• Via least squares type minimization problems (more intuitive)
• Via an axiomatic approach (Penrose equations)

Moore-Penrose pseudoinverse

• exist for singular and rectangular matrices, and
• reduce to regular inverses for invertible matrices.
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Moore-Penrose Pseudoinverse – Definitions

We can introduce Moore-Penrose pseudoinverse by least-squares problems. Let
Y ∈ RM×N and X ∈ RN×M . Then

Y † = argmin
∣∣∣
∣∣∣ argmin

X
||Y X − IM ||2F

∣∣∣
∣∣∣
F

There are simpler formulas for full rank rectangular matrices.

Books on Linear Algebra typically define Y † using the Singular Value Decom-
position (SVD) of Y . Let UΣV T be the SVD of Y . Then

Y † = V Σ†UT

where
Σ† = diag(1/σ1, 1/σ2, . . . , 1/σr, 0, . . . , 0)

and r is the rank of Y .

Later we will see two different methods for computing Moore-Penrose pseudoin-
verse that exploit sparsity.
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Homogenization – Error as a Number

Error in local solution

for a local load f

Difference of local fine-scale and

interpolated “compliance” matrices

Here ||X||2F,B := trace(XTBX). This is a B−weighted Frobenius norm.

For ǫ > 0, f �= 0, and K̂† symmetric, B ∈ RN×N symmetric positive definite,
let the error E to be minimized be defined as

E(K̂†) :=
1

2

∣∣∣
∣∣∣(K† −AK̂†AT )f

∣∣∣
∣∣∣
2

B
+

ǫ

2

∣∣∣
∣∣∣K† −AK̂†AT

∣∣∣
∣∣∣
2

F,B
||f ||22 .

Note that e is a highly nonlinear function of K̂. E , however, is a quadratic
function of entries of K̂†.

e(K̂) =
(
K† −AK̂†AT

)
f

The problem of finding a unique K̂ by minimizing e(K̂), in any norm, is ill-posed

simply because K̂ enters the equation by its action on a single vector AT f . So
we try “regularization”.
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Homogenization – A QP Formulation

We denote K̂† by X now. Given K ∈ RN×N , K symmetric, A ∈ RN×M ,
B ∈ SN++, f ∈ RN − {0}, and ǫ > 0, solve the linear equality constrained
convex quadratic problem

min
X=XT

E(X).

Eliminating Λ and using X = XT shows that X solves the Lyapunov equation

CX + XCT = D.

Using a Lagrange multiplier matrix Λ to impose the symmetry we get

UXV −W = ΛT − Λ, where

U := ATBA

V := AT (ffT + ǫ ||f ||22 I)A

W := ATBK†(ffT + ǫ ||f ||22 I)A

C := V −1U

D := V −1(W + WT )V −1.

∈ RM×M
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Homogenization – Other QP Formulations

The penalty formulation above imposes (one of the) constraints
approximately. Imposing that constraint exactly, we get

min ES(X) :=
1

2
||E||2F,B such that X = XT and ATBEf = 0.

This gets rid of the parameter ǫ, but leads to a saddle-point problem
with Kronecker product structure and more unknowns (the Lagrange
multipliers). We will work with the regularization/penalty formulation.

Let E := (K† −AXAT ). We had defined the regularization form of error as

E(X) :=
1

2
||Ef ||2B +

ǫ

2
||E||2F,B ||f ||

2
2 .

Using this will give the same X as the penalty formulation

min
X=XT

EP (X) :=
E(X)

ǫ
where

E(X)

ǫ
=

1

2ǫ
||Ef ||2B +

1

2
||E||2F,B ||f ||

2
2 .
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Homogenization – A Special Case

If f ≡ 0, or it is unknown, or we want to treat all loads equally, the
definition of the error E should be

E(X) :=
1

2

∣∣∣∣K† −AXAT
∣∣∣∣2
F,B

.

For B = Identity, it can be proved that E is minimum at

X = A†K†(AT )†.

Thus
K̂ = X† =

(
A†K†(AT )†

)†
.

Compare this with the K̂ that is obtained without resolving the
fine scales. There

K̂ = ATKA.
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Homogenization – A Sanity Check

k1 k2 k3

f1 f2 f3 −f1 − f2 − f3

k̂

f̂1

Homogenize

−f̂1

?

Classical effective spring constant is

k =
k1k2k3

k1k2 + k1k3 + k2k3
.

The discrepancy exists because the displacements of the inner points are
ignored in the classical case. It is possible to match the classical value by
choosing a B that uses only the end-points.

If we load only on the end-points, use B = I, and ǫ→ 0, we get

k̂ =
10 k1k2k3

9 k1k2 + 12 k1k3 + 9 k2k3
.
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Homogenization – Computational Aspects

CX + XCT = D

(
A†K†(AT )†

)†• Computation of Moore-Penrose pseudoinverse
— Of a large sparse fine-scale element stiffness matrices K

∗ SVD very expensive
∗ Use Tikhonov regularization and a sparse direct solver
for symmetric matrices (we use CHOLMOD)

∗ Or use the knowledge of the null-space of K to
transform the problem to a linear non-singular
“practically sparse” system of equations

(
A†K†(AT )†

)†— For recovering the dense element stiffness matrix
after solving the Lyapunov Equation for X
∗ Cleanup spurious non-zero singular values and use SVD

• Solution of Lyapunov Equation on the coarse scale
— Bartels-Stewart algorithm using real Schur

decomposition of C

— Implemented in SLICOT − a LAPACK-like

systems and control library

(
A†K†(AT )†

)†— Of a dense full-rank rectangular interpolation matrix A
∗ Use QR decomposition on normal equations
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Moore-Penrose Pseudoinverse – No SVD – 1

For a given vector f and a sparse Y that is known to be not full-rank, we want
to compute Y †f without computing the SVD of Y .

If we regularize a least squares problem, it can be proved that

Y † = lim
δ→0

(Y TY + δI)−1Y T = lim
δ→0

Y T (Y Y T + δI)−1.

The limit definitions work well if even if δ is finite but small enough, like
10−7 ||Y ||2. We can then compute x = Y †f by solving

(Y TY + δI)x = Y T f

for x using a sparse direct solver. The relative error in
∣∣∣∣Y †f

∣∣∣∣
2

is of order 10−7.
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Moore-Penrose Pseudoinverse – No SVD – 2

When a matrix comes from physical problems, we typically know its null-space
a priori. For example, rigid body motion in elasticity.

This knowledge can be used to avoid the SVD and reduce computation of pseu-
doinverse to solving a linear system of algebraic equations (by direct or iterative
methods).

Let Y ∈ RN×N be a symmetric matrix with a rank deficiency p (0 < p ≤ n).
Let R ∈ Rn×p be an orthonormal basis for the null-space of Y . We have

Y † = (I −RRT )(Y + RRT )−1 = (Y + RRT )−1(I −RRT ).

Thus, computing x = Y †f means solving

(Y + RRT )x = (I −RRT )f

for x. If Y is sparse, this can be done by iterative methods for sparse symmetric
matrices without forming the dense Y + RRT .
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Goal-oriented hp-adaptivity

Then, error in goal G(uEX)− G(uhp) = B(uEX − uhp, wEX − whp).

Find uEX ∈ uD + V : B(uEX , v) = L(v) ∀v ∈ V
Find uhp ∈ uD + V hp : B(uhp, vhp) = L(vhp) ∀vhp ∈ V hp

Find wEX ∈ V : B(e, wEX) = G(e) ∀e ∈ V
Find whp ∈ V hp : B(ehp, whp) = G(ehp) ∀ehp ∈ V hp

Exact primal
Approx. primal

Exact adjoint
Approx. adjoint

1. L. Demkowicz, Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume I: One and Two 

Dimensional Elliptic and Maxwell Problems, 2006.

2. L. Demkowicz et al., Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three 

Dimensional Elliptic and Maxwell Problems with Applications, 2007.

For mesh adaptivity, we use two grids − a coarse (c) and a fine (f) − with a
projection-based interpolation operator Πc from fine to coarse1,2. The element-
wise estimates of error in energy and goal are

∣∣∣∣uf −Πcuf
∣∣∣∣2
B

=
∑

elements j

∣∣∣∣uf − Πcuf
∣∣∣∣2
Bj

and

∣∣G(uf )− G(uc)
∣∣ �

∑

elements j

∣∣∣∣uf − Πcuf
∣∣∣∣
Bj

∣∣∣∣wf −Πcwf
∣∣∣∣
Bj

.
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Homogenization – Goal-oriented Adaptivity

For the load L and goal G defined on the fine scale, define the restricted load
and goal as

L̂(v̂) := L(Av̂) ∀ v̂ ∈ V̂

Ĝ(v̂) := G(Av̂) ∀ v̂ ∈ V̂ .

Find u ∈ uD + V : B(u, v) = L(v) ∀v ∈ V
Find w ∈ V : B(e, w) = G(e) ∀e ∈ V

Find û ∈ uD + V̂ : B̂(û, v̂) = L̂(v̂) ∀v̂ ∈ V̂

Find ŵ ∈ V̂ : B̂(ê, ŵ) = Ĝ(ê) ∀ê ∈ V̂

Fine primal
Fine adjoint

Homogenized primal
Homogenized adjoint

It can be shown that B(u,Aŵ) = B̂(û, ŵ). Using this, the error in the goal

G(u)− Ĝ(û), is

B(u−Aû,w −Aŵ)︸ ︷︷ ︸
Standard characterization

+ B̂(û, ŵ)− B(Aû,Aŵ)︸ ︷︷ ︸
Incompatible bilinear forms

.
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Mesh-adaptive Homogenization – Overview

Begin with a (fine) lattice,
B.C., initial solution guess

Create any compatible coarse mesh
partitions and restrict initial guess

Compute fine lattice gradient and Hessian
on each element for current solution guess

Restrict the gradient to coarse mesh and
homogenize each partition independently

Assemble coarse mesh element
gradients and Hessians

Compute new solution guess on coarse mesh

Estimate error on the current coarse mesh

Estimate acceptable?

Subdivide the current 
coarse mesh elements 
with large error to 
create a finer mesh

Reached minimum?

Replace the current coarse 
mesh and prolongate the 
current solution to the new 

coarse mesh

Replace the current solution 
guess and prolongate to the 

fine lattice

Done

Yes

No

No

Yes

Nonlinearity Adaptivity
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Homogenization – Numerical Results

bond stiffness 0.4, length 1.2
bond stiffness 1.0, length 1.0

20×20 lattice with fixed
spacing on bottom (1.3)

Equilibrium

The fine-scale solution
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Homogenization – Error at Various Levels

Original, 882 DOFs 50 DOFs8 DOFs 18 DOFs

Error in
L2 norm

1

0.93
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Homogenization – Recent 3D Results
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Software Packages Used

• BLAS, LAPACK, PETSc, TAO, and CHOLMOD

• hp[123]d

• SLICOT (Lyapunov equation solver)

• VTK (visualization), and

• Boost and MPICH.
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Ongoing Work

• Integrate homogenization and mesh-adaptivity including error estimation

• Solve problems on representative SFIL lattices

• Use multiple realizations to compute statistical quantities

• Experiment with different optimization algorithms

• Compare the run-times of solving the base-model and the homogenized
model

• Study technical aspects of homogenization
— the choice of the norm for local homogenization

— benefits of homogenizing for a given load when compared to homogenizing

for arbitrary loads

— program a suitable iterative solver to compute the Moore-Penrose pseu-

doinverse when the null-space is known

— compare the run-times of iterative solver and sparse direct solver for com-

puting the pseudoinverse.
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Thank You!


