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Important note (disclaimer)

The purpose of theses lectures is to introduce students to some of the inter-
esting phenomena observed with stochastic processes which are evolving on
two widely separated time scales. The study, and even definition of such pro-
cesses involve a wide range of necessary concepts and tools from the theory
of probability and stochastic processes. With the short time at our disposal,
these notes are aimed to highlight a line of reasoning so that a student with
some basic knowledge of elementary probability can get a feeling, and perhaps
some intuition, on the complicated subject of multiscale stochastic processes.
As such, these notes are not to be regarded as a summary or introductory
probability course. I apologize for any inaccuracies. Some may be unin-
tentional. However, some are, in order to facilitate a smoother presentation.
None, I hope, are too gross. I will do my best to point out whenever I allowed
myself some leniencies which cannot be justified, at least formally.

Finally, these notes should be regarded as a list of key definitions, theo-
rems and practice problems and are supplementary to the class. They were
not written as a self-study guide or review.
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Lecture 1 - Basic definitions

Definition: The power set of a given set A, denoted as P(A), is the set of
all subsets of A, i.e., P(A) = {B|B ⊂ A}.
Definition: A probability space is a triplet (Ω,F , P ), where Ω is a set of
“outcomes”, F ⊂ P(Ω) is a set if events, and P : F → [0, 1] is a function
that assigns probabilities to events. P satisfies:

1. For all A ∈ F , P (A) ≥ 0

2. If Ai ∈ F is a finite or countable sequence of disjoint sets, then P (∪iAi)
=
∑

i P (Ai).

3. P (φ) = 0 and P (Ω) = 1.

where φ is the empty set.
Note: to be precise, F needs to be a σ-field (φ ∈ F , if A ∈ F then

Ac ∈ F , if Ai ∈ F for i ≥ 1 then ∪i≥1Ai ∈ F). This requirement will not be
discussed any further.
Examples:

• Finite space. Ω = {1, 2, 3}, F = P(Ω), some P .

• Discrete space. Ω = N (natural numbers), F = P(N ), P (A) =
∑

k∈A 6/(π2k2).

• Continuous space. Ω = R (real numbers), F the Borel σ-field (includes
countable unions of all open and close segments) and P is defined using

P ([a, b]) = (2π)−1/2
∫ b

a
e−x2/2dx. Normal distribution.

Definition: We say that an event happens almost surely if it has probability
one.
Ad hoc definition: For this class, we will think of a random variable (ab-
breviated RV) as a probability on R, i.e., Ω = R. We will not discuss what
F is (the Borel σ-field).
Definition: We say that a continuous RV has probability density p(x) if

P ([a, b]) =
∫ b

a
p(x)dx for all a < b ∈ R

Example: Gaussian distribution.
X ∼ G(m, σ2) has density p(x) = (2πσ)−1/2e−(x−m)2/2σ2

.
Notation: The average, or mean of a RV X is denoted EX. For a continuous
RV with density p(x), EX =

∫

R xp(x)dx.
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Definition: The Variance of a RV is defined as VarX = E[X2]− (EX)2. For
a continuous RV with density p(x), VarX =

∫

R x2p(x)dx − (EX)2.
Ad hoc definition: Two random variables X and Y are called indepen-
dent if the outcome of X does not depend on the outcome of Y , and vice-
versa. In particular, for all (continuous) function f and g, E[f(X)g(Y )] =
E[f(X)]E[g(Y )].
Homework: Show that a linear combination of independent Gaussian RVs
is a Gaussian RV (use characteristic functions). Calculate the mean and
variance of the linear combination.
Definition: Multivariate RVs are probabilities on Rn.
Example: multivariate Gaussian distribution.
X ∼ G(m, Σ), m ∈ Rn, Σ a symmetric, positive definite n × n matrix,
has density p(x) = ((2π)n| detΣ|)−1/2e−(x−m)T Σ−1(x−m)/2). Σ is called the
covariance matrix.
Definition: The joint probability of RVs X1, . . . , Xn is the probability dis-
tribution of the random vector (X1, . . . , Xn).
Definition: The covariance matrix of a multivariate RV X = (X1, . . . , Xn)T

is CovX = EXXT − EXEXT .
Homework: Calculate the mean and covariance of a Gaussian RV G(m, Σ).
Homework: Let U and V be IID (independent, identically distributed)
RVs with uniform distribution on (0, 1). Let θ = 2πU , R =

√−2 log V ,
X = R cos θ and Y = R sin θ. Write a program that evaluates moments of
the joint distribution of X and Y to order 6 (E[X iY j], i+ j ≤ 4). Make sure
that the relative error of your calculations is smaller than 1%. Show that
your calculations confirm that X and Y are actually IID normal. Can you
prove that?
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Lecture 2 - Stochastic processes and Brownian motion

Definition: Let (Ω,F , P ) denote a probability space. A stochastic process
on Ω in [0, T ] is a collection of RVs {Xt|t ∈ [0, T ]}.

Note that Xt at different times do not have to be independent.
Definition: A sample trajectory, or sample path, of a stochastic process Xt

is a particular realization of the process, i.e., pick one possible outcome of
Xt for all t ∈ [0, T ]. Hence, every trajectory is a function from [0, T ] to Ω.

With these definitions we can look at stochastic processes from two differ-
ent, yet equivalent points of view. The first, following our initial definition,
is as a collection of inter-dependent RVs defined on some time segment. The
second, which is often more intuitive, is as a probability distribution which
is defined on some function space. It is as if we are assigning a probabil-
ity weight for every single trajectory. Of course, since the set of possible
trajectories is usually uncountable, we actually need a probability density.
Unfortunately, a proper definition of such a density is beyond the scope of
these lectures.
Definition: Let t1, . . . , tk ∈ [0, T ] denote k sample times. A multivariate
RV (Xt1 , . . . , Xtk) is called a marginal of the process Xt.
Definition: The mean of a process Xt is a function EXt : [0, T ] → R given
by the mean at time t.
Definition: The covariance of a process Xt is a function CovX : [0, T ] ×
[0, T ] → R given by CovX(t, s) = E[XtXs] − E[Xt]E[Xs].
Definition: The variance of a process Xt is a function VarX : [0, T ] → R
given by VarX(t) = CovX(t, t) = E[X2

t ] − (E[Xt])
2 = VarXt.

Definition: We say that two stochastic processes are equal (more precisely,
they have the same distribution) if all their marginals have the save distri-
bution. Note that we need to check all possible combinations of any finite
number of sample times.
Definition: A stochastic process is called Gaussian if all its marginal are
Gaussian RVs.
Example: (not very useful) Xt are IID normal for all t ∈ [0, 1].
Definition: We say that a stochastic process Xt has independent increments
if, for all 0 < t1 < · · · < tn, the RVs Xt1−X0, . . .Xtn−Xtn−1

are independent.
Lemma: A Gaussian process with independent increments is completely
characterized by its mean and covariance (this means that if you know the
mean and covariance then you can calculate all marginals).
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Homework: Prove the previous Lemma (show that if two Gaussian pro-
cesses have the same mean and covariance functions then they are equal).
Definition: Brownian motion (BM), also called the Wiener process, is a
stochastic process Bt that satisfies the following properties:

1. B0 = 0.

2. Bt has independent increments.

3. For all s ≥ t ≥ 0, Bs − Bt ∼ G(0, s − t).

4. Trajectories are almost surely continuous.

From now on we will denote BM by Bt.
Theorem: There exists a BM process.
Exercise: Prove that BM is a Gaussian process. Calculate its mean (zero)
and covariance (min{t, s}). By our definition of equality, this proves unique-
ness.
Lemma: Let Xt denote a stochastic process satisfying

1. X0 = 0.

2. Xt is Gaussian.

3. Xt has zero mean and covariance CovX(s, t) = min{s, t}.

4. Trajectories are almost surely continuous.

Then, Xt = Bt.
Homework: Prove that Bt = −Bt.
Homework: Let, X0 = 0 and Xt = tB1/t for t > 0. Prove that Xt = Bt.
How to simulate BM: For example, on [0, 1]. Choose a grid spacing h.
tk = hk. Define Bh

tk
inductively as Bh

0 = 0, Bh
tk

= Bh
tk−1

+ hξk, when ξk are

IID normal. Finally, do a linear interpolation between points Bh
tk

.
Lemma: E[Bt − Bh

t ] = 0 and Var[Bt − Bh
t ] ≤ Ch for some constant C > 0.

In other words, the two processes: exact BM – Bt and the discrete approx-
imation – Bh

t , are close. Warning: ξk have to be constructed appropriately
from Bt.
Homework: Plot three sample paths of BM on [0, 1] using h = 10−3. Plot
EBh

t and VarBh
t . How many samples do you need to take? How do you

evaluate the errors.
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Theorem: With probability 1, Brownian paths are not Lipschitz continuous
(and therefore not differentiable) at any point. An elementary proof can be
found in Durrett, Chapter 7, Theorem 1.7.
Markov property: BM satisfied the Markov property. Loosely speaking,
this means that given the present, the future is independent of the past. This
is due to the independent increments property.
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Lecture 3 - Stochastic differential equations

Definition: A stochastic differential equations is a differential equation of
the form

dXt = a(t, Bt, Xt)dt + σ(t, Bt, Xt)dBt. (1)

We define the process Xt satisfying (1) using discretization: approximate
the differential dt by a finite step size h and dBt by ∆Bt = Bt+h − Bt. Let
tn = hn, Xn = Xtn , Bn = Btn and ∆Bn = Bn+1−Bn. Then, a forward Euler
approximation of (1) is

Xn+1 = Xn + a(tn, Bn, Xn)h + σ(tn, Bn, Xn)∆Bn, (2)

with initial condition X0 = x0. Recalling the properties of BM, ∆Bn are IID
G(0, h). Hence, (2) can be rewritten as

Xn+1 = Xn + ha(tn, Bn, Xn) +
√

hσ(tn, Bn, Xn)ξn, (3)

where ξn are IID normal.
Theorem: Under appropriate conditions for a and σ, solutions of (3) con-
verge (with the L2 norm) in the limit h → 0. The (unique) limit is defined
to be the solution of (1). For a proof see Oksendal, Chapter 3.
Theorem: The process Xt defined by (1) satisfies the Markov property
(because ξn are independent).
Example: The Ornstein-Uhlenbeck (OU) process is defined as the solution
of the linear SDE

dXt = −aXtdt + bdBt. (4)

with initial condition X0 = x0. Here, a > 0 and b are constants.
Homework: Plot two sample trajectories of (4) in [0, 3] with a = b = 1 for
each of the initial conditions x0 = 0, 1,−1.
Exercise: Explain why OU is a Gaussian process.
Alternative notation for SDE:

Ẋt = a(Xt) + σ(Xt)Ḃt. (5)

Ḃt is called white noise.
Alternative notation for SDE: Ito integral

Xt =

∫ t

0

a(Xτ )dτ +

∫ t

0

σ(Xτ )dBτ . (6)
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We need to define the second integral. Write as a Riemann sum but use
only the left most point in each segment. Why left? So it is Markov. This
definition is identical to the previous one for SDEs using forward Euler (2).
Ito’s Lemma (Ito’s isometry) 1:

E

[
∫ t

s

f(τ, Bτ )dBτ

]

= 0. (7)

Formally, this reads EdBt = 0.
Proof: write the Riemann sum using the leftmost point.

Ito’s Lemma (Ito’s isometry) 2:

E

[

(
∫ t

s

f(τ, Bτ)dBτ

)2
]

=

∫ t

s

Ef 2(t, Bt)dτ. (8)

Formally, this reads EdBtdBs = δ(t − s)dtds.
Proof: write the Riemann sum using the leftmost point.

Exercise: Calculate the mean and covariance of OU.
Homework: Plot the mean and variance of OU in [0, 3] with a = b = 1 for
each of the initial conditions x0 = 0, 1,−1. Estimate your errors.
Exercise: Show that OU converges as t → ∞ to an invariant (equilibrium)
distribution. Find it.

What does invariant distribution means. Ergodicity.
Homework: Plot three trajectories, mean and variance of dXt = (1+Bt)dt+
eBtdBt.
Theorem: (the Ito formula). Let dXt = udt+vdBt and Yt = g(t, Xt). Then,
Yt satisfies

dYt =
∂g(t, Xt)

∂t
dt +

∂g(t, Xt)

∂x
dXt +

1

2

∂2g(t, Xt)

∂x2
(dXt)

2, (9)

where dt2 = 0, dtdBt = 0 and dB2
t = dt.

Formal proof: expand Yt in a Taylor series up to order two. Use the Ito
isometries.
Example: Solve dXt = BtdBt.

Solution: take Yt = Bt and find g(x) such that Xt = g(Yt) satisfies the
required SDE.
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Lecture 4 - Multiscale SDEs: deterministic limit example.

Let 0 < ε � 1 and consider the SDE
{

dXε
t = −Y ε

t dt

dY ε
t = −1

ε
(Y ε

t − Xε
t )dt + 1√

ε
dBt,

(10)

with initial conditions X0 = x and Y0 = y.
Called a singular perturbation form.
Change variables t = εs to see that the dynamics of Y ε

t is on the ε time
scale. Accordingly, we say that Y ε

t is fast while Xε
t is slow.

What does Y ε
t do? Suppose Xε

t is fixed. Without the noise, Yt relaxes to
a value close to Xε

t exponentially fast on a time scale of order ε. To this we
add a (not so small) noise.

More precisely, with fixed Xε
t , Y ε

t is an OU process. No matter what the
initial condition is, Y ε

t quickly converges (on an ε time scale) to an asymptotic
distribution, which is G(Xε

t , 1/2). As a result, it makes sense to assume that
Y ε

t is always (to order ε) at this asymptotic distribution, Yt ∼ G(Xε
t , 1/2).

Now look at Xε
t . We discretize the equation using forward Euler with a

macroscopic step size H that is independent of ε. This yields

Xn+1 =Xn − HYn = Xn − H(Xn +
1√
2
ξn)

=(1 − H)Xn + H
1√
2
ξn,

(11)

where ξn are IID normal. Note that ξn is multiplied by H rather than the
usual

√
H obtained in the discretization of SDEs. This is not a typo. Now,

equation (11) is linear. Its solution is

Xn = x(1 − H)n +
H√
2

n−1
∑

j=1

(1 − H)jξn−j. (12)
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We show that the sum is small:

E[Xn − x(1 − H)n] =
h√
2

n−1
∑

j=1

(1 − H)j
Eξn−j = 0

Var[Xn − x(1 − H)n] =E[(Xn − x(1 − H)n)2]

=
H2

2

n
∑

i=1

n
∑

j=1

(1 − H)i+j
E[ξn−iξn−j]

=
H2

2

n
∑

i=1

n
∑

j=1

(1 − H)i+jδij ≤
H2

2
n ≤ TH/2,

(13)

where we used n ≤ T/H . Therefore, on a fixed time segment of length T ,
independent of ε, the solution for Xt is close to Xn = x(1 − H)n.
Exercise: Show that Xn above is the forward Euler approximation of the
ordinary differential equation Ẋt = −Xt, X0 = x.

The above derivation can be summarized by saying that in the limit
ε → 0, the slow stochastic process Xε

t is well approximated by an effective
deterministic equation Ẋt = −Xt, X0 = x.
Homework: (a) Plot three trajectories of Xε

t along with the effective ap-
proximation Xt in [0, 1] with x = 1 and ε = 10−2. (b) Plot the mean and
variance of the error Eε

t = Xε
t − Xt (you need to run many trajectories and

calculate the mean and variance of the errors). (c) Plot VarEε
t as a function

of ε (should be decreasing linearly).
The above example was simple, since the asymptotic distribution of Yt

with fixed Xt could be calculated analytically. This is not usually the case.
However, there is still a lot we can do as long as Yt has an asymptotic
distribution, even though we may not know what it is.

The idea is to simulate Yt for a while, keeping Xt fixed. Once Yt reached
it’s equilibrium distribution, we simply pick one instance of Yt and use it in
the slow equation for Xt. Let us consider a general equation of the form

{

dXt = a(Xt, Yt)dt + b(Xt)dBt

dYt = 1
ε
c(Xt, Yt)dt + 1√

ε
d(Xt, Yt)dBt,

(14)

with initial conditions X0 = x and Y0 = y. The algorithm can be summarized
as follows
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Stochastic HMM:

1. initialization: X0 = x, Y0 = y.

2. micro-solver: Let X = Xt. Advance Yt a total of k time steps with
size h. The step size h is of order ε. Using forward Euler, this implies
solving

Yn+1 = Yn +
h

ε
c(X, Yn) +

√

h

ε
d(X, Yn)ξn, (15)

for k = 0, . . . , k − 1. k needs to be large enough so that Y0 and Yk are
practically independent. Denote Y = Yk.

3. Macro-solver: Fix Yt = Y . Advance Xt a single time step with size H .
The step size H is independent of ε. Using forward Euler, this implies
solving

Xn+1 = Xn + Ha(Xn, Y ) +
√

Hb(Xn)ξl. (16)

4. Repeat steps 2 and three with the new values for Xn+1 and Yk as initial
conditions.

Homework: (a) Plot three trajectories of the HMM approximation for Xt

for example (10) in [0, 1] with x = 1 and ε = 10−2 . (b) Plot the mean and
variance of the error Eε

t = Xε
t − Xt in the HMM approximation. (c) Show

that the variance of the error decreases with decreasing H .
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Lecture 5 - Multiscale SDEs: diffusive limit example.

Consider the SDE
{

dXε
t = 1

ε
Y ε

t dt

dY ε
t = − 1

ε2
Y ε

t dt +
√

2
ε

dBt,
(17)

with initial conditions X0 = x and Y0 = 0.
Change variables t = ε2s to see that the dynamics of Y ε

t is on the ε2 time
scale. The equilibrium measure for Yt is normal.

What about Xt? At a first glance, it may seem like the RHS of the
equation for Xt is of order 1/ε because Yt is of order one. Following the same
line of reasoning from the previous lecture, we discretize the equation for Xε

t

using forward Euler with macroscopic step size H independent of ε,

Xn+1 = Xn +
H

ε
Yn, (18)

where Xn = Xε
nH and Yn = Y ε

nH . Since Yn and Yn+1 are separated by
a macroscopic time difference, it is safe to assume they are IID with the
equilibrium distribution of Yt. Hence, we have

Xn+1 = Xn +
H

ε
ξn, (19)

where ξn are IID normal. As a result,

Xn = x +
H

ε

n
∑

i=1

ξi. (20)

The mean and variance for Xn is

EXn = x +
H

ε

n
∑

i=1

Eξi = x, (21)

and

VarXn = E[X2
n] − x2 =

H2

ε2

n
∑

i=1

n
∑

j=1

Eξiξj =
H2

ε2

n
∑

i=1

n
∑

j=1

δij =
H2n

ε2
≤ HT

ε2
,

(22)
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while diverges as ε → 0.
What is wrong with this picture? Our mistake was that Xn does not

actually grow in one big jump of order H , but rather in O(ε−2) small steps
which are correlated. This fact could be ignored with the scaling considered
in the previous lecture since fluctuations were not important anyway. The
difference here is the big 1/ε pre-factor.

Let us concentrate on a single macroscopic step from Xn to Xn+1. Denote
the O(ε−2) microscopic steps we take with Y as Y n

0 , . . . , Y n
k , where kh = H ,

h = O(ε2). Hence,

Xn+1 = Xn +
h

ε

k
∑

i=1

Y n
i . (23)

The mean and covariance are

EXn+1 = EXn +
H

ε

k
∑

i=1

EY n
i = EXn = x, (24)

and

VarXn+1 =E[X2
n+1] − x2 = E





(

Xn +
H

ε

k
∑

i=1

Y n
i

)2


− x2

=VarXn +
h2

ε2

k
∑

i=1

k
∑

j=1

EY n
i Y n

j ,

(25)

where we assumed that Xn and Y n
i are independent (why?). Approximating

the sum with integrals,

VarXn+1 − VarXn =
1

ε2

∫ H

0

∫ H

0

CovY (t, s)dsdt

=
2

ε2

∫ H

0

∫ H

t

(

e−(s−t)/ε2 − e−(s+t)/ε2
)

dsdt.

(26)

The exponents above are all small, except in a few segments with length
of order ε2. Hence, the inner integral is of order ε2. The outer integral is
proportional to H . As a result, the variance is proportional to H , which is
independent of ε. In conclusion, the steps of Xn are IID Gaussian with zero
mean and variance given by (26).
Homework: Calculate the integrals in (26).
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Homework: Show numerically that the mean and covariance of Xε
t is indeed

close to the approximations (24) and (26).
The discussion above suggests a numerical method for approximating the

equation for Xε
t even if it is not possible to obtain the invariant measure of

Y ε
t analytically. The general idea is to approximate the mean and covariance

of the RHS of the equation for X by a short time simulation of the fast
process Yt. Approximating the variance is simple since the integrals in (25)
decay rapidly. Hence, a short simulation of Y ε

t suffices. However, numerical
evaluation of the average is more complicated. The reason is that the ε−1

appearing in (24) requires us to evaluate the average of Y ε
t to order ε, which

is highly inefficient. A method for overcoming this difficulty is suggested in
references 3 and 5. Such methods are beyond the scope of these lectures.
Instead, we will make a simplifying assumption, which does not necessarily
hold in the general case, that EY ε

t = 0.
To summarize, consider the SDE

{

dXε
t = a(Xε

t , Y
ε
t )dt + b(Xε

t )dBt

dY ε
t = 1

ε2
c(Xε

t , Y
ε
t )dt + 1

ε
d(Xε

t , Y
ε
t )dBt,

(27)

with initial conditions X0 = x0 and Y0 = y0. We assume that for all x,
E

x
y [a(x, y)] = 0, where E

x
y [·] denotes averaging over the equilibrium measure

for y with Xε
t held fixed at x. Then, to order ε, the equation for Xε

t is
approximated as

Xn+1 = Xn + H∆Xn, (28)

Where ∆Xn are IID G(0, σ2) with

σ2 =
2

ε2

∫ H

0

∫ H

t

CovY (t, s)dsdt + b2(Xn). (29)

Finally, we note that the inner integral is practically constant. Hence,

σ2 =
2H

ε2

∫ H

0

CovY (0, s)ds + b2(Xn). (30)

An HMM algorithm:

1. initialization: X0 = x, Y0 = y.

2. micro-solver:
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(a) Pick some random initial condition for Y .

(b) Advance Y for L small h = O(ε2) steps to make sure it is close to
the equilibrium distribution.

(c) Advance Y for additional M small h = O(ε2) steps to obtain a
short sample trajectory.

(d) Repeat (a)-(c) to obtain many trajectories.

(e) Calculate the covariance of Y .

Notes: Since the initial condition for Y does not matter, you can simply
pick the final state of one simulation as initial condition for the next.
Then, there is no need for relaxation except for the first time in every
run of the micro solver.

3. Parameter estimation: integrate the covariance numerically to approx-
imate σ2 of (30).

4. Macro-solver: generate a Gaussian RV with zero mean and variance
σ2. Propagate Xn according to (28).

5. Repeat steps 2-4 to time T .

Efficiency: Since L, M , T and H are all independent of ε, the efficiency of
the algorithm is also independent of ε.
Homework: (a) Plot three trajectories of the HMM approximation for Xε

t

for example (17) in [0, 1] with x = 1 and ε = 10−2 . (b) Calculate the mean
and variance of Xt in the HMM approximation. Compare with (24) and
(26)).
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Final assignment

1. Effective deterministic dynamics emerging from multiscale stochastic
systems:

Consider the system of equations:
{

dXt =
[

−(Yt + Y 3
t ) + cos(πt) + sin(

√
2πt)

]

dt

dYy = −ε−1(Yy + Y 3
y − Xt)dt + ε−1/2dBt,

(31)

with initial conditions (X0, Y0) = (0, 1).

Integrate the system using the HMM algorithm as explained in lecture
4. Plot the mean and covariance of Xt with ε = 10−4.

2. Effective stochastic dynamics emerging from multiscale stochastic sys-
tems:

Consider
{

dXt = ε−1Yt

dYy = −ε−2Y 3
t dt + ε−1(1 + X2

t )dBt,
(32)

with initial conditions (X0, Y0) = (0, 1). Solve the equation using the
HMM algorithm.

3. Effective stochastic dynamics emerging from multiscale deterministic
systems:

Consider the system of ordinary differential equations:



















ẋ = x − x3 + 4
90

ε−1y2

ẏ1 = 10ε−2(y2 − y1)

ẏ2 = ε−2(28y1 − y2 − y1y3)

ẏ3 = ε−2(y1y2 − 8
3
y3).

(33)

The equations for (y1, y2, y3) are called the Lorenz equations. In the
example above, the solution is chaotic. To get a feeling what chaotic
means, plot the trajectory of (y1, y2, y3) with any non-zero initial con-
dition and some small ε.

Now, consider the SDE

dXt = (Xt − X3
t )dt + σdBt. (34)
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where σ = 0.126. We wish to show that, for small ε, Xt approximates
trajectories of x(t). It is still not clear what this statement means
since, for any given initial conditions, x(t) is a particular deterministic
solution, while Xt is a stochastic process.

Let P denote any distribution on R3 with a continuous density, for
example, each coordinate is IID normal. Plot several sample trajec-
tories of x(t) with ε = 10−3. Initial conditions are x(0) = 1 and
(y1(0), y2(0), y3(0)) drawn from the distribution P . Plot the mean and
variance of x(t) on a macroscopic time scale independent of ε. Here,
randomness comes from initial conditions. Compare to that of Xt.

Repeat this example with two additional distributions on R3 as initial
conditions for (y1, y2, y3). Show (through numerical examples) that
after an initial relaxation time, the statistics of x(t) does not depend
on the initial distribution.

Try to explain how come the dynamics of x appears random. In par-
ticular, explain why we have to assume that the initial conditions for
(y1, y2, y3) are random although it is not too important what this dis-
tribution is.

4. Effective deterministic dynamics emerging from multiscale determinis-
tic systems:

Richard Tsai’s class.
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