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Consider the model elliptic boundary value problem in one dimension,

−∂xaε(x)∂xu = f, u(0) = 0, u′(1) = 0. (1)

Introduce the grid {xk}
N−1

k=0
where xk = (k + 1/2)h and h = 1/N . Let uk

approximate u(xk) and set U = {uk}, F = {f(xk)}. Then use standard central
differences,

1

h2
∆+Aε∆−U = F, U, F ∈ R

N . (2)

Here ∆± are the forward/backward difference operators and Aε is a diagonal
matrix sampling aε(x) in x = kh, k = 0, . . . , N − 1. In order to approximate
the Dirichlet condition at x = 0, use (∆−U)0 = 2u0. This leads to an overall
second order method for (1).

For the numerical homogenization we will only use Haar wavelets. Also, we
will not be concerned with computational costs, but rather with the approxima-
tion properties of the numerically homogenized operator. Let N = 2n for some
n, sufficiently large to resolve the ε-scale in (1). In the Haar case, functions
f in the scaling space Vn are piecewise constant and their scaling coefficients
sn,k satisfy sn,k = 2−n/2f(xk). After appropriate rescaling we can therefore
interpret (2) as a discretization in Vn,

LnUn = Fn, Un, Fn ∈ Vn, Ln := 22n∆+Aε∆−,

where Un and Fn contains the scaling coefficients of u(x) and f(x) in Vn.

a) Let a(x, y) = 0.55 + 0.45 sin(2πy)b(x − 0.5), with b(x) = exp(−20x2) and
use aε(x) = a(x, x/ε) for some small ε. Simulate the detailed equation
and compare it with 1) the constant coefficient equation using the arith-
metic mean of aε(x), i.e. a ≡ 0.55, and 2) the homogenized equation.
(Determine, at least numerically, the homogenized coefficient ā(x) using
analytical formulae.)
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b) Compute the numerically homogenized operator L̄m, where m < n is
chosen so that the ε-scale averages out, i.e. 2−m ≥ ε. (Make sure n is
large enough though, 2−n ≪ ε.) Examine the structure of L̄m and verify
that it its elements decay quickly away from the diagonal. Approximate
L̄m by crude truncation to ν diagonals. Check how many diagonals you
must keep to get an acceptable solution.

c) We can write the numerically homogenized operator on the same form as
the original,

L̄m = 22m∆+H∆−, (3)

for some matrix H , which corresponds to the “effective material coeffi-
cient” at scale m. Compute H and verify that it is strongly diagonal
dominant. Approximate H by crude truncation and rebuild an approxi-
mation of L̄m from the formula (3). How many diagonals do you need to
keep now? Approximate H by band projection to a single diagonal, i.e.
“mass lumping,” H ≈ band(H, 1) = diag(H1), where 1 is the constant
vector. How good is the corresponding solution? How does band(H, 1)
compare with the original coefficient aε(x) and with the homogenized co-
efficient ā(x)?

d) (Optional.) Test a few other types of coefficients:

1. A three-scale system, e.g.

aε(x) =
1

2
(a(x − 0.1, x/ε1) + a(x + 0.1, x/ε2)) , ε1 ≪ ε2 ≪ 1.

Use different m = m1, m2 to capture the behavior at different scales,
i.e. 2−m1 ≥ ε2 ≫ 2−m2 ≥ ε1.

2. A random coefficient,

aε(x) = 0.1 + b(x − 0.5)U(x),

where b(x) is as above, and U(x) are uniformly distributed random
numbers in the interval [0, 1] for each x. (Use Matlab’s rand com-
mand.)

3. A localized coefficient,

aε(x) =

{

0, |x − 0.5| ≥ ε,
1

ε , |x − 0.5| < ε.
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