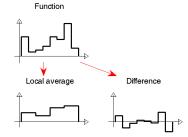
Introduction to Wavelets

Olof Runborg

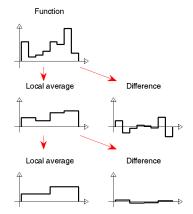
Numerical Analysis, School of Computer Science and Communication, KTH

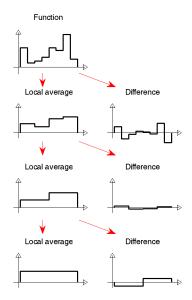
RTG Summer School on Multiscale Modeling and Analysis University of Texas at Austin 2008-07-21 – 2008-08-08

Function



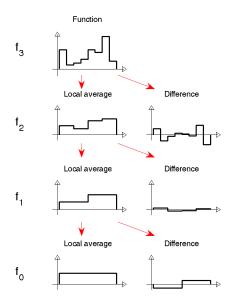
Olof Runborg (KTH)



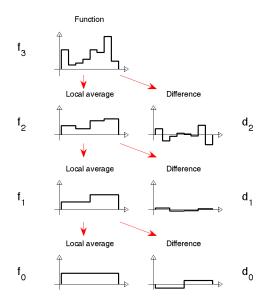


Olof Runborg (KTH)

Austin, July 2008 2/8

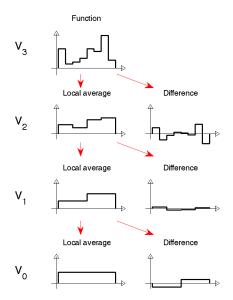


Olof Runborg (KTH)

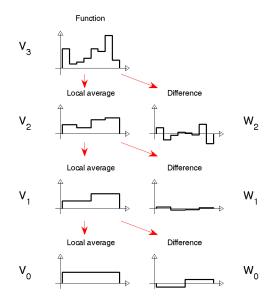


Olof Runborg (KTH)

Introduction to Wavelets

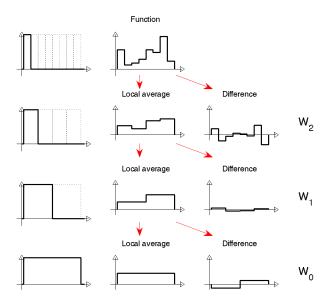


Olof Runborg (KTH)



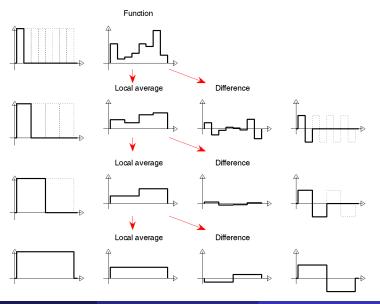
Olof Runborg (KTH)

Austin, July 2008 2/8



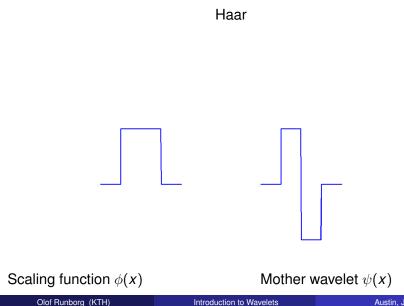
Olof Runborg (KTH)

Austin, July 2008 2/8



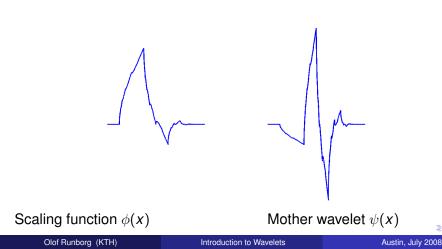
Olof Runborg (KTH)

Introduction to Wavelets



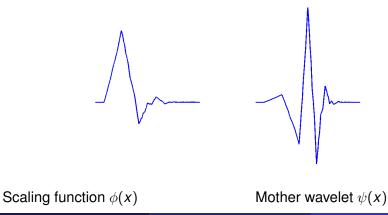
Austin, July 2008 3 / 8

Daubechies 4



3/8

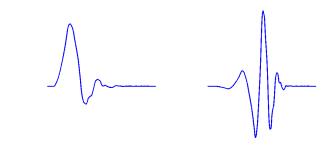
Daubechies 6



Olof Runborg (KTH)

Introduction to Wavelets

Daubechies 8



Scaling function $\phi(x)$

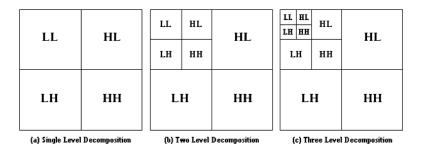
Mother wavelet
$$\psi(x)$$

Olof Runborg (KTH)

Introduction to Wavelets

Wavelet based image compression

- Wavelets successful in image compression. Eg: JPEG 2000 standard (Daubechies (9,7) biorthogonal wavelets), FBI fingerprint database....
- Consider image as a function and use 2D wavelets.



Compress by thresholding + coding + quantization. ٠

Olof Runbora (KTH)

Introduction to Wavelets

< 回 > < 回 > < 回 > -

Wavelet based image compression

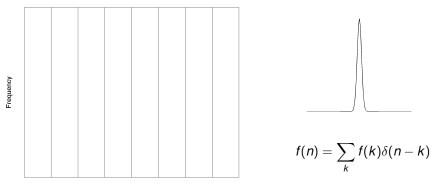
Given a discrete signal f(n), n = 0, 1, ...

Time representation — total localization in time

$$f(n) = \sum_{k} f(k)\delta(n-k)$$

Given a discrete signal f(n), n = 0, 1, ...

Time representation — total localization in time

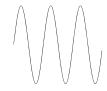


Time

Given a discrete signal f(n), n = 0, 1, ...

Fourier representation — total localization in frequency

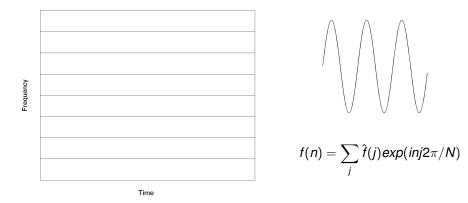
$$f(n) = \sum_{j} \hat{f}(j) exp(inj2\pi/N)$$



Basis functions

Given a discrete signal f(n), n = 0, 1, ...

Fourier representation — total localization in frequency



▲ 同 ▶ | ▲ 三 ▶

Given a discrete signal f(n), n = 0, 1, ...

Wavelet representation — localization in time and frequency

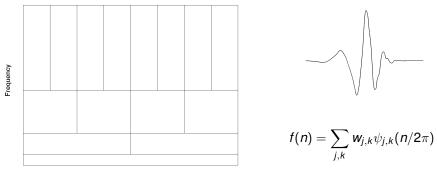
$$f(n) = \sum_{j,k} w_{j,k} \psi_{j,k}(n/2\pi)$$

Basis functions

A D b 4 A b

Given a discrete signal f(n), n = 0, 1, ...

Wavelet representation — localization in time and frequency

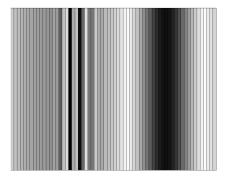


Time

Given a discrete signal f(n), n = 0, 1, ...

Wavelet representation — localization in time and frequency

Time representation — total localization in time



4 A N

Fourier representation — total localization in frequency

-

-

Wavelet representation — localization in time and frequency



|--|

- Strömberg first continuous wavelet
- Morlet, Grossman "wavelet"
- Meyer, Mallat, Coifman multiresolution analysis
- Daubechies compactly supported wavelets
- Beylkin, Cohen, Dahmen, DeVore PDE methods using wavelets
- Sweldens lifting, second generation wavelets
- ... and many, many more.