1. Let u be a smooth solution to

$$
\begin{aligned}
u_{t t}-\Delta u & =F(t, x) & & \text { in } \quad \mathbb{R}_{+} \times \mathbb{R}^{n} \\
u & =f(x) & & \text { for } \quad t=0 \\
u_{t} & =g(x) & & \text { for } \quad t=0,
\end{aligned}
$$

with F, f, and g compactly supported. Assuming finite speed of propagation, show that for $t \in[0, T]$,

$$
\mathcal{E}(t) \equiv\left[\int_{R^{n}}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x\right]^{\frac{1}{2}} \leq \mathcal{E}(0)+T \sup _{t}\left[\int_{\mathbb{R}^{n}}|F|^{2} d x\right]^{\frac{1}{2}}
$$

If you're having trouble showing the above, assume that F is 0 and show that \mathcal{E} is constant in time.
2. Describe what it would take for

$$
v(t, x)=A(t, x) e^{i k \phi(t, x)}
$$

to be an approximate solution to

$$
\begin{aligned}
u_{t t}-\Delta u & =0 & & \text { in } \quad \mathbb{R}_{+} \times \mathbb{R}^{n} \\
u & =f(x) & & \text { for } \quad t=0 \\
u_{t} & =g(x) & & \text { for } \quad t=0
\end{aligned}
$$

In your explanation, consider that v satisfies

$$
\begin{aligned}
v_{t t}-\Delta v & =\tilde{F}(t, x) & & \text { in } \quad \mathbb{R}_{+} \times \mathbb{R}^{n} \\
v & =\tilde{f}(x) & & \text { for } t=0 \\
v_{t} & =\tilde{g}(x) & & \text { for } \quad t=0
\end{aligned}
$$

exactly.
3. Implement a finite difference solver for

$$
\begin{aligned}
u_{t t} & =u_{x x} \\
\left.u\right|_{t=0} & =e^{-10 x^{2}} e^{i k\left(x^{3}+x\right)} \\
\left.u_{t}\right|_{t=0} & =\left[-i k\left(3 x^{2}+1\right)\right] e^{-10 x^{2}} e^{i k\left(x^{3}+x\right)}
\end{aligned}
$$

for a given constant k and $t \in[0,1]$. To avoid the need for boundary conditions in your simulation, enlarge your computational domain so that the boundaries don't affect the solution for $(t, x) \in[0,1] \times[-1,1]$.
(a) What happens if the CFL condition is violated?
(b) How big can you make k before the computations become infeasible?
(c) Based on you previous answer, how big could you make k in 2 and 3 spacial dimensions?
4. Consider asymptotic solutions of the form

$$
u=A(t, x, y) e^{i k \phi(t, x, y)}
$$

to the variable speed wave equation

$$
u_{t t}-c(x, y)\left[u_{x x}+u_{y y}\right]=0 .
$$

(a) Derive the Eikonal and amplitude equations.
(b) Derive the system of ODEs that the characteristics satisfy.

