Exercises

(1) Let $u=(x, y, z)$ and

$$
f_{\epsilon}(x, y, z)=\left(\begin{array}{ccc}
a & \frac{1}{\epsilon} & 0 \tag{5.1}\\
-\frac{1}{\epsilon} & b & 0 \\
0 & 0 & -\frac{1}{10}
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
x^{2}+c y^{2}
\end{array}\right)
$$

The equation for u is

$$
u^{\prime}=f_{\epsilon}(u), u(0)=(1,0,1) .
$$

Take $\epsilon=10^{-4}, a=b=0$ and $c=1$. Find approximations for $z(t)$ in $0<t \leq 1$ using the following schemes and compare with the analytical solution. Plot the trajectories of your approximations of $x(t)$ and $y(t)$ on the xy plane, and the graph $z(t)$ as a function of time. Explain what you observe in each case.
(a) Forward Euler using $\Delta t=\epsilon / 50$.
(b) Backward Euler for x and y and Forward Euler for z, using $\triangle t=0.1$.
(c) Verlet method or Midpoint rule for x and y, and Forward Euler for z, using $\triangle t=\epsilon / 50$.
(d) Solve this problem by the HMM-FE-fe method, with $\mathcal{Q}=\mathcal{R}=I$. $h=\epsilon / 50, H=0.1$, and $h M=2 \cdot 10^{-3}$.
(e) Derive linear stability criteria on H for HMM-FE-fe, assuming that $h=c_{0} \epsilon$.
(f) Let $a=b=1$ in the system defined above. Solve it by the same HMM-FEfe scheme with the same parameters as in (d). Does this scheme correctly approximate the behavior of z in the time interval $0<t \leq 1$? Explain.

Algorithm. HMM-FE-fe scheme for $u^{\prime}=f_{\epsilon}(u)$
Macroscale with Forward Euler: $U^{n+1}=U^{n}+H F^{n}, U^{0}=\mathcal{Q}\left(u_{0}\right)$
Microscale with Forward Euler:

$$
\begin{gathered}
u_{k+1}^{n}=u_{k}^{n}+h f_{\epsilon}\left(u_{k}^{n}\right), k=0, \pm 1, \cdots, \pm M \\
u_{0}^{n}=\mathcal{R}\left(U^{n}\right)
\end{gathered}
$$

Averaging:

$$
\begin{gathered}
F^{n}:=\frac{1}{2 M} \sum_{k=-M}^{M} K^{\cos }\left(\frac{k}{2 M}\right) f_{\epsilon}\left(u_{k}^{n}\right), \\
K^{\cos }(t)=\frac{1}{2} \chi_{[-1,1]}(t)(1+\cos (\pi t)), \\
\chi_{[-1,1]}(x)= \begin{cases}1, & -1 \leq x \leq 1 \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

(2) Following the previous problem. Define the slow variable

$$
\xi(x, y)=x^{2}+y^{2} \text { and } \xi(t):=x^{2}(t)+y^{2}(t)
$$

where $x(t)$ and $y(t)$ are defined in (5.1).
(a) Show that $d \xi / d t$ can be approximated by averaging:

$$
\left|\frac{d \xi}{d t}\left(t_{n}\right)-\int_{-\infty}^{\infty}-\frac{d}{d t} K^{\cos }\left(\frac{t_{n}-t}{2 M h}\right)\left(x^{2}(t)+y^{2}(t)\right) d t\right| \leq C \eta^{p}
$$

Find p.
(b) Modify your previous HMM-FE-fe code as follows and determine if the dynamics of z is accurately approximated by this new scheme. Plot your approximations as in the previous problem. Explain your findings.
(c) Do the same thing as in the previous problem, but with $c=0$. Does your multiscale algorithm work? Why?

Algorithm. Constrained HMM-FE-rk4 scheme for $u^{\prime}=f_{\epsilon}(u)$
Macroscale with Forward Euler: $U^{n+1}=U^{n}+H F^{n}, U^{0}=\mathcal{Q}\left(u_{0}\right)$
Microscale with Runge-Kutta-4:

$$
\begin{gathered}
u_{k+1}^{n}=r_{k} 4\left(u_{k}^{n}, h\right), k=0, \pm 1, \cdots, \pm M \\
u_{0}^{n}=\mathcal{R}\left(U^{n}\right)
\end{gathered}
$$

rk 4 is a explicit Runge-Kutta 4 routine using step size h.

$$
\begin{gathered}
r k_{4}(y, h)=y+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
k_{1}=h f_{\epsilon}(y), k_{2}=h f_{\epsilon}\left(y+\frac{1}{2} k_{1}\right), k_{3}=h f_{\epsilon}\left(y+\frac{1}{2} k_{2}\right), k_{4}=h f_{\epsilon}\left(y+k_{3}\right)
\end{gathered}
$$

Averaging:

$$
\begin{aligned}
& \qquad d z^{n}:=\frac{1}{2 M} \sum_{k=-M}^{M} K^{\cos }\left(\frac{k}{2 M}\right)\left(x_{k}^{n} \cdot x_{k}^{n}+c y_{k}^{n} \cdot y_{k}^{n}-\frac{z_{k}^{n}}{10}\right) . \\
& \qquad d \xi^{n}:=\frac{1}{2 M} \sum_{k=-M}^{M} G\left(\frac{k}{2 M}\right)\left(x_{k}^{n} \cdot x_{k}^{n}+y_{k}^{n} \cdot y_{k}^{n}\right), \\
& \text { where } G\left(\frac{k}{2 M}\right):=\frac{-1}{2 M h} \frac{d}{d t} K^{\cos }\left(\frac{t}{2 M h}\right) .
\end{aligned}
$$

Evaluate effective force: Find a unit vector $d X^{n}$ such that

$$
\begin{gathered}
d \xi^{n}=\left.\nabla_{x, y} \xi\right|_{x_{k}^{n}, y_{k}^{n}} \cdot d X^{n} . \\
F^{n}:=\binom{d X^{n}}{d z^{n}} .
\end{gathered}
$$

