The Fast Multipole Method

Lexing Ying
University of Texas at Austin

July, 2008

Problem statement

Given

- $\left\{f_{i}\right\}$ a set of charges at $\left\{p_{i}\right\}$,
- $G(x, y)$ a smooth kernel, we want to compute

$$
u_{i}=\sum_{j=0}^{N-1} G\left(p_{i}, p_{j}\right) f_{j}
$$

Naive algorithm takes $O\left(N^{2}\right)$. Our goal is to make it $O(N)$. Solution: The fast multipole method by Greengard and Rokhlin.

Geometric part

Two sets A and B are well-separated if the distance between A and B are greater than their diameters.
Consider interaction from B to A. ($\left\{x_{i}\right\}$ and $\left\{y_{j}\right\}$ are subsets of $\left\{p_{i}\right\}$.)

We use the following approximation. For each x_{i}, its potential u_{i}

$$
u_{i} \approx u\left(c_{A}\right)=\sum_{j} G\left(c_{A}, y_{j}\right) f_{j} \approx G\left(c_{A}, c_{B}\right) \sum_{j} f_{j}
$$

Do not worry about the accuracy of this approximation for the time being. This is good when A and B are really well-separated.

Three step procedure:

Two representations:

- Far field representation $f_{B}=\sum_{j} f_{j}$.
- local field representation $u_{A}=G\left(c_{A}, c_{B}\right) f_{B}$.

Interaction is approximately low rank. Here it is a rank-1 approximation.

However, each p_{i} is both a source and a target. $\left\{p_{i}\right\}$ are mixed up.
Solution: octree.

- Each leaf box contains a small number $(O(1))$ of points,
- The number of levels of the tree is $O(\log N)$.
- For each B, near field $=$ adjacent boxes.
- Far field $F^{B}=$ all well-separted boxes.
- Interaction list = boxes in B's far field but not B's parent's far field (i.e., boxes that can be addressed by B but not by B 's parent).

Top level, fix a box B, we have $O(1)$ well-separated boxes (e.g. A).
The interaction between B and A is computed using the previous 3 -step procedure.

What about the nearby boxes? Go to the next level.
B^{\prime} (a child of B) has $O(1)$ boxes in its interaction list (e.g. A^{\prime}) that have not been taken care of.

The interaction between B^{\prime} and A^{\prime} is computed using the previous 3-step procedure.

For the nearby boxes, go to the next level.
$B^{\prime \prime}$ (a child of B^{\prime}) has $O(1)$ boxes in its interaction list (e.g. $A^{\prime \prime}$) that need to be taken care of.

Now $B^{\prime \prime}$ is also a leaf. The interaction between $B^{\prime \prime}$ and its neighbors is evaluated directly.

The full algorithm is:

1. At each level, for each box B, compute $f_{B}=\sum_{p_{j} \in B} f_{j}$.
2. At each level, for each pair A and B in each other's interaction list, add $G\left(c_{A}, c_{B}\right) f_{B}$ to u_{A} (F2L translation)
3. At each level, for each box A, add u_{A} to u_{j} for each $p_{j} \in A$.
4. At the leaf level, nearby computation.

Complexity analysis:

1. Each point belongs to a box in each of $O(\log N)$ levels. The complexity is $O(N \log N)$.
2. $O(N)$ boxes in total. Each box has $O(1)$ boxes in the interaction list. $O(1)$ operation per F2L translation. The complexity is $O(N)$.
3. Each point belongs to a box in each of $O(\log N)$ levels. The complexity is $O(N \log N)$.
4. $O(N)$ leaf boxes in total. Each one has $O(1)$ points in its neighbors. Direct computation is $O(N)$.

Total complexity is $O(N \log N)$.

Can we do better? Yes. Let us look at a box B and its children B_{1}, \cdots, B_{4}.
$f_{B}=\sum_{p_{j} \in B} f_{j}=\sum_{p_{j} \in B_{1}} f_{j}+\sum_{p_{j} \in B_{2}} f_{j}+\sum_{p_{j} \in B_{3}} f_{j}+\sum_{p_{j} \in B_{4}} f_{j}=f_{B_{1}}+f_{B_{2}}+f_{B_{3}}+f_{B_{4}}$.
So f_{B} can be computed from $f_{B_{i}}$ of its children

- $O(1)$ complexity,
- far field rep of $B_{i} \Rightarrow$ far field rep of B, called F2F translation
- bottom-up traversal of the octree.

Similarly, instead of putting u_{A} to each of its points, simply do

$$
u_{A_{i}} \Leftarrow u_{A_{i}}+u_{A} \quad i=1,2,3,4 .
$$

What is added to $u_{A_{i}}$ will eventually be added to the individual points.

- $O(1)$ complexity,
- local field rep $A \Rightarrow$ local field rep of A_{i}, called L2L translation
- top-down traversal of the octree.

The full algorithm is:

1. Bottom up. For each level, each box B,

- if leaf, compute f_{B} from its points,
- if non-leaf, compute f_{B} from its children (F2F).

2. On each level, for each pair A and B in each other's interaction list, add $G\left(c_{A}, c_{B}\right) f_{B}$ to u_{A} (F2L).
3. Top down. For each level, each box A,

- if leaf, add u_{A} to u_{j} for each point p_{j} in A,
- if non-leaf, add u_{A} to its children (L2L).

4. At the leaf level, local computation.

Let us compute the complexity:

1. $O(N)$ boxes. $O(1)$ per F2F. Totally $O(N)$.
2. Same $O(N)$.
3. $O(N)$ boxes. $O(1)$ per L2L. Totally $O(N)$.
4. Same $O(N)$.

Total complexity is $O(N)$.

Analytic Part

Come back to the question that total mass (charge)

$$
f_{B}=\sum_{p_{j} \in B} f_{j}
$$

is not a good approximation.
We can do better. This is the analytic part of the FMM: given a prescribed accuracy ε, all representations and translations shall have accuracy $O(\varepsilon)$.
2D case. One considers x and y to be complex numbers. Up to a constant,

$$
G(x, y)=\ln |x-y|=\operatorname{Re}(\ln (x-y)) .
$$

We will regard $G(x, y)=\ln (x-y)$ and throw away the complex part at the end.

Far field representation

- x
$G(x, y)=\ln (x-y)=\ln (x)+\ln (1-y / x)=\ln (x)+\sum_{k=1}^{\infty}(-1 / k)(y / x)^{k}$.
$u(x)=\sum_{j} G\left(x, y_{j}\right) f_{j}=\ln (x)\left(\sum_{j} f_{j}\right)+\sum_{k=1}^{p} 1 / x^{k}\left(-1 / k \sum_{j} y_{j}^{k} f_{j}\right)+O(\varepsilon)$
where $p=O(\log (1 / \varepsilon))$ because $\left|y_{j} / x\right|<\sqrt{2} / 3$.
Hence the far field representation is

$$
a_{0}=\sum_{j} f_{j}, \quad a_{k}=-1 / k \sum_{j} y_{j}^{k} f_{j} \quad(1 \leq k \leq p) .
$$

This is called the multipole expansion.

Local field representation

$$
\begin{aligned}
& G(x, y)=\ln (x-y)=\ln (-y)+\ln (1-x / y)=\ln (y)+\sum_{k=1}^{\infty}(-1 / k)(x / y)^{k} \\
& u(x)=\sum_{j} G\left(x, y_{j}\right) f_{j}=\sum_{j} \ln \left(-y_{j}\right) f_{j}+\sum_{k=1}^{p} x^{k}\left(-1 / k \sum_{j} 1 / y_{j}^{k} f_{j}\right)+O(\varepsilon)
\end{aligned}
$$

where $p=O(\log (1 / \varepsilon))$ because $\left|x / y_{j}\right|<\sqrt{2} / 3$.
Hence the local field representation is

$$
a_{0}=\sum_{j} \ln \left(-y_{j}\right) f_{j}, \quad a_{k}=-1 / k \sum_{j} y_{j}^{k} f_{j} \quad(1 \leq k \leq p)
$$

F2F (far rep of B^{\prime} to far rep of B)

If the multipole expansion of child B^{\prime} is $\left\{a_{k}\right\}$, i.e.,

$$
u(z)=a_{0} \ln \left(z-z_{0}\right)+\sum_{k=1}^{p} a_{k} /\left(z-z_{0}\right)^{k}+O(\varepsilon)
$$

then the multipole expansion of the parent B is $\left\{b_{l}\right\}$ with

$$
\begin{gathered}
b_{0}=a_{0}, \quad b_{l}=-a_{0} \frac{z_{0}^{\prime}}{l}+\sum_{k=1}^{l} a_{k}\binom{l-1}{k-1} z_{0}^{I-k} \quad(1 \leq I \leq p) . \\
u(z)=b_{0} \ln (z)+\sum_{l=1}^{p} b_{l} / z^{\prime}+O(\varepsilon) .
\end{gathered}
$$

The complexity of F2F is $O\left(p^{2}\right)$.

F2L (far rep of B to local rep of A)

If the multipole representation at B is $\left\{a_{k}\right\}$, i.e.,

$$
u(z)=a_{0} \ln \left(z-z_{0}\right)+\sum_{k=1}^{p} a_{k} /\left(z-z_{0}\right)^{k}+O(\varepsilon)
$$

then the local representation at A is $\left\{b_{l}\right\}$ with with

$$
\begin{gathered}
b_{0}=a_{0} \ln \left(-z_{0}\right)+\sum_{k=1}^{p} a_{k} /\left(-z_{0}\right)^{k} \quad b_{l}=-\frac{a_{0}}{I z_{0}^{\prime}}+1 / z_{0}^{\prime} \sum_{k=1}^{p} a_{k}\left(-z_{0}\right)^{-k}\binom{I+k-1}{k-1} . \\
u(z)=\sum_{l=0}^{p} b_{l} z^{\prime}+O(\varepsilon)
\end{gathered}
$$

The complexity of F2L is $O\left(p^{2}\right)$.

L2L (local rep of A to local rep of A^{\prime})

If the local representation at A is $\left\{a_{k}\right\}$, i.e.,

$$
u(z)=\sum_{k=0}^{p} a_{k}\left(z-z_{0}\right)^{k}+O(\varepsilon)
$$

then the local representation at A^{\prime} is $\left\{b_{l}\right\}$ with

$$
\begin{aligned}
& b_{l}=\sum_{k=l}^{p} a_{k}\binom{k}{l}\left(-z_{0}\right)^{k-l} . \\
& u(z)=\sum_{l=0}^{p} b_{l}(z)^{l}+O(\varepsilon) .
\end{aligned}
$$

The complexity of L2L is $O\left(p^{2}\right)$.

For a fixed ε,

- both representations are of size $O(p)=O(\log (1 / \varepsilon))$,
- all translations are of complexity $O\left(p^{2}\right)=O\left(\log ^{2}(1 / \varepsilon)\right)$,
- the FMM algorithm with these representations and translations still has complexity $O(N)$.

