
The Fast Multipole Method

Lexing Ying
University of Texas at Austin

July, 2008

Problem statement

Given

I {fi} a set of charges at {pi},
I G (x , y) a smooth kernel,

we want to compute

ui =
N−1∑
j=0

G (pi , pj)fj .

Naive algorithm takes O(N2). Our goal is to make it O(N).

Solution: The fast multipole method by Greengard and Rokhlin.

Geometric part

Two sets A and B are well-separated if the distance between A and B are
greater than their diameters.

Consider interaction from B to A. ({xi} and {yj} are subsets of {pi}.)

We use the following approximation. For each xi , its potential ui

ui ≈ u(cA) =
∑

j

G (cA, yj)fj ≈ G (cA, cB)
∑

j

fj .

Do not worry about the accuracy of this approximation for the time
being. This is good when A and B are really well-separated.

Three step procedure:

Two representations:

I Far field representation fB =
∑

j fj .

I local field representation uA = G (cA, cB)fB .

Interaction is approximately low rank. Here it is a rank-1 approximation.

However, each pi is both a source and a target. {pi} are mixed up.

Solution: octree.

I Each leaf box contains a small number (O(1)) of points,

I The number of levels of the tree is O(log N).

I For each B, near field = adjacent boxes.

I Far field FB = all well-separted boxes.

I Interaction list = boxes in B’s far field but not B’s parent’s far field
(i.e., boxes that can be addressed by B but not by B’s parent).

Top level, fix a box B, we have O(1) well-separated boxes (e.g. A).

The interaction between B and A is computed using the previous 3-step
procedure.

What about the nearby boxes? Go to the next level.

B ′ (a child of B) has O(1) boxes in its interaction list (e.g. A′) that have
not been taken care of.

The interaction between B ′ and A′ is computed using the previous 3-step
procedure.

For the nearby boxes, go to the next level.

B ′′ (a child of B ′) has O(1) boxes in its interaction list (e.g. A′′) that
need to be taken care of.

Now B ′′ is also a leaf. The interaction between B ′′ and its neighbors is
evaluated directly.

The full algorithm is:

1. At each level, for each box B, compute fB =
∑

pj∈B fj .

2. At each level, for each pair A and B in each other’s interaction list,
add G (cA, cB)fB to uA (F2L translation)

3. At each level, for each box A, add uA to uj for each pj ∈ A.

4. At the leaf level, nearby computation.

Complexity analysis:

1. Each point belongs to a box in each of O(log N) levels. The
complexity is O(N log N).

2. O(N) boxes in total. Each box has O(1) boxes in the interaction
list. O(1) operation per F2L translation. The complexity is O(N).

3. Each point belongs to a box in each of O(log N) levels. The
complexity is O(N log N).

4. O(N) leaf boxes in total. Each one has O(1) points in its neighbors.
Direct computation is O(N).

Total complexity is O(N log N).

Can we do better? Yes. Let us look at a box B and its children
B1, · · · ,B4.

fB =
∑
pj∈B

fj =
∑

pj∈B1

fj +
∑

pj∈B2

fj +
∑

pj∈B3

fj +
∑

pj∈B4

fj = fB1 + fB2 + fB3 + fB4 .

So fB can be computed from fBi of its children

I O(1) complexity,

I far field rep of Bi ⇒ far field rep of B, called F2F translation

I bottom-up traversal of the octree.

Similarly, instead of putting uA to each of its points, simply do

uAi ⇐ uAi + uA i = 1, 2, 3, 4.

What is added to uAi will eventually be added to the individual points.

I O(1) complexity,

I local field rep A ⇒ local field rep of Ai , called L2L translation

I top-down traversal of the octree.

The full algorithm is:

1. Bottom up. For each level, each box B,
I if leaf, compute fB from its points,
I if non-leaf, compute fB from its children (F2F).

2. On each level, for each pair A and B in each other’s interaction list,
add G (cA, cB)fB to uA (F2L).

3. Top down. For each level, each box A,
I if leaf, add uA to uj for each point pj in A,
I if non-leaf, add uA to its children (L2L).

4. At the leaf level, local computation.

Let us compute the complexity:

1. O(N) boxes. O(1) per F2F. Totally O(N).

2. Same O(N).

3. O(N) boxes. O(1) per L2L. Totally O(N).

4. Same O(N).

Total complexity is O(N).

Analytic Part

Come back to the question that total mass (charge)

fB =
∑
pj∈B

fj

is not a good approximation.

We can do better. This is the analytic part of the FMM: given a
prescribed accuracy ε, all representations and translations shall have
accuracy O(ε).

2D case. One considers x and y to be complex numbers. Up to a
constant,

G (x , y) = ln |x − y | = Re(ln(x − y)).

We will regard G (x , y) = ln(x − y) and throw away the complex part at
the end.

Far field representation

G (x , y) = ln(x − y) = ln(x) + ln(1− y/x) = ln(x) +
∞∑

k=1

(−1/k)(y/x)k .

u(x) =
∑

j

G (x , yj)fj = ln(x)(
∑

j

fj) +

p∑
k=1

1/xk(−1/k
∑

j

yk
j fj) + O(ε)

where p = O(log(1/ε)) because |yj/x | <
√

2/3.

Hence the far field representation is

a0 =
∑

j

fj , ak = −1/k
∑

j

yk
j fj (1 ≤ k ≤ p).

This is called the multipole expansion.

Local field representation

G (x , y) = ln(x − y) = ln(−y) + ln(1− x/y) = ln(y) +
∞∑

k=1

(−1/k)(x/y)k .

u(x) =
∑

j

G (x , yj)fj =
∑

j

ln(−yj)fj +

p∑
k=1

xk(−1/k
∑

j

1/yk
j fj) + O(ε)

where p = O(log(1/ε)) because |x/yj | <
√

2/3.

Hence the local field representation is

a0 =
∑

j

ln(−yj)fj , ak = −1/k
∑

j

yk
j fj (1 ≤ k ≤ p).

F2F (far rep of B ′ to far rep of B)

If the multipole expansion of child B ′ is {ak}, i.e.,

u(z) = a0 ln(z − z0) +

p∑
k=1

ak/(z − z0)
k + O(ε)

then the multipole expansion of the parent B is {bl} with

b0 = a0, bl = −a0
z l
0

l
+

l∑
k=1

ak

(
l − 1

k − 1

)
z l−k
0 (1 ≤ l ≤ p).

u(z) = b0 ln(z) +

p∑
l=1

bl/z l + O(ε).

The complexity of F2F is O(p2).

F2L (far rep of B to local rep of A)

If the multipole representation at B is {ak}, i.e.,

u(z) = a0 ln(z − z0) +

p∑
k=1

ak/(z − z0)
k + O(ε)

then the local representation at A is {bl} with with

b0 = a0 ln(−z0)+

p∑
k=1

ak/(−z0)
k bl = − a0

lz l
0

+1/z l
0

p∑
k=1

ak(−z0)
−k

(
l + k − 1

k − 1

)
.

u(z) =

p∑
l=0

blz
l + O(ε)

The complexity of F2L is O(p2).

L2L (local rep of A to local rep of A′)

If the local representation at A is {ak}, i.e.,

u(z) =

p∑
k=0

ak(z − z0)
k + O(ε)

then the local representation at A′ is {bl} with

bl =

p∑
k=l

ak

(
k

l

)
(−z0)

k−l .

u(z) =

p∑
l=0

bl(z)l + O(ε).

The complexity of L2L is O(p2).

For a fixed ε,

I both representations are of size O(p) = O(log(1/ε)),

I all translations are of complexity O(p2) = O(log2(1/ε)),

I the FMM algorithm with these representations and translations still
has complexity O(N).

