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Abstract In this article, we study a class of numerical ODE schemes that use time filtering
strategy and operate in two time scales. The algorithms follow the framework of the hetero-
geneous multiscale methods (HMM) [1]. We apply the methods to compute the averaged path
of the inverted pendulum under a highly oscillatory vertical forcing on the pivot. The aver-
aged equation for related problems has been studied analytically in [9]. We prove and show
numerically that the proposed methods approximate the averaged equation and thus compute
the average path of the inverted pendulum.

1 Introduction

The focus of this paper is the application of numerical methods for dynamical sys-
tems whose solutions oscillate around a slow manifold. We assume that the oscil-
lations take place on a much faster time scale than the rate of change of the slow
manifold with respect to time. More precisely, we hypothesize that the wavelength
of the fast oscillations is proportional to a positive constant ε, and that in an O(ε)
time interval the slow manifold changes by at most O(ε). This is the case in the in-
verted pendulum problem with highly oscillatory forcing, and we will show that our
methods yield consistent approximations to the averaged equations.

We consider the inverted pendulum example, in which the pivot of a rigid pen-
dulum with length l is attached to a strong periodic forcing, vibrating vertically with
wavelength ε and amplitude Cε−1. The system has one degree of freedom, and can
be described by the angle, θ, between the pendulum arm and the upward vertical
direction, as shown in Figure 1. The motion is determined by

lθ̈ = (g+
1
ε

sin(2π
t
ε
))sin(θ), (1)

with initial conditions θ(0) = θ0, θ̇(0) = ω0. When 1/ε is sufficiently large, and θ0
and ω0 are sufficiently close to 0, the pendulum will oscillate slowly back and forth
with displacement θ < θmax. The period of the oscillation is “independent” of the
forcing frequency ε, and in addition to this slow motion, the trajectory of θ also
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exhibits fast oscillations with amplitude and period proportional to ε. The behavior
of this system and other generalizations are analyzed analytically in [9]. In short, the
governing second order equation for these stiff problems take the general form

ẍ = ε−1a(
t
ε
) f (x), x(0) = x0, ẋ(0) = y0; (2)

where a is a smooth, 1-periodic function, 0 < ε � 1, and f is a bounded smooth
function. It will be convenient to consider Eq.(2) as a system of first-order equations
where dx/dt = y and dy/dt = ε−1a(t/ε) f (x).

Figure 1. The inverted pendulum. A mass is connected to an arm of length l which makes an
angle θ with the vertical axes.

Typically, the computational difficulties in solving the above system stem from
the short wavelength in the periodic function a(t/ε). If explicit time stepping meth-
ods are employed to solve such a system, the corresponding stability condition re-
quires the step size ∆t to be proportional to ε1, and if the solution is needed in an
interval with length independent of ε, the computation would require O(ε−1) opera-
tions, rendering the solution method unusable if ε is very small. On the other hand,
implicit schemes with larger time steps typically damp out the oscillations or rep-
resent them inaccurately. There is also the problem of inverting the corresponding
nonlinear system.

In many situations, one is interested in a set of quantities X that are derived from
the solution of the given stiff system. Typically, these quantities change slowly in
time. A pedagogical example, pointed out to the authors by G. Dahlquist, is the drift
path of a mechanical alarm clock due to its shaking and rattling when it is set off
on a hard surface. If the slowly changing quantities X depend only locally in time
on the fast oscillations, it is then reasonable to devise a scheme that tracks the slow
quantities by measuring the effects of the fast solutions only locally in time. Herein
lies the possibility of reducing the computational complexity. Under this context, and
recasting Eq.(2) as a first-order system, it is natural to look for an explicit numerical
method that appears in the general form:

Xn+1 = QH(F̃ [xn(t)],Xn,Xn−1, · · ·) X(0) = X0, (3)
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where H = tn+1 − tn denotes the slow time scale step size, h denotes the fast time
scale step size, xn(t) is the microscopic data, and QH and F̃ denote some suitable
operators; we will make precise all of these in the following. The functional F̃ relates
x, the solution to the stiff problem, to the slowly changing quantities X .

In our specific problem with model (2), x(t) is θ(t), and X(t) is the average over
the period [t − ε/2, t + ε/2], X(t) = 〈x〉 = 1

ε
R t+ε/2

t−ε/2 x(s/ε)ds, and as shown in [9], it
satisfies the averaged effective equation

Ẍ = 〈a〉 f (X)−
〈

v2〉 f (X) f ′(X)+E, X(0) = X0. (4)

The “velocity”, v is a function of the “acceleration” a,

v(t) =
R t

s0

(

a( s
ε)−〈a〉

)

ds (5)

and s0 is selected so that 〈v〉 = 0. The error in Eq(4) is small, E ∼ O
(√

ε
)

[9].
Many existing methods can be cast into the above form (Eqs.(3,4)), with X di-

rectly related to either the strong or weak limit of the original variable x. For exam-
ple, in the methods proposed in [5] and [10] for oscillatory ODEs, X is the envelope
of x. The given stiff system is then integrated from current state Xn for some inte-
ger number of periods η = Cε, fully resolving the oscillation with step size h. The
method then estimates and returns the time derivative of the envelop, and finally QH
corresponds to the discrete solution operator of the macroscopic scheme.

In [1], the general framework of Heterogeneous Multiscale Methods (HMM) was
proposed. Under this framework approximation schemes can be conveniently con-
structed and analyzed for general problems involving multiple separated temporal
and spatial scales. In [3], under the HMM framework, we proposed and analyzed a
class of HMM ODE schemes that operate in two time scales. There, the operator F̃
plays the role of approximating the average force by time filtering the microscopic
evolution in the time interval [tn −η/2, tn + η/2], using convolution with a suitable
kernel. If the forward Euler scheme is adopted in QH , then the schemes appear to be

Xn+1 = Xn +H · F̃[xn(t)].

The equations considered in [3] are of the form
{ d

dt x = A( t
ε )x+ f (x,y)

d
dt y = g(x,y)

.

It is proved there that if f does not depend on the phase of x, i.e. if f (eiθx,y) = f (x,y)
for any θ ∈ [0,2π), the constructed approximations converges to the solution of the
averaged equation, and the averaged equation is of the following form:

{ d
dt x̄ = 1

2π
R 2π

0 e−iφ f (eiφx̄, ȳ)dφ
d
dt ȳ = 1

2π
R 2π

0 g(eiφx̄, ȳ)dφ

The class of second order equations under consideration in this paper, i.e. Equa-
tion (2), written as first order systems, do not fall into the category considered in [3].
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However, it turns out that with some modifications to the schemes developed in [3],
we can show that the modified HMM schemes approximate the averaged equations
analyzed in [9]. This is the main purpose of our paper.

There has been much development of methods for special Hamiltonian systems
H(p,q) = 1

2 pT M−1 p+W(q). These methods typically either assume an explicit sep-
arate grouping of solution components that change rapidly (fast modes) from the
slow modes, or they assume that the potential W is the sum of a strong one and a
weak one. Correspondingly, in the first case, slow and fast modes are solved sepa-
rately in the whole interval [tn, tn + H], and in the second case, a splitting approach
is adopted to solve alternately the whole system with only the strong potential or the
weak potential. They are called multirate methods and impulse method respectively.
Please refer to [4], [6], [8], and more generally [7] for details. Even though these
types of methods also use time averaging and appear to share certain resemblance to
the HMM methods, it is important to point out that there is a fundamental difference.
In the multirate or the impulse methods, the stiff part of the system, being either the
fast modes or the split equations with strong potentials, is really solved globally in
time, thus the high computational cost that results from the stiffness still remains.
Whereas in the HMM methods, as we alluded earlier, the stiff system is solved only
rarely for very short period of time. The macroscopic step size H is independent of ε
and the overall number of operations is lower than ε−1.

For a given ε > 0, all well known methods will converge as the step-size H → 0,
and there is no difference between stiff and nonstiff problems. We define what we
mean by convergence such that it makes sense for very stiff problems (ε � H) by
the following error:

E = max
n

( lim
H→0

( sup
0<ε<ε0(H)

|X(tn)−Xn|)). (6)

Here, ε0(H) is a positive function of H, serving as an upper bound for the range of
ε that we consider. With this notion, it is clear that a sensible multiscale method has
to utilize the slow varying property of X and generate accurate approximation with a
complexity sublinear to ε−1.

The structure of the paper is as follows. In Section 2, we describe the HMM
strategies of [1] in the context of building ODE schemes for problems with different
time scales. In Section 3, we apply these types of schemes to compute average tra-
jectories of an inverted pendulum. We then show in Section 4 the convergence of this
scheme that is suggested by our numerical study. Finally, we summarize our results
in Section 5.

2 HMM strategy

Given a stiff system
d
dt

u = fε(u, t), (7)

an HMM method integrates an effective system
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d
dt

U = f̄ (U),

whose force f̄ is evaluated using many short time integrations of Eq.(7) with suit-
able initial data. So a generic HMM method is described by 1) the scheme used to
integrate the (macro) system for U , 2) its accompanying scheme for the integration
of Eq.(7), the microscopic system, and 3) the data transfer between the macro and
micro systems. A microscopic evolution of the system is invoked only when the ef-
fective force at certain time, tn, is needed by the macro-scheme. At that time, Eq.(7)
is solved accurately on the corresponding micro-grid, with the initial condition de-
termined from U , for a duration of time, η, to resolve the transient or the oscillations.
The resulting microscale data, including the time history of microscale variables and
the force, is then averaged by a suitable kernel K to evaluate the effective force and, in
some cases, also a modified macroscopic variable U , at the appropriate time. We will
use K

p,q to denote the kernel space discussed in this paper. K ∈ K
p,q(I) if K ∈Cq

c (R)
with supp(K) = I , and

Z

R

K(t)trdt =

{

1, r = 0;
0, 1 ≤ r ≤ p.

Furthermore, we will use Kη(t) to denote the scaling of K: Kη(t) := η−1K(t/η).
Hence we may present the above procedures algorithmically as follows:

1. Force estimation:
a) Reconstruction: at T = tn, R(Un) 7→ un.
b) Solve for the micro variables: un(t), for t ∈ [tn− η

2 , tn + η
2 ], with un(tn) = un.

c) Compression: U∗ = Q[un].
d) Estimate force: f̄ (t∗) = F̃ [un] = Kη ∗un(t∗).

2. Evolve the macro variables: {Un}
S{U∗} −→Un+1, T = tn+1.

3. Repeat

The reconstruction operator and the compression operator should satisfy a compati-
bility condition:

Q(R(U)) = U.

An essential feature in this paper is the introduction of a reconstruction operator R so
that the average of the fast modes in u is preserved in each microscopic evolution, and
correspondingly, the compression operator Q that prepares the macroscopic variable
in the suitable form.

We also notice that the number of micro-time steps needed depends on the nature
of the problem. For example, for stiff problems with fast transients, we only need to
evolve the micro variables until the transients vanish; in molecular dynamics, e.g.
[2], the micro variables are evolved until equilibrium and then some further time to
estimate the effective flux. We shall see that it also depends on the method used to
estimate the effective force.
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Figure 2 depicts schematics of the HMM ODE solvers. In these images, the top
axis represents the macro grid used, and the bottom axis contains the microgrids es-
tablished in a neighborhood of each macrogrid for microscale simulations. The arrow
pointing from each macro grid point down to a micro grid denotes the action taken
in step 1a, while the arrows pointing from each micro grid up toward the macro axis
represent steps 1c and 1d. The effective force is estimated either at some new time t∗
which is laid down to be a new macroscale grid point, or the original macroscale grid
point tn, depending on the macroscale scheme used (see Figure 2). The advantage of
schemes depicted in Figure 2 is that f̄ can be evaluated on a uniform grid, and thus
facilitate the implementation of linear multistep methods on the macro-grid. In the
upper image in Figure 2, a non-symmetric kernel is needed to perform the force eval-
uation, and in the problems with transients, the macrogrid variables are projected to
the invariant manifolds. The lower scheme in Figure 2 can be applied to reversible
systems that have no transients. The advantage is the possibility of using symmetric
kernels in force estimation.

We will call a method HMMpq-X-y, if X-method is used in step 2, y-method
is used in Step 1b, and a kernel K ∈ K

p,q is used in Step 1d. Most of the time,
we will suppress the parameters pq. Therefore, HMM-FE-rk4 is a method that uses
forward Euler for macroscale evolution, and a fourth order Runge-Kutta method for
microscale integrator. In Section 3, we will present a few standard HMM schemes
and their stability in more detail. The structure of the HMM-X-y schemes presented
are illustrated by Figure 2.

3 Main example

In this section, we propose three HMM ODE schemes to solve for the slow peri-
odic motion of the inverted pendulum. Recall the original equation of motion for the
pendulum,

lθ̈ = (g+
1
ε

sin(2π
t
ε
))sinθ, (8)

where θ is the angle between the pendulum and the upward vertical position, l is the
length of the pendulum, and g is the gravitational constant. This takes the form of
the model equation (2) where,

1
ε

a(x) = aε(x) :=
1
l
(g+

1
ε

sin(2πx)).

We will compare our approximations to the solution of the averaged equation,

lΘ̈ = gsinΘ− 1
8π2l

sinΘcosΘ, (9)

where Θ = 〈θ〉.
In this case, depending on the initial condition, the inverted pendulum can reach

a maximum angle θmax = cos−1(gl/〈v2〉), subject to the stability criterion. In the
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Figure 2. Schematic pictures of the interaction between the macro (upper lines) and micro
(lower lines) scale computational domains for use with non-symmetric (top) and symmetric
(bottom) kernels.

examples below g = 0.1 and l = 0.05 making θmax ≈ 1.16, although under the initial
conditions θ0 = 0, θ̇0 = −0.4, the pendulum will sweep out a more conservative
angle θδ ≈ 0.23.

We use un(t) = (θn(t),ωn(t)) to denote the solution of the first order system
corresponding to equation (8), for |t− tn| ≤ η/2 with un(tn) = (θn(tn),ωn(tn)) given.
The function θn(t) represents the angle, and ωn(t) = θ̇n(t) is the angular velocity.
Similarly, U(t) = (Θ(t),Ω(t)) denotes the solution to the averaged equation Eq.(9)
for t ≥ t0 with U(t0) = (Θ(t0),Ω(t0)) given, and Ω(t) = Θ̇(t). Discretize the averaged
equation with time-step size H, tn = t0 +nH, n = 1,2,3, . . . and Un = U(tn).

Assume that the HMM strategy described in the previous section does discretize
the average equation (9) by solving (8) locally near every tn. This assumption im-
poses a compatibility condition on the reconstruction step. We need to reconstruct
u0

n = (θ0
n,ω0

n) = R(Θn,Ωn) such that 〈θn(t)〉 ≈ Θn and 〈ωn(t)〉 ≈ Ωn if θn(tn) = θ0
n

and ωn(tn) = ω0
n. It is shown that |Θ(t)−θ(t)| ∼ O(ε) for t ∈ (t0,T ] in [9], so taking

θ0
n = Θn insures that Θn ≈ 〈θn(t)〉. Writing Ωn as the force acting on Θ at tn gives,

Ωn ≈ 〈ωn(t)〉 = ω0
n +

〈

Z t

tn
aε(

s
ε
)sin(θn(s))ds

〉

.

Hence, we can set,
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ω0
n = Ωn −

〈

Z t

tn
aε(

s
ε
)sin(θn(s))ds

〉

≈ Ωn − sin(Θn)
cos(2π tn

ε )

2πl
,

(in the second step we note that sin(θ(s)) varies slowly where s ∈ [tn−ε/2, tn +ε/2])
to ensure Ωn ≈ 〈ωn(t)〉.

The force estimator should yield an approximation to the force of the averaged
equation,

F̃ [un(·)] =

(

F̃(1)[un(·)]
F̃(2)[un(·)]

)

≈
(

Ωn

gsinΘn − 1
(8π2)l sinΘn cosΘn

)

. (10)

Given a kernel K ∈ K
p,q as described in the previous section, let

F̃ [un(·)] =

(

K ∗ωn(·)
K ∗ (g+ 1

ε sin(2π (·)
ε ))sin(θ(·))

)

, (11)

with initial conditions,

u0
n =

(

Θn

Ωn − sinΘn
cos(2πtn/ε)

2πl

)

.

The convolution K ∗g(·) is defined as

(K ∗ f )(t) =

Z tn+ η
2

tn− η
2

Kη(t − s)g(s)ds.

Using this estimated force, it will be possible to prove (in Section 4) that F̃ [un(·)]
approximates (10).

We present three HMM schemes and related numerical results for the inverted
pendulum. The first order macroscopic Forward Euler schemes HMM-FE-* can be
presented as follows:

Algorithm 3.1 HMM-FE-*
Given U0 = (Θ0,Ω0), for n = 0,1,2, ...

Θn+1 = Θn +H · F̃(1)[ωn(·)],
Ωn+1 = Ωn +H · F̃(2)[θn(·)],

where F̃[un(·)] is as defined by Eq(11).

Provided that Ωn is sufficiently accurate, one may directly replace F̃(1)[un(·)] with
Ωn. This is done in practice to reduce computation, and in this case there is no explicit
need to calculate ωn.

Next, a semi-implicit first order HMM-IFE-* scheme is,
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Algorithm 3.2 HMM-IFE-*

Given U0 = (Θ0,Ω0), for n = 0,1,2, ...

Ωn+1 = Ωn +H · F̃(2)[θn(·)]
Θn+1 = Θn +H ·Ωn+1

In this case Ωn+1 is found using the explicit forward Euler step and then used to find
Θn+1.

The final algorithm is a second order HMM-Verlet-* scheme,

Algorithm 3.3 HMM-Verlet-*
Given Un = (Θn,Ωn), for n = 0,1,2, ...

Ωn+ 1
2

= Ωn +
H
2
· F̃(2)[θn(·)],

Θn+1 = Θn +H ·Ωn+ 1
2
,

Ωn+1 = Ωn+ 1
2
+

H
2
· F̃(2)[θn+1(·)],

where θn+1 = Θn+1 is used to initialize the final force estimation.

This final method requires twice the computational effort per macroscale step as the
first order schemes, but the total operation count is still much smaller than that of a
direct calculation (η/ε � T/ε).

Several numerical simulations were completed using the parameters in Table 1.

Table 1. The parameters used for the numerical examples include ε, the initial condition
(Θ0,Ω0), the time interval from t0 to t f , H (intervals indicate the range of values used for
separate calculations to determine error behavior), h, and η (both fixed and scaled with re-
spect to H; r,s, and q in row three are the orders of the macroscale and microscale schemes,
and the smoothness of the kernel respectively, and αh and αη are constants), the exponential
kernel K described in equation (12), the gravitational acceleration g, and the length of the
pendulum arm l.

[t0,T ] H η h
[0.0,50.0] 0.01 10ε ε/10
[0.0,12.0] [0.001,1.0] 50ε ε/50
[0.0,12.0] [0.001,1.0] αηH−s/qε1−1/q αhHs/rε1+2/rη−1/r

In each calculation, either the standard Verlet method (v) or fourth order Runge-
Kutta (rk4) was used to solve the microscopic equations. In all cases, the exponential
kernel
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Kη

(

t
η

)

=
422.11

η
exp



5

(

4(t − tn)
2

η2 −1

)−1


 , (12)

is used (K ∈ K
1,∞) and ε = 10−6, (Θ0,Ω0) = (0.0,−0.4), g = 0.1, l = 0.05.

Figure 3 shows the macroscale behavior of the system over the period from t0 =
0 to T = 50. The parameters used in the calculations are in the first row of Table
1. The HMM schemes HMM-FE-v and HMM-IFE-v are compared to the solution
of the averaged equation (4). At the microscale, the resolution gives about 10 grid
points per oscillation, and the convolution with K is a domain containing about 10
cycles. This is relatively coarse compared to later calculations. The computational
savings, measured by the number of times the force is evaluated and compared to
a traditional first order method using the same step-size h, is on the order of 109.
More importantly, traditional methods cannot maintain sufficient accuracy to carry
the calculation to T = 50.

-0.6
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 0.4
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Evolution Under First Order HMM
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Figure 3. The HMM solution to equation (1); the top graph plots the angle Θ(t) and the lower
graph gives Ω(t). In this case the first order methods HMM-FE-v and HMM-IFE-v were used
to approximate the average motion of the pendulum over a long time interval. The solution of
the averaged equation (4) is also shown for comparison. The parameters used to produce the
graph are those in the first row of Table 1. Three orders of magnitude (ε = 10−6) separate the
period of the slow oscillation apparent in the graphs from the fast oscillation at the microscale.
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The force estimation error for HMM is EHMM = Emicro + EK + Equad [1, 3]
and the local error of the HMM scheme is

En = EH +EHMM .

EH denotes the local truncation error of the macroscopic scheme, and in many cases,
EH dominates and determines the order of En. The convergence of various HMM
schemes as H → 0 was confirmed using the error metric,

E = max
n

√

(Θn −Θ(tn))2 +(Ωn −Ω(tn))2 (13)

where Θ(t) and Ω(t) are values of the solution of the averaged equation. Error calcu-
lations were carried out over the time period [0,12], corresponding to roughly three
oscillations on the macroscale. Figure 4 shows error as a function of 1/H for the
first order methods HMM-FE-* and HMM-IFE-*. The calculations correspond to
row two of Table 1. In all cases η and h are fixed with respect to H, and O(H)
convergence is achieved. In the HMM-IFE-v method however, approximation error
associated with the microscale calculation and convolution dominates the contribu-
tion from EH , for small H.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  100  1000

O(H)
fixed fe-v-exp

fixed fe-rk4-exp
fixed ife-v-exp

fixed ife-rk4-exp

Figure 4. The error as a function of 1/H for the first order schemes HMM-X-y, where X is FE
or IFE and y is v or rk4. The width of the microscale domain and the step-size h are fixed with
respect to H. The parameters used are listed in row two of Table 1. The slopes of the solid
lines indicate decrease at first order in H.

Figure 5 shows the analogous cases for the second order methods HMM-V-*. As
previously, the HMM-X-v method levels off due to other contributions to the overall
error, while HMM-X-rk4 is able to maintain its performance for small H.
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 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

O(H2)
fixed v-v-exp

fixed v-rk4-exp

Figure 5. The error as a function of 1/H for the second order schemes HMM-V-y, where y
is v or rk4. The width of the microscale domain and the step-size h are fixed with respect to
H. The parameters used are listed in row two of Table 1. The slope of the solid line indicates
decrease at second order in H.

Notice that some of the curves in Figures 4 and 5 eventually flatten out as 1/H
increases. These are the situations in which the error EHMM finally dominates the
global error of the computations. It is possible to overcome the flattening of the
HMM-X-v cases by scaling the parameters η and h with H. See [3] for more detail.
By setting η = αηH−s/qε1−1/q and h = αhHs/rε1+2/rη−1/r, where r,s, p, and q are
the orders of the macroscale and microscale schemes, and the number of vanishing
moments and smoothness of the kernel respectively, and αh and αη are constants, the
HMM-V-v scheme is able to maintain second order behavior as shown in Figure 6.
The drawback to scaling is that the constants αh and αη need to be chosen carefully
to place η and h in reasonable ranges.

HMM-V-rk4 maintains its second order performance as H decreases in the case
of fixed η and h. This performance is matched when η and h are scaled as described
above as shown in Figure 7.

4 Generalizations

It is clear from the HMM structure that the stability of an HMM scheme requires that
both the macroscopic and microscopic schemes be stable. However, one must also
establish the consistency of the estimated force in Eq.(11). The notion of consistency
can be defined as in Eq.(6). Consider the general case
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 0.001

 0.01

 0.1

 1

 1  10  100  1000

O(H2)
fixed v-v-exp

scaled v-v-exp 1
scaled v-v-exp 2

Figure 6. A comparison of the error, as a function of 1/H, for the second order schemes
HMM-V-v for fixed and scaled microscale domains and step-sizes. The parameters and scaling
used are listed in rows two and three of Table 1. The slope of the solid line indicates decrease
at second order in H. In the cases where η and h are scaled with respect to H, the method is
able to maintain second order performance, despite the leveling off seen in the fixed case. The
constants αh and αη were chosen such that the scaled and fixed versions of the calculation
would match at H = 0.1 and H = 1. The lines labeled “scaled v-v-exp 1” and “scaled v-v-exp
2” illustrate this recalibration. The constants were reset at these values of H so that the ratio
of η to h would remain reasonable as H decreases.

ẍ = aε(
t
ε
) f (x), x(0) = x0, ẋ(0) = y0 (14)

and the associated averaged equation

Ẍ = 〈aε〉 f (X)−〈v2〉 f (X) f ′(X)+C
√

ε. (15)

The basic assumption is that aε(t) is an ε-periodic smooth function satisfying
〈aε(t)〉 ≤C, and and f ∈Cp with it derivatives uniformly bounded, i.e. || f (k)||∞ <C0
for k = 0, · · · , p. Note that ||aε||∞ can still be of O(ε−1), even if 〈aε(t)〉 ≤C.

These assumptions hold for the inverted pendulum. In this case aε = aε(t/ε),
〈aε(t)〉= g/l, ||x||∞ ≤ xmax ∼O(1), f (x)≈ f (X), and ||ẋ||∞ ≤Ey =

√

2(E0−g)/l ∼
O(1). The constants xmax and E0 are determined by the given parameters and initial
conditions. They may be calculated by considering the effective potential implied by
Eq.(9), V (x) = gcos(x)+ sin2 x/16π2l, and the energy E0 = ly2

0/2+V(x0).

Lemma 4.1 The following results can be found in [3]

1. If g ∈ C(R) is an α-periodic function with zero average, then for any K ∈ K
p,q

and ε > 0, there exists a positive constant Ĉ such that



14 Richard Sharp, Yen-Hsi Tsai, and Bjorn Engquist

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

O(H2)
fixed  v-rk4-exp

scaled v-rk4-exp 1
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Figure 7. A comparison of the error, as a function of 1/H, for the second order schemes
HMM-V-rk4 for fixed and scaled microscale domains and step-sizes. The parameters and
scaling used are listed in rows two and three of Table 1. The slope of the solid line indi-
cates decrease at second order in H. In the case where η and h are scaled with respect to H,
the method is able to match the second order performance of the fixed method. The lines la-
beled "scaled v-rk4-exp 1" and "scaled v-rk4-exp 2" illustrate the recalibration of αh and αη
as in Figure 6.

|Kη ∗g(·/ε)(t)| ≤ Ĉ ·αq(
ε
η

)q||K||W 1,q . (16)

2. Let fε(t) = f (t, t/ε), where f (t,s) is 1-periodic in the second variable and
∂r f (t,s)/∂tr is continuous for r = 0, . . . , p− 1, for any K ∈ K

p,q. Then there
exists constants C1 and C2, independent of ε and η, such that

|Kη ∗ fε(t)− f̄ (t)| ≤C1ηp +C2(
ε
η

)q. (17)

In the discussion which follows we will make use of the velocity

v(
s
ε
) =

Z s

sn
(aε(

σ
ε
)−〈aε〉)dσ, s ∈ [tn −

η
2

, tn +
η
2

]

where sn is chosen so that 〈v〉 = 0 and |sn − tn| ≤ ε. The velocity is related to ẋ and
likewise the scaling of aε implies that ||v||∞ ∼ O(1). Another useful term will be
∆x = x(s)−Xn, where s ∈ [tn − η/2, tn + η/2]. Provided that ||ẋ||∞ is bounded as
shown above, ∆x is small.

Lemma 4.2 (∆x is small) ∆x = x(s)−Xn, for s ∈ [tn −η/2, tn +η/2]

|∆x| ≤C1ε+C2η
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Proof. From [9] we have |x(tn)−Xn| ≤Cε.

|x(s)−Xn| ≤ |x(tn)−Xn|+ |
Z s

tn
ẋ(τ)dτ|

≤ Cε+
η
2
||ẋ||∞.

A more explicit description of ẋ(s) will also be needed in addition to its boundedness.

Lemma 4.3 (Expression for ẋ(s))

ẋ(s) = f (Xn)v(
s
ε
)+ ẋ(sn)+ f (Xn)〈a〉(s− sn)+

Z s

sn
aε(

σ
ε
) f ′(z)∆xdσ,

where f ′(z) is the remainder term of a Taylor expansion.

Proof. By definition

ẋ(s) = ẋ(sn)+

Z s

sn
aε(

σ
ε
) f (x(σ))dσ

= ẋ(sn)+ f (Xn)〈aε〉(s− sn)+ f (Xn)
Z s

sn

(a(
σ
ε
)−〈a〉)dσ+

Z s

sn

a(
σ
ε
) f ′(z)∆xdσ

= ẋ(sn)+ f (Xn)〈aε〉(s− sn)+ f (Xn)v(
s
ε
)+

Z s

sn
a(

σ
ε
) f ′(z)∆xdσ

In the previous section, the problem is recast as a first order system of equations, and
the average force is estimated by using the microscale solution with suitable initial
data. Setting y = ẋ and Yn = 〈y〉, the force

(

F̃(1)

F̃(2)

)

=

(

K ∗ y
K ∗ ẍ

)

,

given the initial data
(

xn
yn

)

=

(

Xn
Yn − f (Xn)〈

R s
tn aε(

σ
ε )dσ〉

)

,

accurately estimates the average force of Eq.(15). The accuracy of the force estimator
F̃(1) may be quickly shown given the initial value yn above.

Theorem 4.4 (Consistency of F̃(1)) Given F̃(1) = K ∗ y, K ∈ K
p,q,

|F̃(1)−Y(tn)| ≤C1
η2

ε
+C2

(

ε
η

)q

Proof. By definition,
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K ∗ y =

Z tn+ η
2

tn− η
2

Kη(tn − s)y(s)ds

=
Z tn+ η

2

tn− η
2

Kη(tn − s)(yn + f (Xn)
Z s

tn
aε(

σ
ε
)dσ+

Z s

tn
aε(

σ
ε
) f ′(z)∆xdσ)ds

= Yn

Z tn+ η
2

tn− η
2

Kη(tn − s)ds+ f (Xn)×
Z tn+ η

2

tn− η
2

Kη(tn − s)
[(

Z s

tn
aε(

σ
ε
)dσ−〈

Z s

tn
aε(

σ
ε
)dσ〉

)

+

Z s

tn
aε

(σ
ε

)

f ′(z)∆xdσ
]

ds

= Yn +O
((

ε
η

)q

,
η
ε
||∆x||∞

)

,

where f ′(z) is the remainder term from the expansion of f . Using the last part of
Lemma 4.1, the second term in the third line above reduces to O(( ε

η)q) but is dom-
inated by a simple error estimate of the last term of line three. The final result is
reached by recalling Lemma 4.2.

We now prove our main result, that the force estimator F̃(2) provides a good approx-
imation of the averaged force Ẍ .

Theorem 4.5 (Consistency of F̃(2)) Given F̃(2) = K∗g, K ∈K
p,q, and g(t) = aε(t/ε) f (x(t)),

then

∣

∣F̃(2)− Ẍ(tn)
∣

∣≤ O
(

η2

ε
,

ε
η

,
εq−1

ηq ,η,
√

ε
)

Proof. Let
G(t) = 〈aε〉 f (X)−

〈

v2〉 f (X) f ′(X). (18)

We show that K ∗g ∼ G.

K ∗g =
Z tn+ η

2

tn− η
2

Kη(tn − s)aε(
s
ε
) f (x(s))ds

= f (Xn)

Z tn+ η
2

tn− η
2

Kη(tn − s)aε(
s
ε
)ds+ f ′(Xn)

Z tn+ η
2

tn− η
2

Kη(tn − s)aε(
s
ε
)∆xds

+

Z tn+ η
2

tn− η
2

Kη(tn − s)aε(
s
ε
) f ′′(z)

∆x2

2
ds

= I1 + I2 + I3,

where f ′′(z) is the remainder term from the expansion of f .
Consider I3,

|I3| ≤
1
2
||aε||∞ · || f ′′||∞ · ||∆x||2∞

Z tn+ η
2

tn− η
2

|Kη(tn − s)|ds

∼ O(||∆x||2∞/ε).
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Using Lemma 4.1, we may estimate I1,

I1 = 〈aε〉 f (Xn)+ f (Xn)

Z tn+ η
2

tn− η
2

K(tn − s)(aε(
s
ε
)−〈aε〉)ds

≤ 〈aε〉 f (Xn)+ || f ||∞ · ||aε||∞
(

ε
η

)q

≤ 〈aε〉 f (Xn)+C
(

εq−1

ηq

)

The estimate of I2 relies again on Lemma 4.1

I2 = 〈aε〉 f ′(Xn)

Z tn+ η
2

tn− η
2

Kη(tn − s)∆xds+ f ′(Xn)

Z tn+ η
2

tn− η
2

Kη(tn − s)(aε(
s
ε
)−〈aε〉)∆xds

= 〈aε〉 f ′(Xn)

Z tn+ η
2

tn− η
2

Kη(tn − s)∆xds+ f ′(Xn)

Z tn+ η
2

tn− η
2

K′
η(tn − s)v(

s
ε
)∆xds

− f ′(Xn)
Z tn+ η

2

tn− η
2

Kη(tn − s)v(
s
ε
)ẋ(s)ds

where we have integrated by parts and v(s/ε) =
R s

s0
(aε(σ/ε)−〈aε〉)dσ, and 〈v〉 = 0.

Using Lemma 4.3 to replace ẋ(s), the last term in the expression above for I2
yields the final part of the average force,

− f ′(Xn)

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

ẋ(s)ds =

− f ′(Xn)ẋ(sn)

Z tn+ η
2

tn− η
2

Kη(tn − s)v(
s
ε
)ds

− f ′(Xn) f (Xn)〈aε〉
Z tn+ η

2

tn− η
2

Kη(tn − s)v(
s
ε
)(s− sn)ds

− f ′(Xn) f (Xn)

Z tn+ η
2

tn− η
2

Kη(tn − s)v2(
s
ε
)ds

− f ′(Xn)

Z tn+ η
2

tn− η
2

Kη(tn − s)v(
s
ε
)

Z s

sn
aε(

σ
ε
) f ′(z)∆xdσds)

= − f ′(Xn) f (Xn)〈v2〉+O
(

εq−1

ηq ,
η2

ε

)

All that remains is to show that the terms of I2 that are not part of G are small.

I2 = − f ′(Xn) f (Xn)〈v2〉+ f ′(Xn)〈aε〉
Z tn+ η

2

tn− η
2

Kη(tn − s)∆xds

+ f ′(Xn)

Z tn+ η
2

tn− η
2

K′
η(tn − s)v(

s
ε
)∆xds+O

(

η2

ε
,

εq−1

ηq

)



18 Richard Sharp, Yen-Hsi Tsai, and Bjorn Engquist

In this expression, the first term is the term of interest and appropriate estimates will
reduce to remaining terms to some small order. Most of these terms are reduced by
a direct application of Hölder’s inequality or the Lemma 4.1, but the estimate of the
final term, involving K ′

η(tn − s), is more involved. First define,

ℑ =

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

∆x(s)ds

By expanding ∆x(s) and applying Lemma 4.1, |ℑ| becomes,

|ℑ| ≤
∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

x(s)ds

∣

∣

∣

∣

∣

+ |〈Xn〉| ·
∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

ds

∣

∣

∣

∣

∣

≤ |ℑ1|+ |〈Xn〉| ·C1

(

εq−1

ηq

)

Integrate Equation 2 twice and replace x(s) in ℑ1 to give,

|ℑ1| ≤
∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

Z s

tn

Z σ

tn

1
ε

a
( γ

ε

)

f̃ (γ)dγdσds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

(C2s+C3)ds

∣

∣

∣

∣

∣

≤ |ℑ2|+C4

(

εq−1

ηq

)

,

again calling on Lemma 4.1 in the final step. Observe that 1
ε a
( s

ε
)

= 〈aε〉+ 1
ε b
( s

ε
)

where ‖b‖∞ ∼ O(1), b(s+1) = b(s), and 〈b〉 = 0, and define,

a[1](s) ≡
R s

tn
1
ε a
(σ

ε
)

dσ = 〈aε〉(s− tn)+β(s)

where β(s+ ε) = β(s) and ‖β‖∞ ≤ ‖b‖∞. It will be important to note that ‖a[1]‖∞ ∼
O(1). With these definitions (and again Lemma 4.1) estimate |ℑ2|,

|ℑ2| ≤
∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

Z s

tn

Z σ

tn
a[1](γ) ˙̃f (γ)dγdσds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

Z s

tn
a[1](σ) f̃ (σ)dσds

∣

∣

∣

∣

∣

+

∣

∣

∣
a[1](tn) f̃ (tn)

∣

∣

∣
·
∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

(s− tn)ds

∣

∣

∣

∣

∣

≤ |ℑ3|+ |ℑ4|+
(

‖a[1]‖∞ · ‖ f̃‖∞

)

C5

(

εq−1

ηq

)
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ℑ3 may be quickly reduced,

|ℑ3| ≤
(

‖K̇‖∞ · ‖v‖∞ · ‖a[1]‖∞ · ‖ ḟ‖∞ · ‖ẋ‖∞

)

η

In similar fashion to the treatment of a[1], break β(s) into a constant part equal to 〈β〉
and an oscillating part with mean 0. Then

a[2](s) =
R s

tn a[1](σ)dσ =
〈aε〉(s− tn)2

2
+ 〈β〉(s− tn)+ εΛ(s)

where Λ(s+ ε) = Λ(s) and ‖Λ‖∞ ∼ O(1). After expanding f̃ (s) about tn,

|ℑ4| =

∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

Z s

tn
a[1](σ)

(

f̃ (tn)+ ˙̃f (z(σ))∆x(σ)
)

dσds

∣

∣

∣

∣

∣

≤
∣

∣ f̃ (tn)
∣

∣ ·
∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

a[2](s)ds

∣

∣

∣

∣

∣

+ |ℑ5|

≤ ‖ f̃‖∞ ·
∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

( 〈aε〉(s− tn)2

2
+ 〈β〉(s− tn)

)

ds

∣

∣

∣

∣

∣

+‖ f̃‖∞ ·
∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

Λ(s)ds

∣

∣

∣

∣

∣

+ |ℑ5|

≤
(

‖ f̃‖∞
)

C6

(

εq−1

ηq

)

+
(

‖ f̃‖∞ · ‖K̇‖∞ · ‖v‖∞ · ‖Λ‖∞
) ε

η
+ |ℑ5|

where Lemma 4.1 is used in the last step. Finally, a straightforward estimate shows,

|ℑ5| =

∣

∣

∣

∣

∣

Z tn+ η
2

tn− η
2

K′
η(tn − s)v

( s
ε

)

Z s

tn
a[1](σ) f̃ (z(σ))∆x(σ)dσds

∣

∣

∣

∣

∣

≤
(

‖K̇‖∞ · ‖v‖∞ · ‖a[1]‖∞ · ‖ f̃‖∞

)

‖∆x‖∞

Combining all of the estimates and Lemma 4.2,

|ℑ| ∼ O
(

εq−1

ηq ,
ε
η

,η
)

and

I2 = − f ′(Xn) f (Xn)〈v2〉+O
(

εq−1

ηq ,η
)

.
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Combining the results for I1, I2, and I3 yields the complete estimate,

|K ∗g− Ẍ(tn)| = |K ∗g−G+C
√

ε|

∼ O(
η2

ε
,

ε
η

,
εq−1

ηq ,η,
√

ε),

where G is defined in (18).

5 Conclusion

The inverted pendulum exhibits stable slow oscillation due to rapid microscale oscil-
latory forcing. This macroscale behavior is captured very well by a set of HMM algo-
rithms for which the computational complexity is much lower than that of standard
numerical methods. The HMM approach requires only O(T/H · η/ε) operations,
which lead to a computational savings of O(H/η) or about 103 for the parameters in
our numerical experiments compared to standard numerical methods. Notably, stan-
dard methods lack sufficient accuracy to solve the model problem here with ε = 10−6

for macroscopic time scales.
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