Homework 1 - Solutions

Problem 1 (Interest Rate Parity). Let $r_{t}^{d}(T)$ denote the domestic (U.S.) interest rate at time t over the time interval $[t, T]$ is the sense that 1 dollar may be borrowed or loaned at time t in exchange for $\$\left(1+r_{t}^{d}(T)\right)$ dollars at time $T>t$. Similiarly, let $r_{t}^{f}(T)$ denote the foreign (Euro zone) interest rate. Let S_{t} denote the spot exchange rate, so 1 euro is worth S_{t} dollars at time t. Let $F_{t}(T)$ denote the forward exhange rate. This means that at time t it is possible to enter into an agreement (with no initial no cost) to buy or sell one euro at time $T>t$ for $F_{t}(T)$ dollars. Find the relationship between the quantities S_{t}, $F_{t}, r_{t}^{f}(T)$ and $r_{t}^{d}(T)$ if the law of one price holds.
Solution: We must have

$$
F_{t}(T)\left(1+r_{t}^{f}(T)\right)=S_{t}\left(1+r_{t}^{d}(T)\right)
$$

Problem 2 (Put-Call Parity). Let $B_{t}(T) \leq 1$ denote the price at time of t for a bond which pays one dollar at time T, and let S_{t} denote the price at time t of a stock which does not pay dividends. A European ${ }^{1}$ call option on a stock with strike K and maturity T is a contract which gives the owner the right to purchase the stock at T for K dollars (regardless of the current price of the stock in the market), and a European put option on a stock with strike K and maturity T is a contract which gives the owner the right to sell the stock at T for K dollars (regardless of the current price of the stock in the market). Let $C_{t}(T, K)$ denote the price at time t for a European call with strike K and maturity T, and let $P_{t}(T, K)$ denote the price at time t for a European put with strike K and maturity K. Assume that the law of one price holds, and find the relationship between $C_{t}(T, K), S_{t}, P_{t}(T, K)$, and $B_{t}(T)$.
Solution: At time T, holding a call with maturity T and strike K, being short a put with maturity T and strike K, and holding K bonds with maturity T is equivalent to holding the stock. The law of one price then implies that $C_{t}(T, K)-P_{t}(T, K)+K B_{t}(T)=S_{t}$.

For the next two problems we will need the following definition.
Definition. If X is a bounded random variable and \mathcal{F} is a σ-field, then we say the random variable Y is a version of $\mathbb{E}^{\mathbb{P}}[X \mid \mathcal{F}]$ if

$$
\mathbb{E}^{\mathbb{P}}\left[\mathbb{I}_{A} X\right]=\mathbb{E}^{\mathbb{P}}\left[\mathbb{I}_{A} Y\right] \quad \forall A \in \mathcal{F}
$$

Problem 3. Let $Z \geq 0$ be a random variable with $\mathbb{E}^{\mathbb{P}}[Z]=1$ and $\mathbb{P}(Z=0)=0$, and let $\left(\mathcal{F}_{t}\right)_{t}$ be a filtration. Define $\mathbb{Q}(A) \triangleq \mathbb{E}^{\mathbb{P}}\left[Z \mathbb{I}_{A}\right]$ and $Z_{t} \triangleq \mathbb{E}^{\mathbb{P}}\left[Z \mid \mathcal{F}_{t}\right]$.

1. Show \mathbb{P} and \mathbb{Q} are equivalent.
2. Show that $\left(Z_{t}\right)_{t}$ is a \mathbb{P}-martingale.

[^0]3. Let X be a bounded random variable. Show that $\mathbb{E}^{\mathbb{P}}\left[Z X \mid \mathcal{F}_{t}\right] / Z_{t}$ is a version of $\mathbb{E}^{\mathbb{Q}}\left[X \mid \mathcal{F}_{t}\right]$.
4. Let M_{t} be a bounded process. Show that $\left(M_{t}\right)_{t}$ is a \mathbb{Q}-martinale if and only if $\left(Z_{t} M_{t}\right)_{t}$ is a \mathbb{P}-martingale.

Solutions:

1. Its clear that $\mathbb{P} \gg \mathbb{Q}$, and if $\mathbb{P}(A)>0$, then $\mathbb{Q}(A)=\mathbb{E}^{\mathbb{P}}\left[Z \mathbb{I}_{A}\right]>0$, so $\mathbb{Q} \gg \mathbb{P}$ by contrapositive.
2. Immediate from the tower property.
3. If we take $A \in \mathcal{F}_{t}$, then we have

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}}\left[\mathbb{I}_{A} \mathbb{E}^{\mathbb{P}}\left[Z X \mid \mathcal{F}_{t}\right] / Z_{t}\right] & =\mathbb{E}^{\mathbb{P}}\left[Z \mathbb{I}_{A} \mathbb{E}^{\mathbb{P}}\left[Z X \mid \mathcal{F}_{t}\right] / Z_{t}\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathbb{E}^{\mathbb{P}}\left[Z \mid \mathcal{F}_{t}\right] \mathbb{I}_{A} \mathbb{E}^{\mathbb{P}}\left[Z X \mid \mathcal{F}_{t}\right] / Z_{t}\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathbb{I}_{A} Z X\right]=\mathbb{E}^{\mathbb{P}}[X]
\end{aligned}
$$

4. If we take $s<t$, then we have

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}}\left[M_{t} \mid \mathcal{F}_{s}\right] & =\mathbb{E}^{\mathbb{P}}\left[Z_{t} M_{t} \mid \mathcal{F}_{s}\right] / Z_{s}, \text { and } \\
M_{s} & =Z_{s} M_{s} / Z_{s}
\end{aligned}
$$

Since \mathbb{P} and \mathbb{Q} are equivalent, we have equality of the left-hand sides \mathbb{Q}-a.s. iff we have equality of the right-hand sides \mathbb{P}-a.s.

Problem 4. Let X_{1}, X_{2}, \ldots be independent random variables ${ }^{2}$ with

$$
\mathbb{P}\left[X_{i}=1\right]=\mathbb{P}\left[X_{i}=-1\right]=1 / 2
$$

Set $\mathcal{F}_{n} \triangleq \sigma\left(X_{i}: i \leq n\right), S_{n} \triangleq \sum_{i \leq n} X_{n}, C=\log _{2}(5 / 4)$, and

$$
Z_{n} \triangleq \frac{2^{S_{n}}}{(5 / 4)^{n}}=2^{S_{n}-n C}=\prod_{i \leq n} 2^{X_{i}-C}
$$

Finally, fix some $N>0$ and define a new measure $\mathbb{Q}(A)=\mathbb{E}^{\mathbb{P}}\left(Z_{N} \mathbb{I}_{A}\right)$.

1. Is $\left(S_{n}\right)_{n}$ a \mathbb{P}-martingale?
2. If $m<n$, and $f: \mathbb{R}^{n-m} \rightarrow \mathbb{R}$ is bounded, show that $\mathbb{E}^{\mathbb{P}}\left[f\left(X_{m+1}, \ldots, X_{n}\right)\right]$ is a version of $\mathbb{E}^{\mathbb{P}}\left[f\left(X_{m+1}, \ldots, X_{n}\right) \mid \mathcal{F}_{m}\right]$.
3. Is $\left(Z_{n}\right)_{n}$ a \mathbb{P}-martingale?

[^1]4. What is $\mathbb{Q}\left(X_{n}=1\right)$?
5. Are X_{1}, X_{2}, \ldots independent under \mathbb{Q} ?
6. Write S_{n} as the sum of \mathbb{Q}-martingale and a predictable process.

Solution: For any set $I \subset \mathbb{N}$, define $\mathcal{X}(I)=\Pi_{i \in I} 2^{X_{i}-C}$, and observe that $\mathbb{E}^{\mathbb{P}}[\mathcal{X}(I)]=\Pi_{i \in I} \mathbb{E}^{\mathbb{P}}\left[2^{X_{i}-C}\right]=1$.

1. Yes. This follows easily from the independence.
2. If $Y \in \mathcal{F}_{m}=\sigma\left(X_{1}, \ldots, X_{m}\right)$, then

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[f\left(X_{m+1}, \ldots, X_{n}\right) Y\right] & =\mathbb{E}^{\mathbb{P}}\left[f\left(X_{m+1}, \ldots, X_{n}\right)\right] \mathbb{E}^{\mathbb{P}}[Y] \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathbb{E}^{\mathbb{P}}\left[f\left(X_{m+1}, \ldots, X_{n}\right)\right] Y\right]
\end{aligned}
$$

3. Yes. If we fix $m<n$ and set $I=\{m+1, m+2, \ldots, n\}$, then we have

$$
\mathbb{E}^{\mathbb{P}}\left[Z_{n} \mid \mathcal{F}_{m}\right]=Z_{m} \mathbb{E}^{\mathbb{P}}\left[\mathcal{X}(I) \mid \mathcal{F}_{m}\right]=Z_{m} \mathbb{E}^{\mathbb{P}}[\mathcal{X}(I)]=Z_{m}
$$

4. $\mathbb{Q}\left(X_{n}=1\right)=4 / 5$. To see this, set $I=\{1,2, \ldots, i-1, i+1, \ldots, n\}$, so $i \notin I$. Then

$$
\begin{aligned}
\mathbb{Q}\left(X_{n}=1\right) & =\mathbb{E}^{\mathbb{P}}\left[\mathbb{I}_{\left\{X_{n}=1\right\}} Z_{N}\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathbb{I}_{\left\{X_{n}=1\right\}} 2^{X_{i}-C} \mathcal{X}(I)\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathbb{I}_{\left\{X_{n}=1\right\}} 2^{X_{i}-C}\right] \mathbb{E}^{\mathbb{P}}[\mathcal{X}(I)] \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathbb{I}_{\left\{X_{n}=1\right\}} 2^{X_{i}-C}\right]=4 / 5
\end{aligned}
$$

5. Yes. Fix and $I \subset \mathbb{N}$ and $J \subset \mathbb{N}$ with $I \cap J=\emptyset$, and set $K=\{1,2, \ldots, N\}$, so $Z_{N}=\mathcal{X}(K)$. If $Y^{I} \in \sigma\left(X_{i}: i \in I\right)$, and $Y^{J} \in \sigma\left(X_{j}: j \in J\right)$, then

$$
\begin{aligned}
\mathbb{E}^{\mathbb{Q}}\left[Y^{I} Y^{J}\right] & =\mathbb{E}^{\mathbb{P}}\left[Y^{I} Y^{J} Z_{N}\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[Y^{I} \mathcal{X}(I \cap K) Y^{J} \mathcal{X}(J \cap K) \mathcal{X}(K \backslash(I \cup J))\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[Y^{I} \mathcal{X}(I \cap K)\right] \mathbb{E}^{\mathbb{P}}\left[Y^{J} \mathcal{X}(J \cap K)\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[Y^{I} \mathcal{X}(I \cap K)\right] \mathbb{E}^{\mathbb{P}}[\mathcal{X}(K \backslash I)] \mathbb{E}^{\mathbb{P}}\left[Y^{J} \mathcal{X}(J \cap K)\right] \mathbb{E}^{\mathbb{P}}[\mathcal{X}(K \backslash J)] \\
& =\mathbb{E}^{\mathbb{P}}\left[Y^{I} Z_{N}\right] \mathbb{E}^{\mathbb{P}}\left[Y^{J} Z_{n}\right]=\mathbb{E}^{\mathbb{Q}}\left[Y^{I}\right] \mathbb{E}^{\mathbb{Q}}\left[Y^{J}\right]
\end{aligned}
$$

6. It enough to notice that $\mathbb{E}^{\mathbb{Q}}\left[X_{i}-3 / 5\right]=0$, so we can write

$$
S_{n}=\underbrace{\left(S_{n}-n(3 / 5)\right)}_{\mathbb{Q} \text {-martingale }}+\underbrace{n(3 / 5)}_{\text {predicatable }}
$$

[^0]: ${ }^{1}$ Note: the use of the name "European" in the description of this option has nothing to do with the exchange rate.

[^1]: ${ }^{2}$ Independent here means that if fix any subsets $I \subset \mathbb{N}$ and $J \subset \mathbb{N}$ with $I \cap J=\emptyset$, and we choose any bounded random variables Y^{I} and Y^{J} where Y^{I} is measurable with respect to $\sigma\left(X_{i}: i \in I\right)$ and Y^{J} is measurable with respect to $\sigma\left(X_{j}: j \in J\right)$, then we have $\mathbb{E}^{\mathbb{P}}\left[Y^{I} Y^{J}\right]=\mathbb{E}^{\mathbb{P}}\left[Y^{I}\right] \mathbb{E}^{\mathbb{P}}\left[Y^{J}\right]$.

