Problem 1. Let W be a Brownian motion under \mathbb{P} , set $M_t = 1 + W_t$, and let $\tau = \inf\{t : M_t \leq 0\}$ denote the first time that M hits 0. Now fix some T > 0, and set $Z = M_{T \wedge \tau}$.

- 1. Show that $\mathbb{E}^{\mathbb{P}}[Z] = 1$.
- 2. Now define $\mathbb{Q}(A) = \mathbb{E}^{\mathbb{P}}(\mathbb{I}_A Z)$. Compute $\mathbb{Q}(\tau \leq T)$?
- 3. Are \mathbb{P} and \mathbb{Q} equivalent?

Solution:

1. Set $N_t = M_{t \wedge \tau}$. Then N is a martingale by the optional stopping theorem, so

$$\mathbb{E}^{\mathbb{P}}[Z] = \mathbb{E}^{\mathbb{P}}[N_T] = \mathbb{E}^{\mathbb{P}}\left[\mathbb{E}^{\mathbb{P}}[N_T \mid \mathcal{F}_0]\right] = \mathbb{E}^{\mathbb{P}}[N_0] = 1$$

2. We have

$$\mathbb{Q}(\tau \le T) = \mathbb{E}^{\mathbb{P}}[\mathbb{I}_{\{\tau \le T\}} M_{T \land \tau}]$$
$$= \mathbb{E}^{\mathbb{P}}[\mathbb{I}_{\{\tau < T\}} M_{\tau}] = 0$$

3. No. $\mathbb{Q}(\tau \leq T) = 0$, but $\mathbb{P}(\tau \leq T) > 0$

Problem 2. Let W be a Brownian motion under \mathbb{P} , let Z solve $dZ_t = -\lambda_t Z_t dW_t$, and set $\widehat{W}_t = W_t + \int_0^t \lambda_s ds$.

- 1. Compute $d(1/Z)_t$ to show that process 1/Z can be written as a stochastic integral against the process \widehat{W}_t
- 2. Suppose that $dM_t = H_t dW_t$. Compute $d(M/Z)_t$ to show that M/Z can be written as a stochastic integral against the process \widehat{W}_t .
- 3. Let (\mathcal{F}_t) denote the filtration generated by W, and let \mathbb{Q} denote the measure with $d\mathbb{Q}/d\mathbb{P} = Z_T$. If all processes are adapted to \mathcal{F} , argue that every \mathbb{Q} -martingale can be written as a stochastic integral against \widehat{W}_t over the time interval [0, T].

Solutions:

- 1. We have $d(1/Z_t) = (\lambda_t/Z_t) d\widehat{W}_t$.
- 2. We have $d(M/Z)_t = \frac{H_t + \lambda_t M_t}{Z_t} d\widehat{W}_t$.
- 3. Let \widehat{M} be a \mathbb{Q} martingale. Then MZ is a \mathbb{P} martingale and we can find H such that $M_t Z_t = C + \int_0^t H_s \, \mathrm{d}s$. The previous part then show that we can write M = MZ/Z as a stochastic integral against \widehat{W} .

Problem 3 (Brownian Representation). Let (W_t) be a Brownian motion (with $W_0 = 0$) and let $(\mathcal{F}_t)_t$ denote the filtration generated by W. Now fix some T > 0, and set $X_t = \mathbb{E}^{\mathbb{P}}[W_T^3 | \mathcal{F}_t]$, so X_t is a martingale. Since W has the predictable representation property, there exists a constant C and an integrand H such that $X_t = C + \int_0^t H_u dW_u$. We would like to find C and H. One approach is outlined below:

1. Use Itô's lemma to write W_T^3 in the form

$$W_T^3 = W_t^3 + \int_t^T A_u \mathrm{d}u + \int_t^T B_u \mathrm{d}W_u$$

for appropriate A and B.

- 2. Use the previous expression to compute $\mathbb{E}^{\mathbb{P}}[W_T^3 | \mathcal{F}_t]$ explicitly. You may pull integrals over time out of conditional expectations (which are essentially integrals over Ω). This should be enough to determine C
- 3. Set $f(t, W_t) = \mathbb{E}^{\mathbb{P}}[W_T^3 | \mathcal{F}_t]$ and use the explicit formula above and compute $df(t, W_t)$ to find H.

Solution:

- 1. We have $A_t = 3W_t$ and $B_t = 3W_t^2$.
- 2. We notice that

$$\mathbb{E}^{\mathbb{P}}[W_T^3 \mid \mathcal{F}_t] = W_t^3 + \mathbb{E}^{\mathbb{P}}\left[\int_t^T 3W_u \mathrm{d}u + \int_t^T 3W_u^3 \mathrm{d}W_u \mid \mathcal{F}_t\right]$$
$$= W_t^3 + \int_t^T 3\mathbb{E}^{\mathbb{P}}[W_u \mid \mathcal{F}_t] \mathrm{d}u$$
$$= W_t^3 + \int_t^T 3W_t \mathrm{d}u = W_t^3 + 3(T-t)W_t.$$

This means that $C = \mathbb{E}^{\mathbb{P}}[W_T^3] = 0.$

3. With $f(t, x) = x^3 + 3(T - t)x$, we have $df(t, W_t) = 3(W_t^2 + (T - t))dW_t$, so $H_t = 3(W_t^2 + (T - t))$.