Homework 2 - Solutions

Problem 1. Let W be a Brownian motion under \mathbb{P}, set $M_{t}=1+W_{t}$, and let $\tau=\inf \left\{t: M_{t} \leq 0\right\}$ denote the first time that M hits 0 . Now fix some $T>0$, and set $Z=M_{T \wedge \tau}$.

1. Show that $\mathbb{E}^{\mathbb{P}}[Z]=1$.
2. Now define $\mathbb{Q}(A)=\mathbb{E}^{\mathbb{P}}\left(\mathbb{I}_{A} Z\right)$. Compute $\mathbb{Q}(\tau \leq T)$?
3. Are \mathbb{P} and \mathbb{Q} equivalent?

Solution:

1. Set $N_{t}=M_{t \wedge \tau}$. Then N is a martingale by the optional stopping theorem, so

$$
\mathbb{E}^{\mathbb{P}}[Z]=\mathbb{E}^{\mathbb{P}}\left[N_{T}\right]=\mathbb{E}^{\mathbb{P}}\left[\mathbb{E}^{\mathbb{P}}\left[N_{T} \mid \mathcal{F}_{0}\right]\right]=\mathbb{E}^{\mathbb{P}}\left[N_{0}\right]=1
$$

2. We have

$$
\begin{aligned}
\mathbb{Q}(\tau \leq T) & =\mathbb{E}^{\mathbb{P}}\left[\mathbb{I}_{\{\tau \leq T\}} M_{T \wedge \tau}\right] \\
& =\mathbb{E}^{\mathbb{P}}\left[\mathbb{I}_{\{\tau \leq T\}} M_{\tau}\right]=0
\end{aligned}
$$

3. No. $\mathbb{Q}(\tau \leq T)=0$, but $\mathbb{P}(\tau \leq T)>0$

Problem 2. Let W be a Brownian motion under \mathbb{P}, let Z solve $\mathrm{d} Z_{t}=-\lambda_{t} Z_{t} \mathrm{~d} W_{t}$, and set $\widehat{W}_{t}=W_{t}+\int_{0}^{t} \lambda_{s} \mathrm{~d} s$.

1. Compute $\mathrm{d}(1 / Z)_{t}$ to show that process $1 / Z$ can be written as a stochastic integral against the process \widehat{W}_{t}
2. Suppose that $\mathrm{d} M_{t}=H_{t} \mathrm{~d} W_{t}$. Compute $\mathrm{d}(M / Z)_{t}$ to show that M / Z can be written as a stochastic integral against the process \widehat{W}_{t}.
3. Let $\left(\mathcal{F}_{t}\right)$ denote the filtration generated by W, and let \mathbb{Q} denote the measure with $\mathrm{d} \mathbb{Q} / \mathrm{d} \mathbb{P}=Z_{T}$. If all processes are adapted to \mathcal{F}, argue that every \mathbb{Q}-martingale can be written as a stochastic integral against \widehat{W}_{t} over the time interval $[0, T]$.

Solutions:

1. We have $\mathrm{d}\left(1 / Z_{t}\right)=\left(\lambda_{t} / Z_{t}\right) \mathrm{d} \widehat{W}_{t}$.
2. We have $\mathrm{d}(M / Z)_{t}=\frac{H_{t}+\lambda_{t} M_{t}}{Z_{t}} \mathrm{~d} \widehat{W}_{t}$.
3. Let \widehat{M} be a \mathbb{Q} martingale. Then $M Z$ is a \mathbb{P} martingale and we can find H such that $M_{t} Z_{t}=C+\int_{0}^{t} H_{s} \mathrm{~d} s$. The previous part then show that we can write $M=M Z / Z$ as a stochastic integral against \widehat{W}.

Problem 3 (Brownian Representation). Let $\left(W_{t}\right)$ be a Brownian motion (with $W_{0}=0$) and let $\left(\mathcal{F}_{t}\right)_{t}$ denote the filtration generated by W. Now fix some $T>0$, and set $X_{t}=\mathbb{E}^{\mathbb{P}}\left[W_{T}^{3} \mid \mathcal{F}_{t}\right]$, so X_{t} is a martingale. Since W has the predictable representation property, there exists a constant C and an integrand H such that $X_{t}=C+\int_{0}^{t} H_{u} \mathrm{~d} W_{u}$. We would like to find C and H. One approach is outlined below:

1. Use Itô's lemma to write W_{T}^{3} in the form

$$
W_{T}^{3}=W_{t}^{3}+\int_{t}^{T} A_{u} \mathrm{~d} u+\int_{t}^{T} B_{u} \mathrm{~d} W_{u}
$$

for appropriate A and B.
2. Use the previous expression to compute $\mathbb{E}^{\mathbb{P}}\left[W_{T}^{3} \mid \mathcal{F}_{t}\right]$ explicitly. You may pull integrals over time out of conditional expectations (which are essentially integrals over Ω). This should be enough to determine C
3. Set $f\left(t, W_{t}\right)=\mathbb{E}^{\mathbb{P}}\left[W_{T}^{3} \mid \mathcal{F}_{t}\right]$ and use the explicit formula above and compute $\mathrm{d} f\left(t, W_{t}\right)$ to find H.

Solution:

1. We have $A_{t}=3 W_{t}$ and $B_{t}=3 W_{t}^{2}$.
2. We notice that

$$
\begin{aligned}
\mathbb{E}^{\mathbb{P}}\left[W_{T}^{3} \mid \mathcal{F}_{t}\right] & =W_{t}^{3}+\mathbb{E}^{\mathbb{P}}\left[\int_{t}^{T} 3 W_{u} \mathrm{~d} u+\int_{t}^{T} 3 W_{u}^{3} \mathrm{~d} W_{u} \mid \mathcal{F}_{t}\right] \\
& =W_{t}^{3}+\int_{t}^{T} 3 \mathbb{E}^{\mathbb{P}}\left[W_{u} \mid \mathcal{F}_{t}\right] \mathrm{d} u \\
& =W_{t}^{3}+\int_{t}^{T} 3 W_{t} \mathrm{~d} u=W_{t}^{3}+3(T-t) W_{t}
\end{aligned}
$$

This means that $C=\mathbb{E}^{\mathbb{P}}\left[W_{T}^{3}\right]=0$.
3. With $f(t, x)=x^{3}+3(T-t) x$, we have $\mathrm{d} f\left(t, W_{t}\right)=3\left(W_{t}^{2}+(T-t)\right) \mathrm{d} W_{t}$, so $H_{t}=3\left(W_{t}^{2}+(T-t)\right)$.

