UNIVERSITY OF TEXAS AT AUSTIN

HW Assignment 3

Problem 3.1. For a utility function $U : \mathbb{R} \to \mathbb{R}$ with range \mathbb{R} , we define the **certainty** equivalent $c(U, X) \in \mathbb{R}$ of the random variable X with $U(X) \in \mathbb{L}^1$, as the (unique) solution to the following, indifference, equation

$$U(c(U,X)) = \mathbb{E}[U(X)].$$

A utility function $U : \mathbb{R} \to \mathbb{R}$ is said to exhibit **decreasing absolute risk aversion** if the function r_U is strictly decreasing. Set $\mathcal{X} = \{X : U(x + X) \in \mathbb{L}^1, \forall x \in \mathbb{R}\}$. Show that the following are equivalent for $U : \mathbb{R} \to \mathbb{R}$ with range \mathbb{R} :

- (1) U exhibits decreasing relative risk aversion,
- (2) the function x c(U, x + X) is decreasing in x, for each $X \in \mathcal{X}$
- (3) for all $x_1 < x_2 \in \mathbb{R}$ there exists a concave function $\psi : \mathbb{R} \to \mathbb{R}$ such that $u(x_1 + z) = \psi(u(x_2 + z))$.

(Note: assume enough differentiability, if you want to make mathematics simpler.)

Problem 3.2. Find an example of a preference relation that does not admit an expectedutility representation.

Problem 3.3. Suppose that \leq is a preference relation on the set \mathcal{X} of all random variables on Ω which admits an expected-utility representation. Show that it satisfies the following property (called the **sure-thing principle**):

For any choice of $X_1, X_2, X_1, X_2 \in \mathcal{X}$ and $A \subseteq \Omega$ such that

•
$$X_1 = X_2$$
 and $\hat{X}_1 = \hat{X}_2$ on A and

•
$$X_1 = \hat{X}_1$$
 and $X_2 = \hat{X}_2$ on A^c ,

we have

$$X_1 \preceq X_2 \Leftrightarrow \hat{X}_1 \preceq \hat{X}_2.$$

(Note: It can be shown that a converse holds under certain, additional, regularity assumptions: preference+sure-thing \Rightarrow expected utility.)