UNIVERSITY OF TEXAS AT AUSTIN

HW Assignment 4

Problem 4.1. Show that the set $Q(\bar{D})$ of arbitrage-free prices of the contract with dividend process \bar{D} is given by

$$Q(\bar{D}) = \{ \mathbb{E}^{\pi}[\bar{D}|\cdot] : \pi \in \mathcal{M} \},\$$

where \mathcal{M} denotes the set of all present-value vectors. Conclude that a financial market is complete if and only if each dividend process admits exactly one arbitrage-free price.

Problem 4.2 (Prices as discounted expectations). Let \mathcal{F} be an arbitrage free financial market, and let π be a process of present-value prices. For each non-terminal node ξ , define $\delta(\xi;\pi) = \frac{1}{\pi(\xi)} \sum_{\xi'>c\xi} \pi(\xi')$ (where the sum is taken over all children of ξ), and set $r(\xi;\pi) = 1/\delta(\xi;\pi) - 1$. The (not-necessarily-positive) quantity $r(\xi;\pi)$ is called the π -implied short rate at ξ .

- (1) Suppose that there exists a short-lived bond for the node ξ with price $q(\xi)$. Then $\delta(\xi; \pi) = q(\xi)$, for all $\pi \in \mathcal{M}$.
- (2) Give an example of a situation where $r(\xi; \pi)$ depends on π .
- (3) A process X is called an \mathcal{N} -martingale density, if $X(\xi) > 0$ for all $\xi \in \mathcal{N}$ and

$$X(\xi) = \sum_{\xi' > c\xi} X(\xi'),$$

for all non-terminal nodes ξ . An \mathcal{N} -martingale density X is said to be **normalized** if $X(\xi_0) = 1$. Show that for each normalized \mathcal{N} -martingale density there exists a unique probability - denoted by \mathbb{Q}_X - on (Ω, \mathcal{A}_T) with the property that for $A \in \mathcal{A}_t$, $t = 0, \ldots, T$, we have

$$\mathbb{Q}_X(A) = \sum X(\xi),$$

where the sum is taken over all nodes ξ such that $(t, \omega) \in \xi$ for some $\omega \in A$.

- (4) A process Y is called *N*-predictable if Y(ξ) = X(ξ⁻) for some (adapted) process X and all non-initial nodes ξ (where ξ⁻ denotes the parent of the non-terminal node ξ). Characterize all processes X which are both *N*-predictable and *N*-martingale densities.
- (5) Show that, for each $\pi \in \mathcal{M}$, there exists a unique normalized martingale density X_{π} and a predictable process β with $\beta_{\pi}(\xi_0) = 1$ such that

$$\pi(\xi) = \beta(\xi) X_{\pi}(\xi).$$

The process β is called the π -implied discount process, and the measure $\mathbb{Q}_{\pi} = \mathbb{Q}_{X_{\pi}}$ is called the **martingale measure** (corresponding to π). What is the relation between β and r?

(6) For a dividend process D, let \hat{D} be the π -discounted version of D, which is given by $\hat{D}(\xi) = \beta(\xi)D(\xi)$. Let the random variable C on (Ω, \mathcal{A}_T) be defined by $C(\omega) = \sum \hat{D}(\xi)$, where the sum is taken over all ξ such that $(t, \omega) \sim \xi$ for some $t = 0, \ldots, T$. Show that

$$\mathbb{E}^{\pi}[D|\xi_0] = \mathbb{E}^{\mathbb{Q}_{\pi}}[C],$$

HW: 4

where the right-hand side is the (proper) expectation of the random variable C with respect to the measure \mathbb{Q}_{π} .

Problem 4.3 (The Cox-Ross-Rubinstein Model). In this model $T \ge 1$ and $\Omega = \{(x_1, \ldots, x_T) : x_i \in \{1 - b, 1 + a\}, i = 1, \ldots, T\}$, where a, b > 0, b < 1. Set

$$X_0(\omega) = q_0$$
, and $X_t(\omega) = \prod_{i=1}^t x_i$, where $\omega = (x_1, \dots, x_T)$,

for t = 1, ..., T. Let \mathcal{A}_t be the algebra generated by $X_0, X_1, ..., X_t$ (since X is, by construction, adapted to $(\mathcal{A}_0, ..., \mathcal{A}_T)$ we will interpret it as a function on the nodes without explicit mention). The financial market \mathcal{F} (which defines the Cox-Ross-Rubinstein model) is based on Ω , the filtration $(\mathcal{A}_0, ..., \mathcal{A}_T)$, and 2^T contracts:

• A "stock": with the dividend process D given by

$$D_{\text{stock}}(\xi) = \begin{cases} X(\xi), & \xi \text{ is terminal} \\ 0, & \text{otherwise,} \end{cases}$$

• A system of **short-lived bonds:** for each non-terminal node ξ , there is a contract $D_{\text{bond}-\xi}$, issued at ξ , with the dividend process

$$D_{\text{bond}-\xi}(\xi') = \begin{cases} 1, & \xi' >_c \xi, \\ 0, & \text{otherwise,} \end{cases}$$

The prices of these contracts are fixed and given by

•

$$q_{\text{stock}}(\xi) = \begin{cases} X(\xi), & \xi \text{ is } not \text{ terminal} \\ 0, & \text{otherwise,} \end{cases}$$

• A system of "short-lived bonds". For each non-terminal node ξ , there is a contract $D_{\text{bond}-\xi}$, issued at ξ , with the dividend process

$$q_{\text{bond}-\xi}(\xi') = \begin{cases} 1/(1+r), & \xi' = \xi, \\ 0, & \text{otherwise,} \end{cases}$$

for some r > 0.

Test your understanding of the whole theory by answering the following questions:

- (1) For which values of a, b and r is the market arbitrage-free?
- (2) Assume from now on that a, b and r are such that the market is arbitrage-free. Show that there is a unique process of present-value prices, and that the market is complete.
- (3) Decompose the (unique) π into a product of a normalized martingale density and the implied discount process. In particular, what is the value of $\mathbb{Q}_{\pi}(\omega)$ for $\omega \in \Omega$?
- (4) Let \overline{D} be a divided process such that (and we assume this only for simplicity) $\overline{D}(\xi) = 0$, unless ξ is terminal. Assume, further, that \overline{D}_T is \mathcal{A}_T -measurable, i.e., that there exists a function $\phi : \mathbb{R} \to \mathbb{R}$ such that $\overline{D}(\xi) = \phi(X(\xi))$, for non-terminal ξ . Show

that the (unique) arbitrage-free price of \overline{D} , given, as we know, by $\mathbb{E}^{\pi}[\overline{D}|\xi_0]$, can be written as

$$(1+r)^{-T} \sum_{k=0}^{T} {T \choose k} q_{up}^{k} q_{down}^{T-k} \phi \Big(q_0 (1+a)^k (1-b)^{T-k} \Big),$$

where $q_{up} = \frac{r+b}{a+b}$ and $q_{down} = \frac{a-r}{1+b}$. (5) (*) Assume now that $T_n = \tau n$, $a_n = \mu \frac{1}{n} + \sigma \frac{1}{\sqrt{n}}$, $b_n = -\mu \frac{1}{n} + \sigma \frac{1}{\sqrt{n}}$ and $r_n = \rho \frac{1}{n}$, so that the times between periods become smaller and smaller, but then so do the magnitudes of price changes between them. Assume, also, that ϕ is bounded and continuous. Pass to the limit in the formula above as $n \to \infty$ (use the Moivre-Laplace formula which is a special case of the Central Limit Theorem), and show that it converges towards an expectation of a function (related to ϕ) of a normal random variable. When $\phi(x) = (K - x)^+$, you should get the celebrated Black-Scholes formula for the arbitrage-free price of a put option with strike K.