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This talk is about 

categorification of knot invariants.

I will explain how

two geometric approaches to the problem,

and the relationship between them,

follow from string theory.



The approaches we will find,

have the same flavor as those in the works of

Kamnitzer and Cautis,

Seidel and Smith, 

Thomas and Smith,

Webster

although details differ.



There is another approach 

with the same string theory origin,

due to Witten. 

We will see that string theory leads to a unified framework 

for knot categorification.



To begin with, it is useful to recall

some well known aspects of knot invariants.



To get a quantum invariant of a link K

one starts with a Lie algebra,

and a coloring

of its strands by representation of       . 



The link invariant,

in addition to the choice of a group

and

representations,

depends on one parameter 



Witten showed in his famous ’89 paper, 

that the knot invariant

comes from

 Chern-Simons theory with gauge group based on the Lie algebra 

and (effective) Chern-Simons level



In the same paper, he showed that

underlying Chern-Simons theory is a

 two-dimensional conformal field theory,

with

affine current algebra symmetry.



The space conformal blocks of

on a Riemann surface        with punctures

is the Hilbert space of Chern-Simons theory on

x x x



To eventually get invariants of knots in       or 3,

we want to take 

to be a complex plane with punctures,

xx
x

or equivalently, a punctured infinite cylinder.



The corresponding           conformal blocks 

are correlators of chiral vertex operators:

x
x

x



Punctures at               and         ,

are labeled by a pair of highest weight vectors 

of  Verma module  representations of the algebra.

x x
x

x

and



x x x x

associated to a finite dimensional representation      

A chiral vertex operator

of          adds a puncture at a finite point on         



It acts as an intertwiner

between a pair of  Verma module representations,

x x x x



The space  of conformal blocks corresponding to

is a vector space.  

Its dimension is that of a subspace of representation

          

when one sews the

whose weight is 



The finite dimensional space of conformal blocks

comes from choices of intermediate Verma module representations

when one sews the chiral vertex operators together.

x x x



The Chern-Simons path integral on

in the presence of a braid

gives the corresponding

quantum braid invariant. 



The braid invariant one gets 

is a matrix that transports

the space of conformal blocks,

along the braid      .  



To understand what it means to the transport the space of conformal blocks

along a path corresponding to the braid 

a different perspective on 

conformal blocks is helpful. 



Instead of characterizing            conformal blocks 

in terms of vertex operators and sewing,

we can equivalently describe them as solutions to a differential equation.

x x
x

x



The equation solved by conformal blocks of            ,     

   

is the Knizhnik-Zamolodchikov equation:



The quantum invariant of the braid

is the monodromy matrix of the Knizhnik-Zamolodchikov equation,

along the path in the parameter space corresponding to 

the braid        .



The monodromy problem of the           Knizhnik-Zamolodchikov equation 

They showed that its monodromy matrices are given in terms of the 

R-matrices of the quantum group 

was solved by Drinfeld and Kohno in ’89.

corresponding to 



Action by monodromies

turns the space of conformal blocks into a module for the 

quantum group in representation, 

The representation          is viewed here as a representation of         ,

and not of         ,  but we will denote by the same letter. 



The monodromy action   

is irreducible only in the subspace of

of fixed weight      

which in our setting equals to    

x x
x

x



This perspective leads to

quantum invariants of not only braids

but knots and links as well.



Any  link  K can be represented as a 

a closure of some braid      . .

=



The corresponding quantum link invariant is the matrix element 

of  the braiding matrix,

taken between a pair of conformal blocks



correspond to the top and the bottom of the picture.

The pair of conformal blocks

that define the matrix element



The conformal blocks 

are specific solutions to KZ equations 

which describe pairwise fusing vertex operators

 

into copies of trivial representation. 

Necessarily they correspond to subspace of               ,     

of weight         .



To categorify quantum knot invariants,

one would like to associate 

to the space conformal blocks one obtains at a fixed time slice

a   bi-graded category,

and to each conformal block an object of the category.

x x x



To braids,

one would like to associate 

functors between the categories 

corresponding to the

top and the bottom.



Moreover,

we would like to do that in the way that

recovers the quantum knot invariants upon 

de-categorification.



One typically proceeds by coming up with a category,

and then one has to work to prove

that de-categorification gives

the quantum knot invariants one aimed to categorify.

 



In the two of the approaches 

we are about to describe,

the second step is automatic.



The starting point for us is 

a geometric realization of conformal blocks,

with origin in supersymmetric quantum field theory.



This is not readily available.

We will eventually find not

one but two such interpretations.

However, to explain how they come about, 

and to find a relation between them,

it is useful to ask a slightly different question first.



 q-conformal blocks of 

Namely, we will first ask for a 

geometric interpretation of

the quantum affine algebra that is a q-deformation of

the affine Lie algebra.



 are q-deformations of conformal blocks of         , 

The  q-conformal blocks of 

which I. Frenkel and Reshetikhin

discovered in the ’80’s.



They are defined as a correlation functions

 

of chiral vertex operators, 

like in the conformal case, except all the operators are q-deformed.

x x
x

x



Just like conformal blocks of 

the q-conformal blocks of 

are solutions of the quantum Knizhnik-Zamolodchikov equation.

may be defined as solutions of the Knizhnik-Zamolodchikov equation,



The quantum Knizhnik-Zamolodchikov (qKZ) equation 

is a difference equation

which reduces to the  Knizhnik-Zamolodchikov equation   

in the conformal limit.



It turns out that q-conformal blocks of

have a geometric realization,

and one that, most directly, originates from a 

supersymmetric gauge theory.



Let           be a simply laced Lie algebra so in particular

and of the following types:



The non-simply laced cases can be treated,

but I will not have time to describe this in this talk.



 three dimensional quiver gauge theory

The gauge theory we need

V1

W1

V2

W2

is a

with N=4 supersymmetry.



defining the theory, is a collection of nodes and arrows between them,

 based on the Dynkin diagram of 

 The quiver diagram

V1

W1

V2

W2



The quiver encodes 

the gauge symmetry and global symmetry groups

and representations of matter fields charged under it

V1

W1

V2

W2



The ranks of the vector spaces  

are determined by a pair of weights  

of the representation               ,          

which the q-conformal blocks transform in:

                 

Wa

Va



of the three dimensional quiver gauge theory on

        

The solutions to qKZ equation 

turn out to be supersymmetric partition functions 

V1

W1

V2

W2

where 



To define the supersymmetric partition function we need,

one wants to use the 

R-symmetry of the 3d N=4 theory.



All the ingredients in the q-conformal block

have a gauge theory interpretation.

    

x x
x

x



 of the qKZ equation is the parameter by which         rotates,

To preserve supersymmetry, 

this is accompanied by a holonomy around the        , 

of  the                        R- symmetry.

The step  

as we go around the            in 



The parameter          in 

is the holonomy around the          in               ,

of the off-diagonal



The  holonomies associated to masses of fundamental hypermultiplets

are the positions of vertex operators,

        

      

V1

W1

V2

W2



        

is related to the holonomy                              of global symmetry

associated with Fayet-Iliopoulos parameters:

The highest weight vector of  Verma module          in   



The partition function

of the quiver gauge theory on   

          

      

has a precise mathematical formulation,           

in terms of

quantum K-theory  

of the Nakajima quiver variety       .



The quiver variety     ,        

is the Higgs branch of the gauge theory:



Quantum K-theory 

of Nakajima quiver varieties,

generalizing their Gromov-Witten theory

was developed a few years ago

by Okounkov (with Maulik and Smirnov).

The theory is a variant of the theory

Givental put forward earlier, but uses crucially the fact

that these are holomorphic-symplectic varieties.



The supersymmetric partition function of the gauge theory on 

for                  is the K-theoretic “vertex function”

This is the  generating function of equivariant, K-theoretic counts 

of “quasi-maps” (i.e. vortices)

of all degrees.

 



One works equivariantly with respect to:

is the maximal torus  of  rotations of  

that preserve the symplectic form,  and           scales it,  

and with respect to

which rotates the domain curve. 



A key result of the theory,

due to Okounkov, 

is that the K-theoretic vertex function of X

solves the quantum Knizhnik-Zamolodchikov equation 

corresponding to



Which solution of the qKZ equation

 

computes depends on the choice of data 

at infinity of 

This choice means vertex functions should be thought of as valued in 



While                        

solve the quantum Knizhnik-Zamolodchikov equation, 

they are not the  q-conformal blocks of         .



   

q-conformal blocks are the solutions of the qKZ equation

which are holomorphic  in a chamber such as

corresponding to choice of ordering of vertex operators in        

x x
x

x

This is a choice of equivariant parameters of      ,

 or mass parameters of the gauge theory.



Instead,

are holomorphic in a chamber  of Kahler moduli of X,

and Fayet-Iliopoulus parameters of the gauge theory.

x x
x

x



So, this does not give an answer to the 

question we are after,

namely to find a geometric interpretation of conformal blocks,

even after q-deformation.



It turns out that

is not the only geometry that underlies solutions to

the qKZ equation corresponding to our problem.

There is a second one,

which turns out to the relevant one. 



There are two natural holomorphic symplectic

varieties one can associate to 

the 3d quiver gauge theory

with quiver

V1

W1

V2

W2

and N=4 supersymmetry.



    One such variety is 

     the Nakajima quiver variety

.

This is the 

Higgs branch of vacua

of the 3d gauge theory.



The other is the Coulomb branch,

which we will denote by



The Coulomb branch

of our gauge theory is a certain intersection of slices in

the (thick) affine Grassmanian of G.

 

Here,   G is the adjoint form of a Lie group with Lie algebra   g.  

Braverman, Finkelberg, Nakajima 

Bullimore, Dimofte, Gaiotto 



where            are the pair of weights defining the quiver      ,

with

is an intersection of a pair of orbits

in the affine Grassmanian of complex dimension

The Coulomb branch 



The two holomorphic symplectic varieties

in general live in different dimensions, 

and between them,

the roles of Kahler (Fayet-Illiopolus) and equivariant (mass) parameters, 

get exchanged:

,



and the Kahler (FI) parameter of 

The positions of vertex operators on

x x
x

x

 are  equivariant (mass) parameters of 



Another way to think about 

is as the moduli space of

-monopoles,

on 

where          is the charge of singular monopoles, 

and          the total monopole charge.

Hanany, Witten



 In this language, the positions of vertex operators on

x x
x

x

are the (complexified) positions of singular monopoles on  

x x x x

in                   .

(all monopoles sit at the origin of          to preserve the          symmetry)



Three dimensional mirror symmetry

leads to relations between certain computations on

and

This is referred to as 

“symplectic duality”,

in some of the literature that explores it.



Physically, one expects to be able to compute the supersymmetric

partition function of the gauge theory on

by starting with the sigma model of either 

 or

with suitable boundary conditions at infinity.



We prove that, whenever it is defined,

the K-theoretic vertex function of 

solves the same qKZ equation

as 

the K-theoretic vertex function of       . 



From perspective of 

the qKZ equation

  

is the quantum difference equation since the       -variables 

are the Kahler variables of           .



The “quantum difference equation"

is the K-theory analogue of

of the quantum differential equation of Gromov-Witten theory.

Here “quantum” refers to the 

quantum cohomology cup product on

used to define it.



While 

and 

solve the same qKZ equation,

they provide two different basis of its solutions.



While 

does the opposite.

leads to solutions of qKZ which are analytic in 

-variables, but not in       -variables,

Kahler for 

and

equivariant for         

Kahler for  

and 

equivariant for        



Now we can return to  

our main interest, 

which is obtaining a geometric realization of

conformal blocks.



 The conformal limit is the limit which takes 

 

and the qKZ equation to the corresponding KZ equation.

It is amounts to 

This corresponds to keeping the data of the conformal block fixed.



very differently,

since it treats the 

Kahler for 

        
Kahler for  

       

differently:

 The conformal limit treats

and 

- and the      -variables,



The conformal limit, 

is not a geometric limit from perspective of the Higgs branch

since the       -variables 

which go to                  in the limit are its Kahler variables.

The limit results in a badly singular space,



By contrast, from perspective of the Coulomb branch,

the limit is perfectly geometric.

Its Kahler variables are  the      -variables,

x x
x

x

the positions of vertex operators,

which are kept fixed.



the conformal limit,

is the cohomological limit    

taking:

From perspective of            ,



The Knizhnik-Zamolodchikov equation 

we get in the conformal limit

becomes the quantum differential equation

of       .



It follows that conformal blocks of

have a geometric interpretation as

cohomological vertex functions 

   computed by equivariant Gromov-Witten theory of    



The cohomological vertex function counts holomorphic maps

equivariantly with respect to

where one scales the holomorphic symplectic form of            by



The domain curve

is best thought of as an infinite cigar  with an         boundary at infinity. 

The boundary data is a choice of a K-theory class



The K-theory class 

inserted at infinity of           determines which solution of

the quantum differential equation,  and thus which conformal block,

computes.



Underlying 

the Gromov-Witten theory of  

        ,

is a two-dimensional supersymmetric sigma model with

        as a target space.



The geometric interpretation of 

conformal blocks of 

in terms of the supersymmetric sigma model to

has far more information than the conformal blocks themselves.



The physical meaning of 

is the partition function of the supersymmetric sigma model 

with target 

on       

                    



one has A-type twist in the interior of  

and at infinity, one places a  B-type boundary condition,

corresponding to the choice of  

                    

To get



The B-type boundary condition  

is a B-type brane on      .   The brane we need  to get  

is an object 

                    of the derived category of         -equivariant  coherent sheaves on 

whose K-theory class is



 conformal block of          .

The choice of a B-type brane 

 
at infinity of        determines which 

computes.



From perspective of         ,  

the action of braiding

on the space of conformal blocks

is the  monodromy of the quantum differential equation,

along the  path          in its Kahler moduli.



Monodromy of the quantum differential equation 

acts on

via its action on K-theory classes 

inserted at the boundary at infinity of



A theorem of Bezrukavnikov and Okounkov says that,

the action of braiding matrix on 

via the  monodromy of the quantum differential equation

  lifts to 

a derived auto-equivalence functor  of  

for any smooth holomorphic symplectic variety         . 



This implies that, for a smooth  

derived auto-equivalence functors of 

categorify the

action of  the                     R-matrices  

on conformal blocks of        .

,



=

This also implies that from 

we get categorification of quantum invariants of links

since they can be expressed as matrix elements of the braiding matrix

between pairs of conformal blocks. 



Denote by

the branes that give rise to conformal blocks 

the image of               under the braiding functor.

and by



The matrix element 

is the partition function of the B-twisted sigma model to           on

with the pair of B-branes at the boundary.



The corresponding categorified link invariant

is the graded Hom between the branes

computed in 

 

In addition to the homological grade,  there is a second grade,

 coming from the                    -action,

that scales the holomorphic symplectic form on         ,

with weight



The three dimensional gauge theory

we started with 

in addition, leads to a 

second description 

of the categorified knot invariants.

V1

W1

V2

W2



It leads to a description in terms of a 

two-dimensional equivariant mirror of

The mirror description of             is also

a new result.



The mirror 

is a Landau-Ginzburg theory with target        ,

and potential

.



The Landau-Ginzburg potential

and the target  

can be derived from the 3d gauge theory.

V1

W1

V2

W2

The potential is a limit of the  three dimensional effective

superpotential, given as a sum of contributions 

associated to its nodes and its arrows.



Recall that, in the conformal limit,

has no geometric interpretation in terms of X.

One instructive, if roundabout, way to 

discover the mirror description,

is as follows.



While its conformal limit is not given in terms of         ,

it must exist.

To find it one wants to make use the integral formulation of

which one can derive by thinking of maps to 

in geometric invariant theory terms.

Aganagic, Frenkel, Okounkov



The integrals 

come from studying quasi-maps to the pre-quotient and, 

projecting to gauge invariant configurations, 

leads to integration over the maximal torus of 



The conformal limit of                          has the form:

It gives integral solutions to the Knizhnik-Zamolodchikov equation

corresponding to

       



The function            that enters                  

    

 is the Landau-Ginzburg potential,

and           is a  top holomorphic form on        .



The potential is a sum over three types of terms

V1

W1

V2

W2

one of which comes from the nodes

and two  from the arrows.



The integration in

is over a Lagrangian cycle         in 

the target space of the Landau-Ginzburg model.



the integral representations of conformal blocks of

They are very well known,

and go back to work of Feigin and E.Frenkel in the ’80’s

and Schechtman and Varchenko.

We are re-discovering

 from 

geometry and supersymmetric gauge theory,



The fact that the Knizhnik-Zamolodchikov equation which

the Landau-Ginzburg integral solves

is also the quantum differential equation of           ….



…..gives a Givental type proof of 2d mirror symmetry

at genus zero,

relating

equivariant  A-model on    , 

to

B-model on         with superpotential         .



The Landau-Ginzburg origin of 

conformal blocks

automatically

leads to categorification of the corresponding 

braid and link invariants.



From the Landau-Ginzburg perspective

the conformal block 

is the partition function of the B-twisted theory on       ,

 

with A-type boundary condition at infinity, corresponding to the

Lagrangian             in          . 



Thus, corresponding to a solution to the 

Knizhnik-Zamolodchikov equation

is an A-brane at the boundary of         at infinity,

the Fukaya-Seidel category of  A-branes on       with potential      . 

The brane is an object of



The categorified link invariant arizes as the Floer cohomology group

where the second grade is

is the winding number, 

associated to the 

non-single valued potential.



 

We get a 2d mirror description of categorified knot invariants

 based on 

the Fukaya-Seidel category of A-branes on        ,       

           

  the  target of the Landau-Ginzburg model,

with potential         .

This description is

developed in a work with Dimitrii Galakhov.



one based  on Fukaya-Seidel category of A-branes on       with potential      . 

the category of equivariant B-branes on                  

and the other based on

The two geometric descriptions of knot homology groups,

are related by equivariant mirror symmetry 



It turns out that there is

a third approach to categorification

which is related to the other two,

though less tractable.



It is important to understand the connection,

in particular because what will emerge

is a unified picture of

the knot categorification problem,

and its solutions.



This will also demystify an aspect of the story so far

which seems strange: 

What do three dimensional supersymmetric gauge theories

have to do with knot invariants?



The explanation comes from string theory.



More precisely, it comes from the six dimensional

labeled by a simply laced Lie algebra              

little string theory

with (2,0) supersymmetry.



The six dimensional string theory is

obtained by taking a limit of IIB string theory on 

In the limit, one keeps only the degrees of freedom

supported at the singularity of        and decouples the 10d bulk.

the ADE surface singularity of type

,

.



The q-conformal blocks of the 

can be understood

as the supersymmetric partition functions of

the      -type little string theory,

with defects that lead to knots.



One wants to study the six dimensional (2,0) little string theory on 

where 

x x
x

x

is the Riemann surface where the conformal blocks live:

and           is the domain curve of the 2d theories we had so far.



The vertex operators on the Riemann surface 

x x
x

x

come from a collection of defects in the little string theory,

which are inherited from D-branes of the ten dimensional string.



The D-branes needed are 

two dimensional defects of the six dimensional theory on

      

 

x x
x

x

supported on         and the origin of 



The choice of which conformal

blocks we want to study 

translates into choices of defects 

x x
x

x



The theory on the defects is the quiver gauge theory 

that arose earlier in the talk.

V1

W1

V2

W2

This is a consequence of the familiar description of 

D-branes on ADE singularities

due to Douglas and Moore in ’96.



The theory on the defects supported on     ,   

is a three dimensional quiver gauge theory on               

rather than a two dimensional theory on       ,

 due to a stringy effect.

             

V1

W1

V2

W2



x

These turn the theory on the defects supported on       ,     

to a three dimensional quiver gauge theory on

where the        is the dual of the circle in      .

In a string theory,

one has to include the winding modes of strings around C.

x
xx



The conformal limit of the algebras

coincides with the point particle limit of little string theory

in which it becomes the six dimensional conformal field theory

of type          (with (2,0) supersymmetry)



In the point particle limit,

the winding modes that made the theory

on the defects three dimensional instead of two,

 become infinitely heavy.

x
xx



As a result,  in the conformal limit,

the theory on the defects

becomes a two dimensional theory on 



The two dimensional theory on the defects

of the six dimensional (2,0) theory was sought previously.

It is not a gauge theory,

but it has two other descriptions,

I described earlier in the talk. 



One description

is based on the supersymmetric sigma model

describing maps 

The other is in terms of the mirror

Landau-Ginzburg model on            with potential



The approaches to 

categorification

started with the theories on the 

defects.



There is a third description,

 due to Witten.

It is obtained from 

the perspective of the 6d theory in the bulk.



Compactified on a very small circle,

the six dimensional        -type (2,0) conformal theory

with no classical description,

becomes a        -type gauge theory

in one dimension less.



To get a good 5d gauge theory description of the problem,

the circle one shrinks corresponds to         in

so from a six dimensional theory on

one gets a five-dimensional gauge theory on a manifold with a boundary



The five dimensional  gauge theory  is 
supported on

where

It has gauge group 

which is the adjoint form of a Lie group with lie algebra       .



The two dimensional defects are monopoles 

of the 5d gauge theory on 

supported on         and at points on, 

along its boundary. 

,



Witten shows that the five dimensional theory on

can be viewed as a gauged 

Landau-Ginzburg model on           with potential  

on an infinite dimensional target space       ,

corresponding to          connections on 

with suitable boundary conditions (depending on the knots).



To obtain knot homology groups in this approach,

one would end up counting solutions to

certain five dimensional equations.

The equations arise in 

constructing the Floor cohomology groups

of the five dimensional Landau-Ginzburg theory.



Thus, we end up with three different approaches 

to the knot categorification problem,

all of which have the same 

six dimensional origin.



They all describe the same physics

starting in six dimensions.

The two geometric approaches, 

describe the physics from perspective of the defects.

The approach based on the 5d gauge theory,

describe it from perspective of the bulk.



In general,

theories on defects 

capture only the local physics of the defect.

In this case, 

they should capture all of the relevant physics,

due to a version of supersymmetric localization:

in the absence of defects, 

the bulk theory is trivial.



The approach based on 

should be equivalent to that

of Kamnitzer and Cautis in type A.

The 2d mirror approach based on

should be  related,

by Calabi-Yau/Landau-Ginzburg correspondence

to the Fukaya categories approach by Abouzaid, Smith and Seidel.



The idea that the 5d Landau-Ginzburg theory 

could have a 2d Landau-Ginzburg counterpart

was suggested in the works of 

Gaiotto, Witten and Moore.


