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Outline

Bosons, fermions, and spin structures

Review of the 1d Jordan-Wigner transformation

Review of Z2 gauge theories

Bosonization in 2d

Some examples

Euclidean viewpoint

Bosonization in 3d

Bosonization and generalized global symmetries

Based on: Yu-An Chen (Caltech), AK, Djordje Radicevic (Perimeter
Institute), arXiv: 1711.00515 and Yu-An Chen and AK, arXiv:1807.0781.
Also prior work with D. Gaiotto and L. Bhardwaj.
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Fermion-boson correspondence

Fermion-boson correspondence in 1+1d:

Free massless Dirac fermion ↔ free massless boson

Massive Thirring ↔ sine-Gordon

Free Majorana fermion ↔ quantum Ising chain/2d Ising model

Jordan-Wigner transformation for general fermionic systems on a 1d
lattice
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Fermions from bosons

A related phenomenon: emergent fermions.

Nucleons as solitons in the 3+1d WZW model of pions and kaons

Statistics transmutation in 2+1d Chern-Simons-matter theories (both
relativistic and non-relativistic)
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Spin structures

Puzzle:
Fermions on a general space-time need spin structure, bosons do not.

Possible resolutions:

The bosonic action secretly depends on spin structure

Bosonization requires summing over spin structures

Fermionic theory itself involves summing over spin structures (thus
fermions are coupled to a dynamical gauge field).
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Nucleons and spin structures

Dan Freed (2006) formulated and resolved this puzzle for the case of the
3+1d WZW model.

Claim:
The WZW topological action for odd N subtly depends on spin structure.

That is, the microscopic QCD action depends on spin structure, and this
dependence does not go away even when one focuses on the low-energy
effective theory describing pions, kaons, and nucleons.
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Spin chains

The Hilbert space of a spin chain is V = ⊗N
j=1Vj , where Vj ' C2.

The algebra of observables is generated by Pauli matrices acting on each
site. I will denote them Xj ,Yj ,Zj . They commute for different j .

The Hamiltonian is

HB =
N∑
j=1

HB
j ,

where HB
j is an observable which has finite range ([HB

j ,Ok ] = 0 for
|j − k | � 0 for any observable Ok localized on site k).

We will assume that S =
∏

j Zj commutes with HB . Then the spin chain
has a Z2 symmetry.
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Fermionic chains

The Hilbert space of a fermionic chain is W = ⊗̂Wi , where W ' C2.

The algebra of observables is generated by cj , c
†
j , the fermionic

creation-annihilation operators acting on site j . They anti-commute for
different j .

The Hamiltonian is

HF =
N∑
j=1

HF
j ,

where each HF
j is an even (bosonic) observable which has a finite range.

The fermion parity operator is ∏
j

(−1)c
†
j cj .
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Jordan-Wigner transformation

The algebras of observables of the two models are abstractly isomorphic,
and there are many different isomorphisms. The Jordan-Wigner
transformation is a special isomorphism which maps even local observables
of the fermionic chain to local observables of the spin chain commuting
with S :

cj 7→
1

2
(Xj + iYj)

j−1∏
k=1

Zk , c†j 7→
1

2
(Xj − iYj)

j−1∏
k=1

Zk

In particular, this implies:

c†j cj 7→
1

2
(1− Zj) , (−1)c

†
j cj 7→ Zj .

The inverse transformation is also easily written.

Anton Kapustin (California Institute of Technology)Bosonization of lattice fermions in higher dimensions January 15, 2019 9 / 37



Locality of the Jordan-Wigner map

Let us work with Majorana fermions γj = 1
2 (c†j + cj) and γ̃j = i

2 (c†j − cj).
Then

γj 7→ Xj

j−1∏
k=1

Zk , γ̃j 7→ Yj

j−1∏
k=1

Zk .

The algebra of even observables is generated by (−1)Fj = −iγj γ̃j and the
“hopping operators”

Sj+1/2 = iγj γ̃j+1.

They are all idempotent (square to 1). All Sj+1/2 commute between each

other. Sj+1/2 anti-commutes with (−1)Fj and (−1)Fj+1 and commutes

with (−1)Fk for all other k.

The JW map acts as follows:

(−1)Fj 7→ Zj , Sj+1/2 7→ XjXj+1.
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Higher-dimensional analogs

Prior work:

Bravyi, Kitaev (2000)

Levin, Wen (2003)

R. C. Ball (2005)

Kitaev (2005)

Verstraete, Cirac

In all these works, local fermionic systems are shown to be equivalent to
locally-constrained bosonic systems. The constraints are similar to Gauss
law constraints.

Our approach allows us to identify which bosonic systems are dual to
fermionic systems.
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JW map in 2d

Consider now a fermionic system on an arbitrary 2d lattice L, with a
fermion on each face of a lattice.

The main claim: There exists a local isomorphism between the algebra of
even fermionic observables and the algebra of gauge-invariant observables
in a Z2 gauge theory on L with a modified Gauss law.

The modified Gauss law ensures that a fluxon on a face f is accompanied
by electric charge on a vertex v ∈ f .

The construction of this map depends on how one chooses v for each f . I
will outline the construction for two cases: the square lattice and an
arbitrary triangulation. The latter includes the case of fermions on a
honeycomb lattice.
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Reminder on Z2 gauge theories

A Z2 gauge theory has a spin on every edge e. Let Xe ,Ye ,Ze be the
corresponding Pauli matrices.

The Hilbert space of a Z2 gauge theory consists of spin states satisfying
the constraints

Gv |Ψ〉 = |Ψ〉, ∀v . (1)

Here v is an vertex of L. The operators Gv are idempotent, G 2
v = 1, and

satisfy GvGv ′ = Gv ′Gv . Gv is a generator of the Z2 gauge transformation
supported at v .

Usually one takes

Gv =
∏
e⊃v

Xe ,

so that Gv flips the eigenvalue of Ze for all e ⊃ v . Then (1) means that
there are no electric charges anywhere.
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Electric charges and magnetic fluxes

Inserting electric charge at v0 means changing the constraint to Gv0 = −1,
and leaving all other constraints unchanged. Conversely, the Gauss law
constraint Gv = 1 for all v means that Z2 gauge theory does not have
dynamical electric charges.

A magnetic flux at face f is an idempotent operator

Wf =
∏
e⊂f

Ze .

If Wf |Ψ〉 = −|Ψ〉, we say that there a fluxon at f . If Wf |Ψ〉 = +|Ψ〉, we
say there is no fluxon at f .
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Gauge-invariant observables

Any Z2 gauge theory (with the standard Gauss law) can be rewritten as a
theory of fluxons whose number is conserved modulo 2.

Mathematically, this is reflected in the fact that the algebra of
gauge-invariant observables is generated by Wf for all f and Xe for all e.

All operators Xe commute between each other, all operators Wf commute
between each other. Xe anti-commutes with Wf iff e ⊂ f , and commutes
with it otherwise.

Physical interpretation: Xe is an operator that creates a pair of fluxons on
the two faces which share e.
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Kinematic Kramers-Wannier duality in 2d

The fact that the algebra of gauge-invariant observables is generated by
Wf and Xe can be used to embed it into the algebra of observables in a
spin system living on the dual lattice (i.e. spins X̂f , Ŷf , Ẑf live on faces).
The map is

Wf 7→ Ẑf , Xe 7→
∏
f⊃e

X̂f

Note that the operators Ẑf and
∏

f⊃e X̂f generate the algebra of those

observables that preserve the net spin parity Ŝ =
∏

f Ẑf . Thus we can
map any Z2 gauge theory with a local Hamiltonian to a model of spins on
the dual lattice whose Hamiltonian is local and preserves Ŝ .

This is a kinematic version of 2d Kramers-Wannier duality (most often
discussed in the context of the standard quantum Ising model).

Anton Kapustin (California Institute of Technology)Bosonization of lattice fermions in higher dimensions January 15, 2019 16 / 37



Fermions on a square lattice

Place Majorana fermions γf , γ̃f on each face f . We let (−1)Ff = −iγf γ̃f .

To each edge e we associate a hopping operator Se which flips the sign of
(−1)Ff on the two adjacent faces. This requires choosing an orientation
for all e, so let us choose the one in the picture.

1 2 3

4 5 6

7 8 9

a b

cd

Now we can define
Se = iγL(e)γ̃R(e),

where L(e) is the face to the left of e, R(e) is the face to the right of e.
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The algebra of even observables

The algebra of even observables is generated by the operators (−1)Ff and
Se . The relations are as follows:

Both Se and (−1)Ff are idempotent

(−1)Ff and (−1)Ff ′ commute for all f and f ′

Se anti-commutes with (−1)Ff if e ⊂ f and commutes otherwise

Se and Se′ anti-commute when e and e ′ share a vertex and are
directed E and S or N and W. They commute otherwise.

S58S56S25S45 = (−1)Fa(−1)Fc .
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Modified Z2 gauge theory

We place a bosonic spin on every edge, with operators Xe ,Ye ,Ze . As
usual, we define Wf =

∏
e⊂f Zf .

For every vertex, we impose the Gauss law Gv |Ψ〉 = |Ψ〉 where

Gv = WNE(v)

∏
e⊃v

Xe ,

where NE (v) is the face to the northeast of v .

The condition ∏
e⊃v

Xe |Ψ〉 = WNE(v)|Ψ〉

implements charge-flux attachment: there is electric charge at v iff there is
a fluxon at NE (v).

Anton Kapustin (California Institute of Technology)Bosonization of lattice fermions in higher dimensions January 15, 2019 19 / 37



The algebra of gauge-invariant observables

The algebra of gauge-invariant observables is generated by Wf and
“fluxon-creation operators”

Ue = XeZr(e).

Here r(e) is determined by e as follows: translate e by a vector
(−1/2,−1/2) to get an edge ê of the dual lattice, and then let r(e) to be
the edge dual to ê (that is, the unique edge of the original lattice which
intersects ê at midpoint).

It is easy to check that Ue commutes with all Gv and thus is
gauge-invariant. The operator Ue is idempotent, just like Wf , and
anti-commutes with Wf iff e ⊂ f . In all other cases Ue commutes with
Wf .
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The bosonization map on a square lattice

In fact, one can check that the relations between Wf and Ue are exactly
the same as those between (−1)Ff and Se . Thus we get the bosonization
map

(−1)Ff 7→Wf , Se 7→ Ue .

Thus fermion number maps to magnetic flux. This is very similar to the
kinematic Kramers-Wannier duality.

Note that this map ”works” only in a topologically trivial situation. For a
torus there are additional ”non-local” relations in the algebra of even
fermionic observables, which require an additional projection on the
bosonic side. The same is true about the 1d Jordan-Wigner map and
kinematic Kramers-Wannier.
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Fermions on a 2d triangulation

We place a pair of Majorana fermions γf , γ̃f on every face. We let
(−1)Ff = −iγf γ̃f as before. We choose a branching structure on the
triangulation (an orientation of every e so that for every f these
orientations do not form a loop). We define Se = iγL(e)γ̃R(e) as before.

The operators (−1)Ff and Se generate the algebra of even fermionic
observables.

Both Se and (−1)Ff are idempotent

(−1)Ff and (−1)Ff ′ commute for all f and f ′

Se anti-commutes with (−1)Ff if e ⊂ f and commutes otherwise

Se and Se′ anti-commute when e and e ′ share a vertex and have a
particular orientation with respect to branching structure. They
commute otherwise.∏

e⊃v Se is some function of (−1)Ff for faces f adjacent to v .
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The cup product

To describe the last two relations more precisely, we need to recall some
useful notions from algebraic topology.

Suppose we are given a triangulation where the vertices around every face
are ordered from 0 to 2. Branching structure gives us such an ordering
”for free”.

A p-cochain on a triangulation is a function on the set of p-simplices
(0-simplex is a vertex, 1-simplex is an edge, 2-simplex is a face). We will
only need Z2-valued functions.

There is a bilinear operation on cochains called the cup product, such that
the cup product of a p-cochain and q-cochain is a (p + q)-cochain. It is
defined as follows:

(g1 ∪ g2)(v0 . . . vp+q) = g1(v0 . . . vp)g2(vp . . . vp+q)

Here a p-simplex is identified with its set of ordered vertices.
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The coboundary operator

We also have the coboundary operator δ which maps a p-cochain to a
(p + 1)-cochain:

(δg)(v0 . . . vp+1) =

p+1∑
j=0

g(v0 . . . vj−1vj+1 . . . vp+1).

Properties:

δ2 = 0

δ(g1 ∪ g2) = (δg1) ∪ g2 + g1 ∪ (δg2).

But note that the cup product is neither commutative nor
supercommutative (which is actually the same thing in our case).
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The algebra of even observables

The first ”nontrivial” relation looks as follows:

SeSe′ = Se′Se(−1)
∫

∆e∪∆e′+
∫

∆e′∪∆e .

Here ∆e is a 1-cochain supported at e and the integral of the 2-cochain is
simply the sum of its values on all 2-simplices.

The second ”nontrivial” relation is∏
e⊃v

Se = c(v)
∏

f ∈I02(v)

Wf ,

where I02(v) is the set of faces adjacent to v such that v has number 0 or
2 w.r. to f . The factor c(v) = ±1 is a c-number whose definition I omit.
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Modified Z2 gauge theory

We place a spin on every edge. The Gauss law is given by Gv |Ψ〉 = |Ψ〉,
where

Gv =
∏
e⊃v

Xe

∏
f⊂I0(v)

Wf ,

where I0 is the set of faces adjacent to v such that v has number 0 w.r. to
f .

This means that a fluxon on face v is accompanied by electric charge on
the vertex 0 of this face.
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The bosonization map on a triangulation

Gauge-invariant observables are generated by Wf and fluxon-creating
operators Ue . Ue creates two fluxons on the faces adjacent to e and an
even number of electric charges:

Ue = Xe

∏
e′∈J(e)

Ze′ ,

where J(e) is defined as follows: we first find all faces for which e is the
edge 12, and for each such face take its 01 edge.

The bosonization map is

(−1)Ff 7→Wf , Se 7→ Ue .

This gives an isomorphism provided the space is simply-connected.
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Example 1: fermions hopping on a square lattice

Fermionic Hamiltonian (nearest-neighbor hopping):

HF = t
∑
e

(c†L(e)cR(e) + c†R(e)cL(e)) + µ
∑
f

c†f cf .

Bosonic Hamiltonian:

HB =
t

2

∑
e

XeZr(e)(1−WL(e)WR(e)) +
µ

2

∑
f

(1−Wf )

Note that the ”kinetic” term which creates pairs of fluxons is rather
elaborate and is non-zero only if the flux is different on the two faces. This
reflects that the fermionic Hamiltonian preserves fermion number, not just
fermion parity (−1)F .

Anton Kapustin (California Institute of Technology)Bosonization of lattice fermions in higher dimensions January 15, 2019 28 / 37



Interlude: the standard Z2 gauge theory

The standard Z2 gauge theory has the standard Gauss law∏
e⊃v

Xe = 1

and the Hamiltonian:

H = g2
∑
e

Xe +
1

g2

∑
f

(1−Wf ).

The operator Xe creates a pair of fluxons on the faces adjacent to e.

When we modify the Gauss law, Wf is still gauge-invariant, but Xe is not.
One can regard Ue (which on a square lattice is given by XeZr(e)) as a
gauge-invariant version of Xe .
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Example 2: a gauge theory dual to a free fermion

Consider now a gauge theory with a modified Gauss law and the
Hamiltonian

HB = g2
∑
e

Ue +
1

g2

∑
f

(1−Wf ).

The corresponding fermionic Hamiltonian is

HF = g2
∑
e

iγL(e)γ̃R(e) +
1

g2

∑
f

(1 + iγf γ̃f ).

This a free fermion Hamiltonian with nearest neighbor hopping. It does
not preserve F , but can be easily diagonalized.

For example, if we start with gauge theory on a regular triangular lattice,
the dual fermions live on vertices of the honeycomb lattice. The dispersion
law has two Dirac points in the Brillouin zone.
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Euclidean gauge theories

Every Hamiltonian lattice gauge theory can be re-written as a Euclidean
lattice gauge theory in one dimension higher. The 3d lattice is 2d lattice
times discretized time.

For example, the standard Z2 gauge theory is equivalent to a Euclidean
theory with an action

S =
∑
f

Jf |δa(f )|,

where a is a Z2-valued function on edges (i.e. a 1-cochain), and |δa(f )| is
1 if the flux of a through f is nontrivial, and 0 otherwise. The couplings Jf
are different for space-like and time-like faces.

The theory has a gauge-invariance:

a 7→ a + δf ,

where f is a 0-cochain.
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A Chern-Simons-like term

The Euclidean action encodes both the Hamiltonian and the Gauss law.
To get a modified Gauss law one needs a term in the action which is
gauge-invariant only up to total derivatives.

In the continuum, we can use the Chern-Simons term SCS = ik
4π

∫
AdA,

since under A 7→ A + df we have

SCS(A + df )− SCS(A) =
ik

4π

∫
∂X

fdA.

We can write a similar term for a Z2 gauge theory on a triangulation:

S ′(a) = πi

∫
X
a ∪ δa.

It leads to the correct modified Gauss law for wavefunctions.
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Euclidean gauge theories dual to fermionic systems

Natural guess: the simplest Hamiltonian gauge theory is equivalent to the
simplest Euclidean gauge theory with a Chern-Simons-like term:

S =
1

g2

∑
f

Jf |δa(f )|+ iπ

∫
X
a ∪ δa.

This turns out to be essentially correct, except one needs to come up with
a definition of the Chern-Simons-like term for a lattice which is not a 3d
triangulation, but is a product of a 2d triangulation and discrete time, or a
cubic lattice.

It is remarkable that such simple Euclidean bosonic theories can be
equivalent to theories of free fermions. Removing the CS-like term leads to
a non-integrable theory dual to the 3d Ising model.
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Fermions on a 3d cubic lattice

Place a pair of Majorana fermions γc , γ̃c at each cube of a cubic lattice.
Choose an orientation for every face f and let

(−1)Fc = −iγc γ̃c , Sf = iγL(f )γ̃R(f ),

where L(f ) and R(f ) are cubes to the left and to the right of the oriented
face f .

The algebra of even observables is generated by idempotent operators
(−1)Fc and Sf . Sf flips the sign of (−1)Fc for cubes adjacent to f .

There is a constraint for every edge e:
∏

f⊃e Sf is some function of the
operators (−1)Fc for the cubes adjacent to e.

All this suggests that the bosonic description will involve spins on faces
and a Gauss law constraint on each e.
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A 2-form gauge theory

In other words, 3d bosonization requires a Z2-valued 2-form gauge field B,
with a 1-form gauge symmetry

B 7→ B + δλ.

With the usual Gauss law constraint, such a system is
Kramers-Wannier-dual to ordinary bosonic spins on the dual lattice.

Fermions lead to a modified Gauss law instead. I will simply write down
the Euclidean action which gives the right Gauss law:

S =
1

g2

∑
c

|δB(c)|+ iπ

∫
X

(B ∪ B + B ∪1 δB)

In the limit g → 0 this reduces to a Walker-Wang model whose input is
the category of supervector spaces (the general Walker-Wang model is a
4d TQFT constructed from a braided fusion category).
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Bosonization and generalized symmetries

The 2+1d and 3+1d examples illustrate a general rule (Gaiotto, A. K.,
2015): in d dimensions, the bosonic dual of a fermionic system has a
(d − 2)-form Z2 global symmetry with a particular ’t Hooft anomaly.

The anomaly can be described by means of a (d + 1)-dimensional action
depending on a (d − 1)-form Z2 gauge field C :

Sd+1 =

∫
M
Sq2C .

Here C ∈ Zd−1(M,Z2).

For example, for d = 4, the symmetry acts by B 7→ B + β, where β is a
2-cocycle. The action is invariant, but the symmetry cannot be gauged,
thanks to the topological term

∫
(B ∪ B + B ∪1 δB).

This anomaly appeared first in Dan’s 2006 paper on the WZW model. We
now understand its importance.
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Topology, higher structures and physics

Bosonization in higher dimensions illustrates nicely the importance of both
topology and higher structures (generalized symmetries) in physics.

Both are central themes in Dan’s work. I am confident there will be many
more applications of these ideas in physics, and Dan will play a major role
in discovering them.

Happy birthday, Dan!
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