Moment maps and non-reductive geometric invariant theory

Frances Kirwan
Mathematical Institute, Oxford

(based on joint work with G Bérczi, B Doran, V Hoskins)

Recall symplectic reduction (Marsden-Weinstein 1974) and symplectic implosion (Guillemin-Jeffrey-Sjamaar 2002).
(X, ω) compact symplectic manifold
K compact Lie group with Lie algebra \mathfrak{k} acting on (X, ω)
T maximal torus of K, Lie algebra $\mathfrak{t c k}$
$\mathfrak{t}_{+}^{*}=$ positive Weyl chamber
$K_{\zeta}=\left\{k \in K \mid\left(A d^{*} k\right) \zeta=\zeta\right\}$, when $\zeta \in \mathfrak{t}_{+}^{*}$, with commutator subgroup $\left[K_{\zeta}, K_{\zeta}\right]$.
$\mu: X \rightarrow \mathfrak{k}^{\star}$ moment map satisfies

$$
d \mu_{x}(\xi) \cdot a=\omega_{x}\left(\xi, a_{x}\right) \quad \forall x \in X, \xi \in T_{x} X, a \in \mathfrak{k}
$$

and μ is K-equivariant (for the coadjoint action on \mathfrak{k}^{*}).
Special case: (X, ω) is Kähler and K acts holomorphically; the action extends to $G=K_{\mathbb{C}}=$ complexification of K.

Let $\zeta \in \mathfrak{k}^{*}$ be a regular value of $\mu: X \rightarrow \mathfrak{k}^{*}$,
with stabiliser K_{ζ} for the coadjoint action. Then the

Marsden-Weinstein reduction at ζ

$$
\mu^{-1}(\zeta) / K_{\zeta}
$$

is a symplectic orbifold. Often we take $\zeta=0$ to get the 'symplectic quotient' $X / / K=\mu^{-1}(0) / K$.
$\mu^{-1}(0) / K$ has a stratified symplectic structure with more serious singularities when 0 is not a regular value of μ.

The symplectic implosion is also stratified symplectic, given by

$$
X_{i m p l}=\mu^{-1}\left(\mathfrak{t}_{+}^{*}\right) / \sim
$$

where $x \sim y \Leftrightarrow x=k y$ for some $k \in\left[K_{\zeta}, K_{\zeta}\right]$ with

$$
\zeta=\mu(x)=\mu(y) \in \mathfrak{t}_{+}^{*}
$$

Example: $K=S U(2)$ so $\mathfrak{t}_{+}^{*}=[0, \infty)=\{0\} \sqcup(0, \infty)$, and

$$
X_{i m p l}=\frac{\mu^{-1}(0)}{S U(2)} \sqcup \mu^{-1}((0, \infty))
$$

$X_{i m p l}$ inherits a symplectic structure and T-action with moment map $X_{\text {impl }} \rightarrow \mathfrak{t}_{+}^{*} \subseteq \mathfrak{t}^{*}$ induced by the restriction of μ.

Kähler case (Heinzner-Huckleberry-Loose, Sjamaar 1990s): $X / / K$, and hence $X_{i m p l}$, inherits a stratified Kähler structure, via $\operatorname{grad} \mu(x) . a=i a_{x}(\forall a \in \mathfrak{k}) \sim \mu^{-1}(0)_{\text {reg }} / K \cong($ open subset of $X) / G$.
$\left(T^{*} K\right)_{i m p l}$ 'universal imploded cross-section' is an affine algebraic variety over \mathbb{C}, embedded as the closure of a $K_{\mathbb{C}}$-orbit in a representation of K. In general

$$
X_{i m p l} \cong\left(X \times\left(T^{*} K\right)_{i m p l}\right) / / K
$$

which is an algebraic variety if X is algebraic.

In the Kähler case $x \in X$ is semistable for $G=K_{\mathbb{C}}$ iff $\overline{G x} \cap \mu^{-1}(0) \neq \varnothing$, and $x \in X$ is stable iff $G x \cap \mu^{-1}(0)_{\text {reg }} \neq \varnothing$, defining open subsets $X^{s} \subseteq X^{s s}$ of X. If $x, y \in X^{s s}$ then $x \sim y$ iff $\overline{G x} \cap \overline{G y} \cap X^{s s} \neq \varnothing$.
The Kähler quotient is $X \gtrless G=X^{s s} / \sim$.
The inclusion $\mu^{-1}(0) \rightarrow X^{s s}$ composed with the quotient map $X^{s s} \rightarrow X \gtrless G$ is K-invariant and induces a bijection

$$
X / / K=\mu^{-1}(0) / K \rightarrow X \gtrless G
$$

to the Kähler quotient, restricting on open subsets to

$$
\mu^{-1}(0) \mathrm{reg} / K \cong X^{s} / G \hookrightarrow X \geqq G \cong \mu^{-1}(0) / K .
$$

E.g. Let $G=K_{\mathbb{C}}$ act linearly on a smooth projective variety $X \subseteq \mathbb{P}^{n}$ via $\rho: G \rightarrow G L(n+1)$. Assume $\rho(K) \subseteq U(n+1)$ so K preserves the Fubini-Study Kähler form on X. Then a moment map $\mu: X \rightarrow \mathfrak{k}^{*}$ is given by $\mu([x]) \cdot a=\frac{\bar{x}^{T} \rho_{\star}(a) x}{2 \pi i\|x\|^{2}} \in \mathbb{R} \quad$ for $a \in \mathfrak{k}$.

Example: $X=\left(\mathbb{P}^{1}\right)^{4}$ where $\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}=S^{2} \subseteq \mathbb{R}^{3}$.
$K=S U(2)$ acting on X via rotations of S^{2}
$G=K_{\mathbb{C}}=S L(2 ; \mathbb{C})$ Möbius transformations
stability: $\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in X^{s}$ iff $y_{1}, y_{2}, y_{3}, y_{4}$ are distinct points in \mathbb{P}^{1}, with $X^{s} / G \cong \mathbb{P}^{1},\{0,1, \infty\}$ via the cross ratio.
semistability: $\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in X^{s s}$ iff at most two of $y_{1}, y_{2}, y_{3}, y_{4}$ coincide in \mathbb{P}^{1}, with $X \gtrless G \cong \mathbb{P}^{1}$.
moment map $\mu: X \rightarrow \mathfrak{k}^{*} \cong \mathbb{R}^{3}$ is given by

$$
\mu\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=y_{1}+y_{2}+y_{3}+y_{4} .
$$

In this example $X / / K=\mu^{-1}(0) / K$ is represented by balanced configurations of points on S^{2}, and the symplectic implosion $X_{\text {impl }}=\mu^{-1}(0) / K \sqcup \mu^{-1}((0, \infty))$ is its union with the configurations whose centre of gravity lies on the positive x-axis.

Link with alg geom/GIT (geometric invariant theory):
(Mumford, 1960s)
G cx reductive group, so $G=K_{\mathbb{C}}$ for maximal compact $K \leqslant G$;
X complex projective variety acted on by G.
We require a linearisation of the action (i.e. an ample line bundle L on X and a lift of the action to L; think of $X \subseteq \mathbb{P}^{n}$ and the action given by a representation $\rho: G \rightarrow G L(n+1))$.

G reductive implies that $A(X)^{G}$ is a finitely generated graded complex algebra so that $X \gtrless G=\operatorname{Proj}\left(A(X)^{G}\right)$ is a projective variety.

The rational map $X \rightarrow X \geqq G$ fits into a diagram

where the morphism $X^{s s} \rightarrow X \gtrless G$ is G-invariant and surjective.
Topologically $X \gtrless G=X^{s s} / \sim$ where $x \sim y \Leftrightarrow \overline{G x} \cap \overline{G y} \cap X^{s s} \neq \varnothing$, $x \in X^{s s}$ iff $\overline{G x} \cap \mu^{-1}(0) \neq \varnothing, x \in X^{s}$ iff $G x \cap \mu^{-1}(0)_{\text {reg }} \neq \varnothing$ and

$$
X \gtrless{ }^{2}=\mu^{-1}(0) / K
$$

for a suitable moment map μ for the action of K.

Symplectic implosion links with (a very special case of) non-reductive GIT:
$B=T_{\mathbb{C}} U_{\text {max }}$ Borel subgroup (maximal soluble subgp) of $G=K_{\mathbb{C}}$ such that $G=K B$ and $K \cap B=T$.
$U_{\max }$ maximal unipotent subgroup of G normalised by T. Fact: $K_{\mathbb{C}} / U_{\max }$ is a quasi-affine variety whose algebra of regular functions $\mathcal{O}\left(K_{\mathbb{C}} / U_{\max }\right)=\mathcal{O}\left(K_{\mathbb{C}}\right)^{U_{\text {max }}}$ is finitely generated, so that $K_{\mathbb{C}} / U_{\max }$ has a canonical affine completion

$$
K_{\mathbb{C}} \gtrsim U_{\max }=\operatorname{Spec}\left(\mathcal{O}\left(K_{\mathbb{C}}\right)^{U_{\max }}\right) .
$$

Thm (GJS): $K_{\mathbb{C}}{ }^{\gtrless} U_{\max }$ has a K-invariant Kähler structure which is symplectically iso to the universal implosion $\left(T^{*} K\right)_{\text {impl }}$. Cor: X affine or projective variety acted on linearly by $K_{\mathbb{C}} \Rightarrow$

$$
X_{i m p l} \cong\left(X \times\left(K_{\mathbb{C}} \Downarrow U_{\max }\right)\right) \text { 邓 } K_{\mathbb{C}} \cong X \gtrless U_{\max } .
$$

There is a generalisation $X_{i m p l P}$ replacing $U_{\max }$ with the unipotent radical U_{P} of any parabolic subgroup P of $G=K_{\mathbb{C}}$.

What happens more generally with GIT for a non-reductive linear algebraic group H over \mathbb{C} ?
Problem: We can't define a projective variety

$$
X \gtrless H=\operatorname{Proj}\left(A(X)^{H}\right)
$$

because $A(X)^{H}$ is not necessarily finitely generated.
Question: Can we define a sensible 'quotient' variety $X \gtrless H$ when H is not reductive? If so, can we understand it geometrically? Using moment maps?

Partial answer: We can define open subsets X^{s} ('stable points') and $X^{s s}$ ('semistable points') with a geometric quotient $X^{s} \rightarrow X^{s} / H$ and an 'enveloping quotient' $X^{s s} \rightarrow X \gtrless H$. BUT $X \gtrless H$ is not necessarily projective and $X^{s s} \rightarrow X \gtrless H$ is not necessarily onto. Also the Hilbert-Mumford criteria for (semi)stability do not generalise, at least not in an obvious way.
X projective variety with linear action of linear alg group H; H has unipotent radical $U \unlhd H$ with $R=H / U$ reductive.

We can try to study X ¿» H using a 'reductive envelope':
we look for a reductive G and $\phi: H \rightarrow G$ whose restriction to U is injective. Then \exists an induced homomorphism $H \rightarrow G \times R$ and $(G \times R)$-action on the quasi-projective variety $G \times_{U} X=(G \times X) / U$. We try to find a projective completion

$$
\overline{G \times_{U} X}
$$

with a $G \times R$-linearisation restricting to the given linearisation on X, such that $X \& H$ can be identified with an open subset of the reductive GIT quotient

$$
\overline{G \times_{U} X} »(G \times R) .
$$

Simple example: $U=\mathbb{C}^{+}$and $\widehat{U}=\mathbb{C}^{+} \rtimes \mathbb{C}^{*}$ acting on \mathbb{P}^{n}.
\exists coordinates s.t. \mathbb{C}^{*} acts diagonally and the generator of $\operatorname{Lie}\left(\mathbb{C}^{+}\right)$ has Jordan normal form with blocks of size $k_{1}+1, \ldots, k_{q}+1$. So the linear \mathbb{C}^{+}action extends to $G=S L(2)$, where

$$
\mathbb{C}^{+}=\left\{\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right): a \in \mathbb{C}\right\} \leqslant G
$$

via $\mathbb{C}^{n+1} \cong \oplus_{i=1}^{q} \operatorname{Sym}^{k_{i}}\left(\mathbb{C}^{2}\right)$, and the action of (a cover of) the $\mathbb{C}^{+} \rtimes \mathbb{C}^{*}$ action extends to $G L(2)$. In this case the U-invariants are finitely generated (Weitzenböck's theorem) so we can define

$$
\mathbb{P}^{n} \text { ¿て } \mathbb{C}^{+}=\operatorname{Proj}\left(\left(\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]\right)^{\mathbb{C}^{+}}\right) .
$$

Note: $G \times_{\mathbb{C}^{+}} \mathbb{P}^{n} \cong\left(G / \mathbb{C}^{+}\right) \times \mathbb{P}^{n} \cong\left(\mathbb{C}^{2} \backslash\{0\}\right) \times \mathbb{P}^{n} \subseteq \mathbb{C}^{2} \times \mathbb{P}^{n} \subseteq \mathbb{P}^{2} \times \mathbb{P}^{n}$ via $(g, x) \mapsto\left(g \mathbb{C}^{+}, g x\right)$; the \mathbb{C}^{+}-invariants on \mathbb{P}^{n} extend, and

$$
\mathbb{P}^{n} \gtrless \mathbb{C}^{+} \cong\left(\mathbb{P}^{2} \times \mathbb{P}^{n}\right) \gtrless S L(2) \cong\left(\mathbb{P}^{n}\right)_{i m p l}
$$

Example when $\left(\mathbb{P}^{n}\right)^{s s} \rightarrow \mathbb{P}^{n} « 2 \mathbb{C}^{+}$is not onto:

$$
\mathbb{P}^{3}=\mathbb{P}\left(\operatorname{Sym}^{3}\left(\mathbb{C}^{2}\right)\right)=\left\{3 \text { unordered points on } \mathbb{P}^{1}\right\} .
$$

Then $\left(\mathbb{P}^{3}\right)^{s s}=\left(\mathbb{P}^{3}\right)^{s}=\left\{3\right.$ points on \mathbb{P}^{1} with at most one at $\left.\infty\right\}$ and its image in $\mathbb{P}^{3} \gtrless \mathbb{C}^{+}=\left(\mathbb{P}^{3}\right)^{s} / \mathbb{C}^{+} \sqcup \mathbb{P}^{3}\langle S L(2)$ is the open subset $\left(\mathbb{P}^{3}\right)^{s} / \mathbb{C}^{+}$which does not include the 'boundary' point coming from $0 \in \mathbb{C}^{2}$.

If we quotient not just by $U=\mathbb{C}^{+}$but by $\hat{U}=\mathbb{C}^{+} \rtimes \mathbb{C}^{*}$, where \mathbb{C}^{*} acts non-trivially on U, then we can modify the linearisation by multiplying by a rational character of \hat{U}. For some such choices of linearisation the 'boundary' point in the quotient by \mathbb{C}^{+}coming from $0 \in \mathbb{C}^{2}$ becomes unstable for the induced action on \mathbb{C}^{*}, so we do get a surjective morphism

$$
\left(\mathbb{P}^{3}\right)^{\text {ss, }, \hat{O}} \xrightarrow{\text { onto }} \mathbb{P}^{3} \gtrless \widehat{U} .
$$

Defn: Call a unipotent linear alg group U graded unipotent if $\exists \lambda: \mathbb{C}^{*} \rightarrow A u t(U)$ with all weights of the \mathbb{C}^{*} action on $\operatorname{Lie}(U)$ strictly positive. Then let $\widehat{U}=U \rtimes \mathbb{C}^{*}$ be the induced semi-direct product.

Suppose that \hat{U} acts linearly (with respect to an ample line bundle L) on a projective variety X. We can multiply the \hat{U}-linearisation by any character (or any rational character, after replacing L with $L^{\otimes m}$ for sufficiently divisible positive m), without changing the action. If we are willing to twist by an appropriate rational character, then GIT for the \widehat{U} action is nearly as well behaved as in the classical case for reductive groups.

Any linear algebraic group H over \mathbb{C} is $U \rtimes R$ where $U \unlhd H$ is its unipotent radical and $R \cong H / U$ is reductive. We say H has internally graded unipotent radical if R has a central one-parameter subgroup $\lambda: \mathbb{C}^{*} \rightarrow Z(R)$ which grades U.

Thm: (Berczi, Doran, Hawes, K) Let U be graded unipotent acting linearly on a projective variety X, and suppose that the action extends to $\hat{U}=U \rtimes \mathbb{C}^{*}$. Suppose also that

$$
\text { (*) } x \in Z_{\text {min }} \Rightarrow \operatorname{dim~Stab}_{U}(x)=0
$$

where $Z_{\text {min }}$ is the union of connected components of $X^{\mathbb{C}^{*}}$ where \mathbb{C}^{*} acts on the fibres of L with minimum weight. We can twist the action of \hat{U} by a (rational) character so that 0 lies just above the minimum weight for the \mathbb{C}^{*} action on X, and
(i) the ring $A(X)^{\hat{U}}$ of \hat{U}-invariants is finitely generated, so that $X / / \hat{U}=\operatorname{Proj}\left(A(X)^{\hat{U}}\right)$ is projective;
(ii) $X \gtrless \overparen{U}$ is a geometric quotient of $X^{s s, \widehat{U}}=X^{s, \widehat{U}}$ by \hat{U} and $X^{s s, \widehat{U}}$ has a Hilbert-Mumford description.
Moreover, even without condition (*) there is a projective completion of $X^{s, \widehat{U}} / \hat{U}$ which is a geometric quotient by \hat{U} of an open subset $\tilde{X}^{s s}$ of a \hat{U}-equivariant blow-up \tilde{X} of X.

Examples of non-reductive groups H with internally graded unipotent radicals:
i) $H=\operatorname{Aut}(Y)$ where Y is a complete toric variety;
ii) H a parabolic subgroup of a reductive group G;
iii) $H=\{k$-jets of germs of biholomorphisms of $(\mathbb{C}, 0)\}$

$$
\cong\left\{\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{k} \\
0 & \left(a_{1}\right)^{2} & \ldots & p_{2 k}(\underline{a}) \\
& & \ldots & \\
0 & 0 & \ldots & \left(a_{1}\right)^{k}
\end{array}\right): a_{1} \in \mathbb{C}^{*}, a_{2}, \ldots a_{k} \in \mathbb{C}\right\}
$$

(and similarly when we replace $(\mathbb{C}, 0)$ with $\left(\mathbb{C}^{m}, 0\right)$).
If H acts linearly on a projective variety X, and the linearisation is twisted by a suitable rational character of H and (*) holds, then this theorem applies to X » $H=(X \gtrless \widehat{U})$ » $\left(R / \mathbb{C}^{*}\right)$, which is $\operatorname{Proj}\left(A(X)^{H}\right)=X^{s s} / \sim$ where the algebra of invariants $A(X)^{H}=\left(A(X)^{\hat{U}}\right)^{R / \mathbb{C}^{*}}$ is finitely generated and $x \sim y$ as before.

When G reductive acts linearly on a projective variety X, \exists a stratification ($=$ Morse stratification for $\|$ moment map $\|^{2}$)

$$
X=\bigsqcup_{\beta \in \mathcal{B}} S_{\beta}
$$

indexed by a finite subset \mathcal{B} of a +ve Weyl chamber, with
(i) $S_{0}=X^{s s}$, and for each $\beta \in \mathcal{B}$
(ii) $S_{\beta} \cong G \times_{P_{\beta}} Y_{\beta}^{s s}$ where P_{β} is a parabolic subgroup of G and $Y_{\beta}^{s s}$ is an open subset of a projective subvariety \bar{Y}_{β} of X.
$P_{\beta}=U_{\beta} \rtimes L_{\beta}$, where its unipotent radical U_{β} is graded by a central 1 -parameter subgroup of its Levi subgroup L_{β}. To construct a quotient of (an open subset of) S_{β} by G we can study the linear action on \bar{Y}_{β} of the parabolic subgroup P_{β}, appropriately twisted, and quotient first by \hat{U}_{β} and then by the residual action of the reductive group $P_{\beta} / \widehat{U}_{\beta}=L_{\beta} / \mathbb{C}^{*}$. We can use this to stratify moduli stacks and construct moduli spaces of unstable objects.
$H=U \rtimes R$, internally graded unipotent radical $U, R=K_{\mathbb{C}}$ $H \bigcirc X \subseteq \mathbb{P}^{n}$ via $\rho: H \rightarrow G L(n+1)$ with $\rho(K) \subseteq U(n+1)$

Define $\mu_{H}: X \rightarrow \mathfrak{h}^{*}$ by $\mu_{H}([x]) \cdot a=\bar{x}^{T} \rho_{*}(a) x /\|x\|^{2} \in \mathbb{C} \quad$ for $a \in \mathfrak{h}$.
$X \gtrless H=$ GIT quotient for appropriately twisted linearisation (after blowing up if need be).

When $H=R$ is reductive $X \gtrless H \cong X / / K=\mu_{H}^{-1}(0) / K$.
Applications: Betti numbers, intersection pairings on $X \& H \ldots$
When $H=P$ is a parabolic in a reductive G and the action of H extends to G, then $X \gtrless H \cong(X \gtrless U) \gtrless R \cong X_{\text {implP }} / / K$. After twisting the linearisation by a suitable character of H (or equivalently adding a suitable central constant to μ_{H}), if (*) holds we have

$$
X \Downarrow H \cong \mu_{H}^{-1}(0) / K .
$$

Back to simple example:

\mathbb{P}^{n} ¿ $\mathbb{C}^{+} \cong \mu_{S U(2)}^{-1}\left(\mathfrak{t}_{+}^{*}\right) /$ collapsing on the boundary $\mu_{S U(2)}^{-1}(0) ;$

$$
\mathbb{P}^{n} \gtrless\left(\mathbb{C}^{+} \rtimes \mathbb{C}^{*}\right) \cong \mu_{S U(2)}^{-1}\left(\mathfrak{t}_{+}^{*}\right) \cap \mu_{S^{1}}^{-1}(\xi) /\left(S^{1} \text { and collapsing }\right) .
$$

Suppose $\mu_{S U(2)}^{-1}(\mathfrak{t}) \cap \mu_{S^{1}}^{-1}(\xi) \subseteq \mu_{S U(2)}^{-1}\left(\left(\mathfrak{t}_{+}^{*}\right)^{o}\right) \cap \mu_{S^{1}}(\xi)$. Then

$$
\mathbb{P}^{n} \text { ¿ }\left(\mathbb{C}^{+} \rtimes \mathbb{C}^{*}\right) \cong \mu_{S U(2)}^{-1}(\mathfrak{t}) \cap \mu_{S^{1}}^{-1}(\xi) / S^{1}=\mu_{\mathfrak{t}^{\perp}}^{-1}(0) \cap \mu_{S^{1}}^{-1}(\xi) / S^{1}
$$

where $\mu_{\mathfrak{t}^{\perp}}: \mathbb{P}^{n} \rightarrow \mathfrak{t}^{\perp} \cong$ Lie \mathbb{C}^{+}is projection of $\mu_{S U(2)}$ onto \mathfrak{t}^{\perp}. So

$$
\mathbb{P}^{n} \text { <2 }\left(\mathbb{C}^{+} \rtimes \mathbb{C}^{*}\right) \cong \mu^{-1}(0) / S^{1}
$$

where $\mu=\left(\mu_{\mathfrak{t}^{\perp}}, \mu_{S^{1}}-\xi\right): \mathbb{P}^{n} \rightarrow \mathfrak{t}^{\perp} \times\left(\operatorname{Lie}^{1}\right)^{*}$.

Is there a similar description of $X \gtrless H$ more generally?

Hope: Given (*) AND after twisting by a suitable character (add a suitable central constant to μ_{H}), then for a suitable projective embedding of X :
$\mu_{\widehat{U}}^{-1}(0)$ is a slice for the action of $U \rtimes \mathbb{R}^{*}$ on the open subset

$$
X^{s, \widehat{U}}=\widehat{U} \mu_{\hat{U}}^{-1}(0) \cong \widehat{U} \times_{S^{1}} \mu_{\widehat{U}}^{-1}(0)
$$

of X, so that $\mu_{\hat{U}}^{-1}(0) / S^{1} \cong X^{s, \hat{U}} / \hat{U}=X \gtrless \hat{U}$ and

$$
\mu_{H}^{-1}(0) / K \cong(X \gg \widehat{U}) \gtrless\left(R / \mathbb{C}^{*}\right) \cong X \gg H .
$$

Applications: calculating Betti numbers, generators for the cohomology ring and intersection pairings on

$$
X \gtrless H=\mu_{H}^{-1}(0) / K,
$$

via $\left\|\mu_{H}\right\|^{2}$ as an equivariantly perfect Morse function and Shaun Martin's approach to intersection pairings by reducing to torus quotients.

Kähler picture following Greb-Miebach (2018):
unipotent $U \leqslant G=K_{\mathbb{C}}$ simply-connected semisimple;
U acting holomorphically on (X, ω) compact Kähler.
Questions: (a) analogue of 'linear action'?
(b) analogue of 'reductive envelope' $\overline{G \times_{U} X}$?
(c) use of moment maps for K-action to construct and study quotients for U-action?
(d) constraints on ω to allow it to be extended to a K-invariant Kähler form on $\overline{G \times_{U} X}$?
(e) link with non-reductive GIT?

Thm (Greb-Miebach) TFAE: (1) $G \times_{U} X$ is Kähler;
(2) the U-action on X is 'meromorphic' (i.e. extends to meromorphic $\bar{U} \times X \rightarrow X$ for a suitable compactification \bar{U});
(3) \exists 'Hamiltonian G-extension': Z compact Kähler with Hamiltonian K-action, U-equivariant embedding $X \rightarrow Z,\left[\left.\omega_{Z}\right|_{X}\right]=[\omega]$.

Then $X \rightarrow G \times_{U} X \hookrightarrow G \times{ }_{Z} \cong G / U \times Z \hookrightarrow V \times Z$ when G / U is embedded as a G-orbit in a representation V of G with flat K-invariant Kähler structure, and we can define

$$
X^{s s, U}[\omega]=X \cap\left\{y \in G / U \times Z: \mu^{-1}(0) \cap \overline{G y} \neq \varnothing\right\}
$$

where $\mu=\mu_{Z}+\mu_{V}$ for moment maps $\mu_{Z}: Z \rightarrow \mathfrak{k}^{\star}$ and $\mu_{V}: V \rightarrow \mathfrak{k}^{*}$.

Thm (Greb-Miebach) (i) $X^{s s, U}[\omega]$ is independent of the choice of the Hamiltonian G-extension Z (for fixed $G=K_{\mathbb{C}}$), but can depend on G and the Kähler metric on G / U; (ii) \exists geometric quotient $\pi: X^{s s, U}[\omega] \rightarrow X^{s s, U}[\omega] / U=Q$ smooth, $Q \subseteq \bar{Q}$ compact cx space, $\bar{Q} \backslash Q$ analytic, π extends to mero $X \rightarrow \bar{Q}$; (iii) \bar{Q} has a stratified Kähler structure restricting to a smooth Kähler form ω_{Q} on Q with $\left[\pi^{*} \omega_{Q}\right]=[\omega]$.
$H=U \rtimes R$ with unipotent radical U graded by $\lambda: \mathbb{C}^{*} \rightarrow Z(R)$.
$\hat{U}=U \rtimes \lambda\left(\mathbb{C}^{*}\right) \unlhd H$
Adjoint action $\phi: H \rightarrow G L((\operatorname{Lie}(\hat{U}))$ restricts to an injection $\left.\phi\right|_{U}: U \rightarrow S L((\operatorname{Lie}(\hat{U})) \cong S L(d+1)=G$ where $d=\operatorname{dim}(U)$.
Multiplying ϕ by a character gives $\widehat{\phi}$ with $\left.\widehat{\phi}\right|_{U}=\left.\phi\right|_{U}$ and

$$
\widehat{\phi}(\hat{U}) \cong\left\{\left(\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{d} \\
0 & \left(a_{0}\right)^{k_{1}} & \ldots & p_{1 d}(\underline{a}) \\
0 & 0 & \ldots & \left(a_{0}\right)^{k_{d}}
\end{array}\right): a_{0} \in \mathbb{C}^{*}, a_{1}, \ldots a_{d} \in \mathbb{C}\right\}
$$

where $k_{j}>1$ for $j=1, \ldots, d$ and the entries $p_{i j}\left(a_{0}, \ldots, a_{d}\right)$ above the diagonal are polynomials in $a_{0}, \ldots a_{d}$, homogeneous of degree i and weighted homogeneous of degree k_{j}.

We can use this to construct reductive envelopes/Hamiltonian G-extensions.

Lemma (Bérczi-K 2017; compare with the universal symplectic implosion's embedding in an affine space with flat Kähler metric)
$G L(d+1) / \widehat{\phi}(\widehat{U})=(S L(d+1) / U) /($ finite group) is embedded (with good control over its boundary) in an open affine subset of

$$
\mathbb{P}(V)=\mathbb{P}\left(\bigoplus_{j=1}^{d+1} \wedge^{j}\left(\bigoplus_{i=0}^{d} \text { Sym }^{k_{i}} \mathbb{C}^{d+1}\right)\right)
$$

as the $G L(d+1)$-orbit of $[\mathfrak{p}]$ given by

$$
\mathfrak{p}=\sum_{j=0}^{d} e_{0} \wedge\left(e_{1}+\left(e_{0}\right)^{k_{1}}\right) \wedge \ldots \wedge\left(e_{j}+\sum_{i=1}^{j-1} p_{i j}\left(e_{0}, \ldots, e_{d}\right)+\left(e_{0}\right)^{k_{j}}\right) \in V
$$

where e_{0}, \ldots, e_{d} is the standard basis for \mathbb{C}^{d+1}.
Use this embedding and a large positive scalar multiple of the flat Kähler metric on V as input for the Greb-Miebach construction to realise the hope of a 'moment map' description of X « H.

HAPPY BIRTHDAY, DAN!

