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Recall symplectic reduction (Marsden–Weinstein 1974) and
symplectic implosion (Guillemin–Jeffrey–Sjamaar 2002).

(X,ω) compact symplectic manifold
K compact Lie group with Lie algebra k acting on (X,ω)
T maximal torus of K, Lie algebra t ⊆ k

t∗+ = positive Weyl chamber
Kζ = {k ∈ K ∣(Ad∗k)ζ = ζ}, when ζ ∈ t∗+, with commutator subgroup
[Kζ,Kζ].

µ ∶X → k∗ moment map satisfies

dµx(ξ).a = ωx(ξ, ax) ∀x ∈X,ξ ∈ TxX,a ∈ k
and µ is K-equivariant (for the coadjoint action on k∗).

Special case: (X,ω) is Kähler and K acts holomorphically;
the action extends to G =KC = complexification of K.
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Let ζ ∈ k∗ be a regular value of µ ∶X → k∗,
with stabiliser Kζ for the coadjoint action. Then the

Marsden-Weinstein reduction at ζ
µ−1(ζ)/Kζ

is a symplectic orbifold. Often we take ζ = 0 to get the
‘symplectic quotient’ X//K = µ−1(0)/K.

µ−1(0)/K has a stratified symplectic structure with more serious
singularities when 0 is not a regular value of µ.

The symplectic implosion is also stratified symplectic, given by

Ximpl = µ−1(t∗+)/ ∼
where x ∼ y⇔ x = ky for some k ∈ [Kζ,Kζ] with

ζ = µ(x) = µ(y) ∈ t∗+.
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Example: K = SU(2) so t∗+ = [0,∞) = {0} ⊔ (0,∞), and

Ximpl =
µ−1(0)
SU(2) ⊔ µ

−1((0,∞))

Ximpl inherits a symplectic structure and T -action with
moment map Ximpl → t∗+ ⊆ t∗ induced by the restriction of µ.

Kähler case (Heinzner–Huckleberry–Loose, Sjamaar 1990s):
X//K, and hence Ximpl, inherits a stratified Kähler structure, via
gradµ(x).a = i ax (∀a ∈ k)↝ µ−1(0)reg/K ≅ (open subset of X)/G.

(T ∗K)impl ‘universal imploded cross-section’ is an affine
algebraic variety over C, embedded as the closure of a KC-orbit
in a representation of K. In general

Ximpl ≅ (X × (T ∗K)impl)//K
which is an algebraic variety if X is algebraic.
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In the Kähler case x ∈X is semistable for G =KC iff Gx∩µ−1(0) ≠ ∅,
and x ∈X is stable iff Gx ∩ µ−1(0)reg ≠ ∅, defining open subsets
Xs ⊆Xss of X. If x,y ∈Xss then x ∼ y iff Gx ∩Gy ∩Xss ≠ ∅.
The Kähler quotient is X ≈G =Xss/ ∼.

The inclusion µ−1(0)→Xss composed with the quotient map
Xss →X ≈G is K-invariant and induces a bijection

X//K = µ−1(0)/K →X ≈G
to the Kähler quotient, restricting on open subsets to

µ−1(0)reg/K ≅Xs/G↪X ≈G ≅ µ−1(0)/K.
E.g. Let G =KC act linearly on a smooth projective variety X ⊆ Pn
via ρ ∶ G → GL(n + 1). Assume ρ(K) ⊆ U(n + 1) so K preserves the
Fubini-Study Kähler form on X. Then a moment map µ ∶X → k∗

is given by µ([x]).a = x̄
Tρ∗(a)x
2πi∣∣x∣∣2 ∈ R for a ∈ k.
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Example: X = (P1)4 where P1 = C ∪ {∞} = S2 ⊆ R3.
K = SU(2) acting on X via rotations of S2

G =KC = SL(2;C) Möbius transformations

stability: (y1, y2, y3, y4) ∈ Xs iff y1, y2, y3, y4 are distinct points in
P1, with Xs/G ≅ P1 ∖ {0,1,∞} via the cross ratio.

semistability: (y1, y2, y3, y4) ∈ Xss iff at most two of y1, y2, y3, y4
coincide in P1, with X ≈G ≅ P1.

moment map µ ∶X → k∗ ≅ R3 is given by

µ(y1, y2, y3, y4) = y1 + y2 + y3 + y4.

In this example X//K = µ−1(0)/K is represented by balanced
configurations of points on S2, and the symplectic implosion
Ximpl = µ−1(0)/K ⊔µ−1((0,∞)) is its union with the configurations
whose centre of gravity lies on the positive x-axis.
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Link with alg geom/GIT (geometric invariant theory):
(Mumford, 1960s)
G cx reductive group, so G =KC for maximal compact K ⩽G;
X complex projective variety acted on by G.

We require a linearisation of the action (i.e. an ample line
bundle L on X and a lift of the action to L; think of X ⊆ Pn and
the action given by a representation ρ ∶G→GL(n + 1)).

X ↝ A(X) = C[x0, . . . , xn]/IX
∣ =⊕∞

k=0H
0(X,L⊗k)

∣ ⋃∣
↓

X//G ⇐ A(X)G algebra of invariants

G reductive implies that A(X)G is a finitely generated
graded complex algebra so that X ≈G = Proj(A(X)G)
is a projective variety.
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The rational map X − −→X ≈G fits into a diagram

X −−→ X ≈G cx proj variety
⋃ ∣∣

semistable Xss ontoÐ→ X ≈G
⋃ ⋃ open

stable Xs Ð→ Xs/G

where the morphism Xss →X ≈G is G-invariant and surjective.

Topologically X ≈G =Xss/ ∼ where x ∼ y ⇔ Gx ∩ Gy ∩ Xss ≠ ∅,

x ∈Xss iff Gx ∩ µ−1(0) ≠ ∅, x ∈Xs iff Gx ∩ µ−1(0)reg ≠ ∅ and

X ≈G = µ−1(0)/K

for a suitable moment map µ for the action of K.
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Symplectic implosion links with (a very special case of)
non-reductive GIT:
B = TCUmax Borel subgroup (maximal soluble subgp) of G =KC
such that G =KB and K ∩B = T .
Umax maximal unipotent subgroup of G normalised by T .
Fact: KC/Umax is a quasi-affine variety whose algebra of
regular functions O(KC/Umax) = O(KC)Umax is finitely generated,
so that KC/Umax has a canonical affine completion

KC ≈Umax = Spec(O(KC)Umax).
Thm (GJS): KC ≈Umax has a K-invariant Kähler structure which
is symplectically iso to the universal implosion (T ∗K)impl.
Cor: X affine or projective variety acted on linearly by KC ⇒

Ximpl ≅ (X × (KC ≈Umax)) ≈KC ≅X ≈Umax.

There is a generalisation XimplP replacing Umax with the
unipotent radical UP of any parabolic subgroup P of G =KC.
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What happens more generally with GIT for a non-reductive linear
algebraic group H over C?
Problem: We can’t define a projective variety

X ≈H = Proj(A(X)H)
because A(X)H is not necessarily finitely generated.

Question: Can we define a sensible ‘quotient’ variety X ≈H when
H is not reductive? If so, can we understand it geometrically?
Using moment maps?

Partial answer: We can define open subsets Xs (‘stable points’)
and Xss (‘semistable points’) with a geometric quotient
Xs →Xs/H and an ‘enveloping quotient’ Xss →X ≈H. BUT X ≈H
is not necessarily projective and Xss →X ≈H is not necessarily
onto. Also the Hilbert–Mumford criteria for (semi)stability do
not generalise, at least not in an obvious way.
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X projective variety with linear action of linear alg group H;
H has unipotent radical U ⊴H with R =H/U reductive.

We can try to study X ≈H using a ‘reductive envelope’:
we look for a reductive G and φ ∶H →G whose restriction to U

is injective. Then ∃ an induced homomorphism H →G ×R and
(G×R)-action on the quasi-projective variety G×U X = (G×X)/U .
We try to find a projective completion

G ×U X
with a G×R-linearisation restricting to the given linearisation on
X, such that X ≈H can be identified with an open subset of the
reductive GIT quotient

G ×U X ≈(G ×R).
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Simple example: U = C+ and Û = C+ ⋊C∗ acting on Pn.
∃ coordinates s.t. C∗ acts diagonally and the generator of Lie(C+)
has Jordan normal form with blocks of size k1 + 1, . . . , kq + 1. So
the linear C+ action extends to G = SL(2), where

C+ = {( 1 a
0 1

) ∶ a ∈ C} ⩽G,

via Cn+1 ≅ ⊕qi=1Sym
ki(C2), and the action of (a cover of) the

C+⋊C∗ action extends to GL(2). In this case the U-invariants are
finitely generated (Weitzenböck’s theorem) so we can define

Pn ≈C+ = Proj((C[x0, . . . , xn])C
+).

Note: G ×C+ Pn ≅ (G/C+) × Pn ≅ (C2 ∖ {0}) × Pn ⊆ C2 × Pn ⊆ P2 × Pn
via (g,x)↦ (gC+, gx); the C+-invariants on Pn extend, and

Pn ≈C+ ≅ (P2 × Pn) ≈SL(2) ≅ (Pn)impl.
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Example when (Pn)ss → Pn ≈C+ is not onto:

P3 = P(Sym3(C2)) = { 3 unordered points on P1}.
Then (P3)ss = (P3)s = { 3 points on P1 with at most one at ∞}
and its image in P3 ≈C+ = (P3)s/C+ ⊔ P3 ≈SL(2) is the open
subset (P3)s/C+ which does not include the ‘boundary’ point
coming from 0 ∈ C2.

If we quotient not just by U = C+ but by Û = C+ ⋊ C∗, where C∗
acts non-trivially on U , then we can modify the linearisation by
multiplying by a rational character of Û . For some such choices
of linearisation the ‘boundary’ point in the quotient by C+ coming
from 0 ∈ C2 becomes unstable for the induced action on C∗, so
we do get a surjective morphism

(P3)ss,Û ontoÐ→ P3 ≈Û .
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Defn: Call a unipotent linear alg group U graded unipotent
if ∃ λ ∶ C∗ → Aut(U) with all weights of the C∗ action on Lie(U)
strictly positive. Then let Û = U ⋊C∗ be the induced semi-direct
product.

Suppose that Û acts linearly (with respect to an ample line bundle
L) on a projective variety X. We can multiply the Û-linearisation
by any character (or any rational character, after replacing L
with L⊗m for sufficiently divisible positive m), without changing
the action. If we are willing to twist by an appropriate rational
character, then GIT for the Û action is nearly as well behaved
as in the classical case for reductive groups.

Any linear algebraic group H over C is U ⋊R where U ⊴H is
its unipotent radical and R ≅H/U is reductive. We say H
has internally graded unipotent radical if R has a central
one-parameter subgroup λ ∶ C∗ → Z(R) which grades U .
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Thm: (Berczi, Doran, Hawes, K) Let U be graded unipotent
acting linearly on a projective variety X, and suppose that the
action extends to Û = U ⋊C∗. Suppose also that

(∗) x ∈ Zmin ⇒ dim StabU(x) = 0

where Zmin is the union of connected components of XC∗ where
C∗ acts on the fibres of L with minimum weight. We can twist
the action of Û by a (rational) character so that 0 lies just above
the minimum weight for the C∗ action on X, and
(i) the ring A(X)Û of Û-invariants is finitely generated, so that
X//Û = Proj(A(X)Û) is projective;
(ii) X ≈Û is a geometric quotient of Xss,Û =Xs,Û by Û and Xss,Û

has a Hilbert–Mumford description.
Moreover, even without condition (*) there is a projective
completion of Xs,Û/Û which is a geometric quotient by Û

of an open subset X̃ss of a Û-equivariant blow-up X̃ of X.
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Examples of non-reductive groups H with internally graded
unipotent radicals:
i) H = Aut(Y ) where Y is a complete toric variety;
ii) H a parabolic subgroup of a reductive group G;
iii) H = {k-jets of germs of biholomorphisms of (C,0)}

≅ {
⎛
⎜⎜⎜⎜
⎝

a1 a2 . . . ak
0 (a1)2 . . . p2k(a)

. . .
0 0 . . . (a1)k

⎞
⎟⎟⎟⎟
⎠
∶ a1 ∈ C∗, a2, . . . ak ∈ C}

(and similarly when we replace (C,0) with (Cm,0)).

If H acts linearly on a projective variety X, and the linearisation
is twisted by a suitable rational character of H and (*) holds,
then this theorem applies to X ≈H = (X ≈Û) ≈(R/C∗),
which is Proj(A(X)H) =Xss/ ∼ where the algebra of invariants
A(X)H = (A(X)Û)R/C∗ is finitely generated and x ∼ y as before.
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When G reductive acts linearly on a projective variety X, ∃ a
stratification (= Morse stratification for ∣∣moment map∣∣2)

X = ⊔
β∈B

Sβ

indexed by a finite subset B of a +ve Weyl chamber, with
(i) S0 =Xss, and for each β ∈ B
(ii) Sβ ≅G×Pβ Y

ss
β

where Pβ is a parabolic subgroup of G and Y ss
β

is an open subset of a projective subvariety Y β of X.

Pβ = Uβ⋊Lβ, where its unipotent radical Uβ is graded by a central
1-parameter subgroup of its Levi subgroup Lβ. To construct a
quotient of (an open subset of) Sβ by G we can study the linear
action on Y β of the parabolic subgroup Pβ, appropriately twisted,
and quotient first by Ûβ and then by the residual action of the
reductive group Pβ/Ûβ = Lβ/C∗. We can use this to stratify
moduli stacks and construct moduli spaces of unstable objects.
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H = U ⋊R, internally graded unipotent radical U , R =KC
H⟳X ⊆ Pn via ρ ∶H →GL(n + 1) with ρ(K) ⊆ U(n + 1)

Define µH ∶X → h∗ by µH([x]).a = x̄Tρ∗(a)x/∣∣x∣∣2 ∈ C for a ∈ h.

X ≈H = GIT quotient for appropriately twisted linearisation (after
blowing up if need be).

When H = R is reductive X ≈H ≅X//K = µ−1
H (0)/K.

Applications: Betti numbers, intersection pairings on X ≈H...

When H = P is a parabolic in a reductive G and the action of H
extends to G, then X ≈H ≅ (X ≈U) ≈R ≅XimplP //K. After twisting
the linearisation by a suitable character of H (or equivalently
adding a suitable central constant to µH), if (∗) holds we have

X ≈H ≅ µ−1
H (0)/K.
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Back to simple example:

Pn ≈C+ ≅ µ−1
SU(2)(t

∗+) / collapsing on the boundary µ−1
SU(2)(0);

Pn ≈(C+ ⋊C∗) ≅ µ−1
SU(2)(t

∗+) ∩ µ−1
S1(ξ) / (S1 and collapsing).

Suppose µ−1
SU(2)(t) ∩ µ

−1
S1(ξ) ⊆ µ−1

SU(2)((t
∗+)o) ∩ µS1(ξ). Then

Pn ≈(C+ ⋊C∗) ≅ µ−1
SU(2)(t) ∩ µ

−1
S1(ξ)/S1 = µ−1

t⊥ (0) ∩ µ−1
S1(ξ)/S1

where µt⊥ ∶ Pn → t⊥ ≅ LieC+ is projection of µSU(2) onto t⊥. So

Pn ≈(C+ ⋊C∗) ≅ µ−1(0)/S1

where µ = (µt⊥, µS1 − ξ) ∶ Pn → t⊥ × (LieS1)∗.

Is there a similar description of X ≈H more generally?
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Hope: Given (*) AND after twisting by a suitable character (add
a suitable central constant to µH), then for a suitable projective
embedding of X:
µ−1
Û

(0) is a slice for the action of U ⋊R∗ on the open subset

Xs,Û = Ûµ−1
Û

(0) ≅ Û ×S1 µ
−1
Û

(0)

of X, so that µ−1
Û

(0)/S1 ≅Xs,Û/Û =X ≈Û and

µ−1
H (0)/K ≅ (X ≈Û) ≈(R/C∗) ≅X ≈H.

Applications: calculating Betti numbers, generators for the
cohomology ring and intersection pairings on

X ≈H = µ−1
H (0)/K,

via ∣∣µH ∣∣2 as an equivariantly perfect Morse function and Shaun
Martin’s approach to intersection pairings by reducing to torus
quotients.
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Kähler picture following Greb–Miebach (2018):
unipotent U ⩽G =KC simply-connected semisimple;
U acting holomorphically on (X,ω) compact Kähler.
Questions: (a) analogue of ‘linear action’ ?
(b) analogue of ‘reductive envelope’ G ×U X?
(c) use of moment maps for K-action to construct and study
quotients for U-action?
(d) constraints on ω to allow it to be extended to a K-invariant
Kähler form on G ×U X?
(e) link with non-reductive GIT?

Thm (Greb–Miebach) TFAE: (1) G ×U X is Kähler;
(2) the U-action on X is ‘meromorphic’ (i.e. extends to
meromorphic U ×X ⇢X for a suitable compactification U);
(3) ∃ ‘Hamiltonian G-extension’: Z compact Kähler with Hamil-
tonian K-action, U-equivariant embedding X ↪ Z, [ωZ ∣X] = [ω].
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Then X ↪G ×U X ↪G×Z ≅G/U ×Z ↪ V ×Z when G/U is embedded

as a G-orbit in a representation V of G with flat K-invariant

Kähler structure, and we can define

Xss,U[ω] =X ∩ {y ∈G/U ×Z ∶ µ−1(0) ∩Gy ≠ ∅}

where µ = µZ + µV for moment maps µZ ∶ Z → k∗ and µV ∶ V → k∗.

Thm (Greb–Miebach) (i) Xss,U[ω] is independent of the choice

of the Hamiltonian G-extension Z (for fixed G = KC), but can

depend on G and the Kähler metric on G/U ;

(ii) ∃ geometric quotient π ∶ Xss,U[ω] → Xss,U[ω]/U = Q smooth,

Q ⊆Q compact cx space, Q∖Q analytic, π extends to mero X ⇢Q;

(iii) Q has a stratified Kähler structure restricting to a smooth

Kähler form ωQ on Q with [π∗ωQ] = [ω].
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H = U ⋊R with unipotent radical U graded by λ ∶ C∗ → Z(R).
Û = U ⋊ λ(C∗) ⊴H
Adjoint action φ ∶H →GL((Lie(Û)) restricts to an injection

φ∣U ∶ U → SL((Lie(Û)) ≅ SL(d + 1) =G where d = dim(U).
Multiplying φ by a character gives φ̂ with φ̂∣U = φ∣U and

φ̂(Û) ≅ {
⎛
⎜⎜⎜⎜
⎝

a0 a1 . . . ad
0 (a0)k1 . . . p1d(a)

. . .
0 0 . . . (a0)kd

⎞
⎟⎟⎟⎟
⎠
∶ a0 ∈ C∗, a1, . . . ad ∈ C}

where kj > 1 for j = 1, . . . , d and the entries pij(a0, . . . , ad) above

the diagonal are polynomials in a0, . . . ad, homogeneous of degree

i and weighted homogeneous of degree kj.

We can use this to construct reductive envelopes/Hamiltonian

G-extensions.
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Lemma (Bérczi–K 2017; compare with the universal symplectic
implosion’s embedding in an affine space with flat Kähler metric)

GL(d + 1)/φ̂(Û) = (SL(d + 1)/U)/(finite group) is embedded (with
good control over its boundary) in an open affine subset of

P(V ) = P(
d+1
⊕
j=1

Λj(
d

⊕
i=0

SymkiCd+1))

as the GL(d + 1)-orbit of [p] given by

p =
d

∑
j=0

e0 ∧ (e1 + (e0)k1) ∧ . . . ∧ (ej +
j−1

∑
i=1

pij(e0, . . . , ed) + (e0)kj) ∈ V

where e0, . . . , ed is the standard basis for Cd+1.

Use this embedding and a large positive scalar multiple of the flat
Kähler metric on V as input for the Greb–Miebach construction
to realise the hope of a ‘moment map’ description of X ≈H.
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HAPPY BIRTHDAY, DAN!
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