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Goal: special geometry of singularities at special day.

▶ 2d Gromov-Witten geometry

▶ 4d Seiberg-Witten geometry
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Landau-Ginzburg (LG) model is a quantum theory of singularities
that arises from supersymmetric field theories. It is associated to
the data of a complex manifold X with a holomorphic function

f : X → C

called (LG) superpotential.

3 / 39



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

We start with 2d LG models. Its mathematical origin could be
traced back to K. Saito’s study (1982) of primitive period maps
over the universal unfolding of an isolated hypersurface singularity.
It produces a so-called Frobenius manifold in modern terminology
which becomes the universal structure in mirror symmetry.

The geometry behind K. Saito’s theory is the variation of ∞
2 -Hodge

structures (∞2 -VHS), a notion due to Barannikov-Kontsevich in
their study of compact Calabi-Yau geometries.
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We will be mainly interested in three classes of LG B-models

1) X = Cn, f is a quasi-homogeneous polynomial;
▶ mirror to FJRW theory of Landau-Ginzburg A-model

2) X = (C∗)n, f is a Laurent polynomial;
▶ mirror to Gromov-Witten theory on toric varieties

3) X = Cn/G , f is a G -invariant polynomial on Cn.
▶ orbifolds
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We illustrate relevant structures by the example of primitive form
theory, which is an algebraic model for understanding complex
oscillatory integral ∫

Γ
ef /t(· · · )
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Let
f : X = (Cn+1, 0) → ∆ = (C, 0)

be the germ of an isolated singularity. We consider the quotient

Ωf := Ωn+1
X /df ∧ Ωn

X .

With a choice of holomorphic volume form dx = dx0 ∧ · · · ∧ dxn

Ωf = Jac(f )dx

where Jac(f ) = C{x0, · · · , xn}/(∂i f ) is the Jacobian algebra of f
at 0. There is a non-degenerate pairing on Ωf given by residue

Resf : Ωf ⊗ Ωf → C .
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The space Ωf is the leading part of the Brieskorn lattice

H(0)
f := Ωn+1

X /df ∧ dΩn−1
X .

There is a well-defined operator, denoted by a formal variable t,

t : H(0)
f → H(0)

f .

Given α ∈ H(0)
f , there exists n-form β such that α = dβ, then

t · α := −df ∧ β ∈ H(0)
f .

Symbolically,

t = −df

d
: α → −df ∧ d−1α.

8 / 39



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Descendant forms

Given ω ∈ H(0)
f and k ≥ 0, we define its k-th descendant form

ω(−k) := (−t)kω ∈ H(0)
f .

Descendant forms give natural semi-infinite filtrations

· · · ⊂ H(−k)
f ⊂ H(−k+1)

f ⊂ · · · ⊂ H(−1)
f ⊂ H(0)

f

The formal completion of H(0)
f w.r.t. this t-adic topology identifies

Ĥ(0)
f = Ωn+1

X [[t]]/(td + df )Ωn
X [[t]] .

9 / 39



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Higher residue

K. Saito defines a sesqui-linear higher residue pairing

Kf : Ĥ(0)
f × Ĥ(0)

f → tnC[[t]] .

whose leading coefficient in t coincides with the residue pairing on

Ωf = H(0)
f /tH(0)

f . In other words

Kf = tn(Resf + higher orders in t).

10 / 39



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Oscillatory integral and Period

Given an element ω ∈ H(0)
f , we can consider the oscillatory integral∫

Γ
ef /tω

Under Laplace transformation, this is related to the period map∫
γ

ω

df
.
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In Seiberg-Witten curve geometry, we have a 2-form ω with
ω = dλ. Then the SW period map is related to the period map of
the first descendant of ω∫

γ
λ =

∫
γ

df ∧ d−1ω

df
= −

∫
γ

ω(−1)

df
.

As we will see, this observation allows us to obtain SW differential
arising from higher dimensional geometry (in particular 3-fold
fibration) via different choices of the descendants.
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Primitive form

Let M be the miniversal deformation space of f (x i ), represented
by F (x i , λα), λ ∈ M. Using higher residues, K. Saito [1982]
constructed a special family of holomorphic volume forms
ξ(x , λ) = φ(x , λ)dx, called primitive form. It determines a set of
flat coordinates {τα} on M such that(

t
∂

∂τα
∂

∂τβ
− Aγ

αβ(τ)
∂

∂τγ

)∫
eF/tξ = 0.

Aγ
αβ is nowadays the Yukawa coupling of 2d LG B-models.

On Calabi-Yau geometries, the analogue of primitive form is called
∞
2 -period map in Barannikov-Kontsevich construction. In
Gromov-Witten theory, this is another face of Givental’s J-function.
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We would like to extend this theory to the case when

Crit(f ) = compact

Our construction is based on developing a general L2-Hodge theory
for LG model that allows us to perform the analogue of
Barannikov-Kontsevich construction on compact Calabi-Yau’s.

This part is joint work in progress with Hao Wen.
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Barannikov-Kontsevich construction

Barannikov and Kontsevich’s approach to deformation of compact
Calabi-Yau is to study dGBV algebra

(PV(X ), ∂̄, ∂, [, ]).

Here PV(X ) = Ω0,∗(X ,∧∗TX ), ∂ is the divergence operator w.r.t.
CY volume form, [−,−] is the Schouten-Nijenhuis bracket.

The Bogomolov-Tian-Todorov lemma, L2 pairing, and Hodge-to-de
Rham degeneration leads to a smooth moduli of deformations that
carries a Frobenius manifold structure.
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In the Landau-Ginzburg case, X is non-compact. There are two
natural dGBV algebras

(PVc(X ), ∂̄f , ∂, [, ]) and (PV(X ), ∂̄f , ∂, [, ])

Here PVc(X ) is the subspace of compactly supported polyvector
fields. They are used to compute the correlation functions of LG
B-models for isolated quasi-homogeneous singularities (L-Li-Saito).

However, for general f with compact critical set

1. PV(X ) is too big for integration, or for higher residue theory.

2. PVc(X ) is too small for Hodge decompositions.

Idea: to find a ’nice’ space in between PVc(X ) and PV(X ) which
enjoys both higher residue theory and Hodge decompositions such
that the Barannikov-Kontsevich construction applies directly.
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We will be interested in the data (X ,ΩX , g , f ) where

▶ X is a non-compact complex manifold equipped with a
holomorphic volume form ΩX

▶ g is a complete Kähler metric

▶ f : X → C holomorphic with Crit(f ) compact.

We say (X , g) have a bounded geometry if:

1) the injective radius is positive;

2) there exists a uniform bound for each order of covariant
derivative of the Riemannian curvature tensor.

Furthermore, if all covariant derivatives of ΩX and Ω−1
X are

bounded on X , we say (X ,ΩX , g) has a bounded CY geometry.
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Let A(X ) = ⊕Ai ,j(X ) be the space of differential forms and

∂̄f := ∂̄ + ∂f ∧

be the twisted Cauchy-Riemann operator. We have densely defined
operators ∂̄f , ∂̄

∗
f , ∂ on L2(X ) and especially the twisted Laplacian

∆f := [∂̄f , ∂̄
∗
f ] = ∂̄f ∂̄

∗
f + ∂̄∗

f ∂̄f

which is an elliptic operator of order 2.
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A holomorphic function f on X is said to be strongly elliptic if for
∀ϵ > 0, k ≥ 2,

ϵ|∇f (z)|k − |∇k f (z)| → +∞ as z → ∞.

Remark: There are several different tameness conditions in
literature, such as elliptic condition, tame condition, M-tame
condition, strongly tame condition. Our strongly elliptic
assumption is stronger than the above conditions, but on the other
hand applies to general interesting cases as we will see.
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The following Hodge decomposition was proved by
Klimek-Lesniewski (1991) and later also studied by Fan (2011).

Theorem
Let (X , g) be a bounded geometry, and f be strongly elliptic.
Then the twisted Laplacian ∆f has purely discrete spectrum.

We have the Hodge decomposition:

L2A(X ) = Ker(∆f )⊕ Im(∂̄f )⊕ Im(∂̄∗
f ).
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Kähler-Hodge identity

Since g is Kähler, ∆f behaves much alike the usual Laplacian ∆∂̄

on compact Kähler manifolds. In particular, the following
generalized Kähler-Hodge identities are known to hold and play
important roles in supersymmetric quantum mechanical models:

[∂f ,Λ] =− i ∂̄∗
f , [∂̄f ,Λ] = i∂∗

f ,

[∂∗
f , L] =− i ∂̄f , [∂̄∗

f , L] = i∂f .

As a consequence, we have another Hodge decomposition

L2A(X ) = Ker(∆f )⊕ Im(∂f )⊕ Im(∂∗
f ).
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The following three classical examples of Landau-Ginzburg models
satisfy the strongly elliptic condition:

1) X = Cn, g the standard flat metric, f is a quasi-homogeneous
polynomial with isolated singularity;

2) X = (C∗)n, g := 1
2

∑
i (

dzi
zi

⊗ dz̄i
z̄i

+ dz̄i
z̄i

⊗ dzi
zi
), f is a convenient

non-degenerate polynomial;

3) π : X → Cn/G be a crepant resolution, g be an asymptotic
locally Euclidean metric on X . Let f be a G -invariant
polynominal on Cn with an isolated singularity

X

π
��

π∗(f )

""E
EE

EE
EE

EE

Cn/G
f // C

Then (X , g , π∗(f )) is a LG model with Crit(π∗(f )) compact.
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We define the f -twisted Sobolev spaces PVf ,k(X ) by

PVf ,k(X ) := {α||∇f |i∇jα ∈ L2(X ), ∀i + j ≤ k},

The spaces PVf ,∞(X ) is defined as the infinite intersection

PVf ,∞(X ) := ∩k≥0 PVf ,k(X ).

Theorem (H.Wen, -)

PVf ,∞(X ) is closed under wedge product, ∂̄f , ∂ and decomposition
into components of Hodge degrees. In particular,
(PVf ,∞(X ), ∂̄f , ∂, [, ]) forms a dGBV algebra. The embeddings

(PVc(X ), ∂̄f , ) ⊂ (PVf ,∞(X ), ∂̄f ) ⊂ (PV(X ), ∂̄f )

are all quasi-isomorphisms.
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Hodge-to-de Rham Degeneration

Comparing to the compact CY case, we do not have the
∂∂̄f -Lemma. We have a similar, though weaker, version in our LG
model that suffices to establish the following.

Theorem (H.Wen, -)

Let (X , g ,ΩX ) be a bounded CY geometry and f be strongly
elliptic. Then Hodge-to-de Rham degeneration holds for the
complex (PVf ,∞(X )[[t]], ∂̄f + t∂).

In particular, we know that H(PVf ,∞(X )[[t]], ∂̄f + t∂) is a free
C[[t]]-module of finite rank, and the dgla
(PVf ,∞(X )[[t]], ∂̄f + t∂, [−,−]) is smooth formal

24 / 39



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Higher residue pairing

We define the sesquilinear pairing

Kf : PVf ,∞(X )[[t]]× PVf ,∞(X )[[−t]] → C[[t]]

by

Kf (f (t)α, g(t)β) = f (t)g(−t)

∫
X
(αβ ⊢ ΩX ) ∧ ΩX .

▶ Kf descends to a sesquilinear paring on the cohomology
H(PVf ,∞(X )[[t]], ∂̄f + t∂). It generalizes K.Saito’s higher
residue pairing for isolated singularities.

▶ Modulo t, Kf defines a non-degenerate pairing on
H(PVf ,∞(X ), ∂̄f ). This is the analogue of residue pairing.
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Harmonic forms give a splitting of the Hodge filtration. As a
consequence, we obtain our main theorem.

Theorem (H.Wen, -)

Let (X , g ,ΩX ) be a bounded Calabi-Yau geometry, f be a strongly
elliptic holomorphic function. Then there exists a Frobenius
manifold structure on the cohomology H(PV(X ), ∂̄f ).

Remarks:

▶ Douai and Sabbah constructed Frobenius manifolds for certain
class of LG models on (C∗)n.

▶ Kazarkov, Kontsevich and Pantev proved the Hodge-to-de
Rham degeneration for a class of LG models that allows
certain good compactification f̄ : X̄ → P1.

▶ Kaledin proved a noncommutative version of Hodge-to-de
Rham degeneration on general smooth and proper dg-categories.
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Seiberg-Witten geometry

We are interested in 4D N = 2 SCFT. Seiberg-Witten discovered
that for many theories the low energy effective theory on the
Coulomb branch could be described by a Seiberg-Witten curve
fibered over the moduli space:

F (x , z ;λα) = 0

Here λα’s are the parameters including coupling constants, mass
parameters, and expectation values for Coulomb branch operators.
The period integral of an appropriate 1-form over the Riemann
surface F (x , z ;λα) = 0 determines the low energy photon coupling.
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Singularity and 4d N = 2 SCFT

We consider type IIB string theory on the following background:

R3,1 × X

Here X is a 3-fold weighted homogeneous isolated singularity. It is
argued to define 4d N = 2 SCFT (Shapere, Vafa, 99; D. Xie, Yau,
15). The SW solution is associated to a three-fold fibration

F (x1, x2, x3, x4;λα) = 0

which may or may not be reduced to the curve geometry. This
suggests that the more general SW solution could be three-fold
fibrations rather than curves. Our goal is to figure out the
corresponding SW differential.
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Consider an isolated weighted homogeneous 3-fold singularity:

f : C4 → C, f (λqi x i ) = λf (x i ), qi > 0, λ ∈ C∗.

The rational number

ĉf =
∑
i

(1− 2qi )

is the central charge of the 2d (2,2) SCFT defined by LG model
with superpotential f . To define a 4d SCFT we require∑

i

qi > 1 ⇐⇒ ĉf < 2.
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The Coulomb branch of the associated N=2 SCFT is described by
the local moduli of miniversal deformations of f :

F (xi , λα) = f (xi ) +

µ∑
α=1

λαϕα

where {ϕα} is a basis of the Jacobi algebra Jac(f ). Define

[λα] =
1− Qα∑
i qi − 1

, Qα = homogeneous weight of ϕα.

▶ [λα] < 1: Coupling constants
▶ [λα] = 1: Mass parameters
▶ [λα] > 1: Expectation value of Coulomb branch operators

Deformation

Weight (     ) 0 cf cf
1
2

Coulomb operators mass Coupling constants
φα 

Qα 
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Period map

Given a family of holomorphic volume forms ξ(x i , λα), we consider
the period map

P : M → H3, {λα} →
∫
γ

ξ

dF
.

Here the integration is over vanishing cycles γ in F−1(0) and
H3 = H3(F−1(0),C) is the dual space. For simplicity, let us
consider the case with no mass parameters. Then H3 has a natural
symplectic structure induced dually from the intersection pairing.
This allows choices of an electro-magnetic charge lattice from H3.

M is a deformation by Coulomb operators,

dim(M) =
1

2
dimH3.
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Seiberg-Witten differential

The low energy effective theory of Coulomb branch is described by
Seiberg-Witten (SW) geometry.

Question
What is the Seiberg-Witten differential associated to singularities?

Naive guess: the SW differential is the family of 3-forms

ξ

dF
, where ξ = dx1 ∧ dx2 ∧ dx3 ∧ dx4.

The N = 2 prepotential comes from the corresponding period map.
This is indeed true in the case of ADE singularities (ĉf < 1).

If we go beyond ADE singularities, this no longer holds.
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Seiberg-Witten differential

The low energy effective theory of Coulomb branch is described by
Seiberg-Witten (SW) geometry.

Question
What is the Seiberg-Witten differential associated to singularities?

Naive guess: the SW differential is the family of 3-forms

ξ

dF
, where ξ = dx1 ∧ dx2 ∧ dx3 ∧ dx4.

The N = 2 prepotential comes from the corresponding period map.
This is indeed true in the case of ADE singularities (ĉf < 1).

If we go beyond ADE singularities, this no longer holds.
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Seiberg-Witten differential

Solution [L-Xie-Yau, 2018]: for 3-fold singularity

ξ primitive form =⇒ ξ

dF
SW differential

where ξ is K. Saito’s primitive form.

The main support for the connection between primitive form and
SW differential is about the lagrangian/integrability condition

⟨dP, dP⟩ = 0

for the existence of N = 2 prepotential arising from SW period
map. The verification of such integrability requires a connection
between the intersection pairing for vanishing homology and the
period map. Primitive form provides precisely such a relationship.
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Curve v.s. 3-fold geometry

This result also generalizes to curve geometry

ξ primitive form =⇒ ξ(−1)

dF
SW differential

The SW differential for three-fold geometry picks up ξ instead of
ξ(−1) for curve geometry.

There is also a 5d hypersurface singularity example. The analogue
discussion implies that the SW differential is expected to be

ξ(1)

dF
.
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Examples of primitive forms: ADE type (ĉf < 1)

We consider

f (x) = x21 + x22 + xk3 + xN4 ,
1

k
+

1

N
>

1

2
.

This example can be reduced to curve geometry. The primitive
form is trivial in this case and doesn’t depend on the deformation
parameter

ξ = dx1 ∧ · · · ∧ dx4.

The 3-fold SW differential is given by

λ =
ξ

dF
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Simple elliptic singularity (ĉf = 1)

We consider
f (x) = x31 + x32 + x33 + x24

The miniversal deformation is

F = f+λ1+λ2x1+λ3x2+λ4x3+λ5x1x2+λ6x2x3+λ7x3x1+λ8x1x2x3.

Primitive form of this example is nontrivial and is not unique. They
depend only on the marginal parameter λ8 described as follows:

ξ =
dx1 ∧ · · · ∧ dx4

P(λ8)

where P(λ8) is a period on the cubic elliptic curve

{x31 + x32 + x33 + λ8x1x2x3 = 0} ⊂ P2.
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General singularities (ĉf > 1)

For general singularities with ĉf > 1, there exists a highly nontrivial
mixing between relevant and irrelevant deformations. The close
formula of primitive form is unknown. Here is one example

f = x21 + x22 + x33 + x74 .

This is type E12 of the unimodular exceptional singularities. The
miniversal deformation is the following

F (x , λ) = f + λ1 + λ2x4 + λ3x
2
4 + λ4x3 + λ5x

3
4 + λ6x3x4

+ λ7x
4
4 + λ8x3x

2
4 + λ9x

5
4 + λ10x3x

3
4 + λ11x3x

4
4 + λ12x3x

5
4 .

Here λ1, · · · , λ11 are relevant deformations, and λ12 is an
irrelevant deformation.
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There is a recursive formula to compute general primitive forms
perturbatively [L-Li-Saito, 2015]. For E12, it gives (up to order 10)

ζ = (φ(x , λ) + O(λ11))dx1 ∧ dx2 ∧ dx3 ∧ dx4.

where

φ(x, λ) = 1 +
4

3 · 72
λ11λ12

2 −
64

3 · 74
λ
2
11λ12

4 −
76

32 · 74
λ10λ12

5 +
937

33 · 75
λ9λ12

6 +
218072

34 · 5 · 76
λ
3
11λ12

6

+
1272169

34 · 5 · 77
λ10λ11λ12

7 +
28751

34 · 77
λ8λ12

8 −
1212158

34 · 78
λ9λ11λ12

8 −
38380

33 · 78
λ7λ12

9

+
( 1

72
λ12

3 −
101

5 · 74
λ11λ12

5 +
1588303

34 · 5 · 77
λ
2
11λ12

7 +
378083

34 · 5 · 77
λ10λ12

8 −
108144

3 · 78
λ9λ12

9)x3
+

( 1447

33 · 76
λ12

7 −
71290

33 · 78
λ11λ12

9)x4 −
45434

34 · 78
λ12

10x3x4

−
( 53

32 · 74
λ12

6 −
46244

33 · 77
λ11λ12

8)x23 +
22054

34 · 77
λ12

9x33 .

In particular, the Seiberg-Witten differential of this example is not
given by a rescaling of the trivial form and depends on the coupling
constants in a highly nontrivial way.
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Happy birthday, Super and
Symmetric Dan!
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