The Smooth Homotopy Category

1

Graeme Segal

local smooth structure ultra-violet global homotopy type infra-red

local smooth structure ultra-violet global homotopy type infra-red

operator-product expansions

TFTs

local smooth structure	global homotopy type		
ultra-violet	infra-red		

operator-product expansions TFTs

 $\mathsf{Mfds}\ \subset\ \mathsf{SmHtp}\ \supset\ \mathsf{Htp}$

local smooth structure	global homotopy type
ultra-violet	infra-red
operator-product expansions	TFTs

Mfds	\subset	SmHtp	\supset	Htp
$\widehat{\mathrm{Mfds}}$	\leftarrow	SmHtp	\rightarrow	Htp

A basic adjunction:

groups \longleftrightarrow based homotopy types $\pi_1(M, x) \xleftarrow{} (M, x)$ $G \longmapsto BG$ $[M; BG] = \operatorname{Hom}(\pi_1(M, x); G)$ A basic adjunction:

groups \longleftrightarrow based homotopy types $\pi_1(M, x) \xleftarrow{} (M, x)$ $G \longmapsto BG$ $[M; BG] = \operatorname{Hom}(\pi_1(M, x); G)$

Two ideas:

(i) space as a set with a topology, vs space as a set with paths(ii) the 'radar' perspective

The adjunction becomes an equivalence on promoting $\pi_1(M, x)$ to the *loop space* $\Omega_x M$, a *group* in Htp.

The adjunction becomes an equivalence on promoting $\pi_1(M, x)$ to the *loop space* $\Omega_x M$, a *group* in Htp.

The edifice of algebraic topology exploits the fact that $\Omega_X M$ can be constructed *perturbatively* from $\pi_1(M, X)$: we have paths, paths between paths,

The adjunction becomes an equivalence on promoting $\pi_1(M, x)$ to the *loop space* $\Omega_x M$, a *group* in Htp.

The edifice of algebraic topology exploits the fact that $\Omega_x M$ can be constructed *perturbatively* from $\pi_1(M, X)$: we have paths, paths between paths,

The *local* description of a object of SmHtp is also perturbative in nature: we expand functions in Taylor series at a given point.

The structures of these very different perturbative theories have remarkable similarities.

The vector space of k-fold operations

$$\mathfrak{g} imes \ldots imes \mathfrak{g} \longrightarrow \mathfrak{g}$$

one can perform in a Lie algebra g, e.g.

$$(\xi_1, \xi_2, \dots, \xi_5) \longmapsto [[\xi_1, [\xi_2, \xi_3], [\xi_4, \xi_5]]$$

is $H_{(k-1)(n-1)}(C_k(\mathbb{R}^n);\mathbb{R}).$

The Lie expressions correspond to planetary systems.

Origins of SmHtp

For a Lie group G and an abelian Lie group A with G-action we can define cohomology groups

$$H^*_{\mathrm{alg}}(G; A)$$

with the properties

$$\begin{array}{rcl} H^0_{\mathrm{alg}}(G;A) &=& A^G \\ \\ H^1_{\mathrm{alg}}(G;A) &=& \mathrm{Hom}_{\mathrm{cr}}(G;A)/\sim \\ \\ H^2_{\mathrm{alg}}(G;A) &=& \{\mathrm{extensions}\; A \to E \to G\}/\sim \end{array}$$

Origins of SmHtp

For a Lie group G and an abelian Lie group A with G-action we can define cohomology groups

$$H^*_{\mathrm{alg}}(G; A)$$

with the properties

$$\begin{split} H^0_{\mathrm{alg}}(G;A) &= A^G \\ H^1_{\mathrm{alg}}(G;A) &= \operatorname{Hom}_{\mathrm{cr}}(G;A) / \sim \\ H^2_{\mathrm{alg}}(G;A) &= \{\operatorname{extensions} A \to E \to G\} / \sim \end{split}$$

Is there a 'space' $\mathcal{B}G$ such that $H^*_{alg}(G; A) = H^*(\mathcal{B}G; A)$?

If G is discrete then $H^*_{alg}(G; A) = H^*(BG; A)$, where $[X; BG] = Bdl_G(X)$

If A is discrete, we still have $H^*_{alg}(G; A) = H^*(BG; A)$ for all G, BUT if G is a real vector space V then

$$H^*_{\mathrm{alg}}(V;\mathbb{R}) \;=\; \wedge^*(V^*)$$

and if G is reductive then

$$H^*_{\mathrm{alg}}(G;\mathbb{R}) \;=\; H^*(G_{\mathbb{C}}/G;\mathbb{R}).$$

Thus

$$H^*_{\mathrm{alg}}(G;\mathbb{Z})\otimes\mathbb{R}\ o H^*_{\mathrm{alg}}(G;\mathbb{R})$$

is far from an isomorphism.

The van Est spectral sequence suggests there is a fibration

$$\mathcal{B}\mathfrak{g} \rightarrow \mathcal{B}G \rightarrow \mathcal{B}G,$$

where $\mathcal{B}\mathfrak{g}$ is a 'space' such that $H^*(\mathcal{B}\mathfrak{g};\mathbb{R}) = H^*_{\mathrm{Lie}}(\mathfrak{g};\mathbb{R})$.

But $\mathcal{B}G$ looks like a point for cohomology with discrete coefficients.

The van Est spectral sequence suggests there is a fibration

$$\mathcal{B}\mathfrak{g}
ightarrow \mathcal{B}G
ightarrow \mathcal{B}G$$
,

where $\mathcal{B}\mathfrak{g}$ is a 'space' such that $H^*(\mathcal{B}\mathfrak{g};\mathbb{R}) = H^*_{\mathrm{Lie}}(\mathfrak{g};\mathbb{R})$.

But $\mathcal{B}G$ looks like a point for cohomology with discrete coefficients.

Question Is *any* object of SmHtp obtained by putting a bundle of infinitesimal structures on an ordinary homotopy type?

Provisional definition:

SmHtp is the category of 'half-exact homotopy functors'

 $\mathrm{Htp}^{\mathrm{opp}} \rightarrow \mathrm{Mfds}.$

Provisional definition:

SmHtp is the category of 'half-exact homotopy functors'

 $Htp^{opp} \rightarrow Mfds.$

 $\mathcal{B}G$ is the functor $X \mapsto \operatorname{Flat}_G(X)$, where $\operatorname{Flat}_G(X) = \{\operatorname{Flat} G - \operatorname{bundles} \operatorname{on} X\} / \sim$,

 $\mathcal{B}\mathfrak{g}$ is $X \mapsto \operatorname{Flat}_{\mathfrak{g}}(X)$, the classes of flat connections in the trivial \mathfrak{g} -bundle.

The van Est fibration becomes the Puppe sequence

$$\ldots \rightarrow [X; G] \rightarrow \operatorname{Flat}_{\mathfrak{g}}(X) \rightarrow \operatorname{Flat}_{G}(X) \rightarrow \operatorname{Bdl}_{G}(X).$$

Motivation: Quillen's algebraic *K*-theory

If A is the ring of integers in a number field then

The K-theory of A is $K^*_A(\text{point})$, where $X \mapsto K_A(X)$ is the group-completion of the semigroup-valued functor

$$X \mapsto \operatorname{Flat}_{A-\operatorname{\mathsf{Mod}}}(X).$$

For a topological ring, we can perform the group-completion in SmHtp.

Motivation: Quillen's algebraic *K*-theory

If A is the ring of integers in a number field then

The K-theory of A is $K^*_A(\text{point})$, where $X \mapsto K_A(X)$ is the group-completion of the semigroup-valued functor

$$X \mapsto \operatorname{Flat}_{A-\operatorname{\mathsf{Mod}}}(X).$$

For a topological ring, we can perform the group-completion in SmHtp.

$$\begin{split} \mathcal{K}_*(\mathbb{C}) \ &= \ \{\mathbb{Z} \ \mathbb{C}^{\times} \ 0 \ \mathbb{C}^{\times} \ 0 \ \mathbb{C}^{\times} \ 0 \ \ldots\} \\ \mathcal{K}_*(\mathbb{R}) \ &= \ \{\mathbb{Z} \ \mathbb{R}^{\times} \ 0 \ \mathbb{T} \ 0 \ \mathbb{R}^{\times} \ 0 \ \ldots\} \end{split}$$

The inadequacy of homotopy functors:

SmHtp is a *homotopy* category, and we need a category of 'spaces' from which it arises.

The inadequacy of homotopy functors:

SmHtp is a *homotopy* category, and we need a category of 'spaces' from which it arises.

Two candidates: $simplicial\ manifolds\$ and $\ commutative\ DGAs$

A simplicial manifold $\ensuremath{\mathcal{M}}$ defines the manifold-valued homotopy-functor

$$X \mapsto [X; \mathcal{M}]_{spll},$$

where X is a discrete simplicial space — in the language of 'spaces with two topologies'

$$X \mapsto [X; |\mathcal{M}^{discr}|].$$

A smooth manifold M is identified with a *constant* simplicial manifold.

The forgetful functor

 $SmHtp \rightarrow Htp$

is given by $\mathcal{M}\mapsto |\mathcal{M}|,$ and the forgetful functor

 $\rm SmHtp \ \rightarrow \ \widehat{Mfds}$

is $\mathcal{M} \mapsto \pi_0(\mathcal{M})$.

13

Think of a simplicial manifold $\mathcal{M} = \{\mathcal{M}_p\}$ as the manifold \mathcal{M}_0 equipped with a "generalized equivalence relation".

Examples

(i) If $U = \{U_{\alpha}\}$ is an open covering of a manifold M we have a simplicial manifold

$$M^{\mathcal{U}} = \{ \bigsqcup_{\alpha} U_{\alpha} \ \bigsqcup_{\alpha,\beta} U_{\alpha} \cap U_{\beta} \ldots \}.$$

The inclusion $M^{\mathcal{U}} \rightarrow M$ is an equivalence in SmHtp.

14

(ii) If we choose a metric on M, and a small $\varepsilon > 0$, we have the *thickening* M_{Δ} of M, with

$$M_{\Delta,p} = \{(x_0,\ldots,x_p) \in M^{p+1} : d(x_i,x_j) < \varepsilon\}.$$

We should think of this as "M with nearby points identified": it represents the homotopy type of |M| of M as an object of SmHtp.

(ii) If we choose a metric on M, and a small $\varepsilon > 0$, we have the *thickening* M_{Δ} of M, with

$$M_{\Delta,p} = \{(x_0, \ldots, x_p) \in M^{p+1} : d(x_i, x_j) < \varepsilon\}.$$

We should think of this as "M with nearby points identified": it represents the homotopy type of |M| of M as an object of SmHtp.

(iii) S_M , for which $S_{M,p}$ is the manifold of smooth singular simplexes in M.

 M_{Δ} and S_M are equivalent in SmHtp.

(iv) Any smooth groupoid or smooth category is a simplicial manifold, for example $\mathcal{B}G$, with $\mathcal{B}G_p = G^p$.

(iv) Any smooth groupoid or smooth category is a simplicial manifold, for example $\mathcal{B}G$, with $\mathcal{B}G_p = G^p$.

$$\begin{split} [M;\mathcal{B}G]_{sm} &= \operatorname{Bdl}_{G}(M) \\ [M^{(1)}_{\Delta};\mathcal{B}G]_{sm} &= \operatorname{Bdl}^{conn}_{G}(M) \\ [M^{(p)}_{\Delta};\mathcal{B}G]_{sm} &= \operatorname{Flat}_{G}(M) \quad \text{for } p \geq 2, \end{split}$$
where $M^{(p)}_{\Delta}$ denotes the *p*-skeleton of M_{Δ} .

In particular we get the 'differential' or Deligne-Cheeger-Simons cohomology:

$$[M^{(1)}_{\Delta}; \mathcal{BT}]_{sm} = H^2_{sm}(M),$$

and, more generally,

$$[M^{(p)}_{\Delta};\mathcal{K}(\mathbb{T},p)]_{sm} = H^{p+1}_{sm}(M),$$

where $\mathcal{K}(\mathbb{T}, p) = \mathcal{B} \dots \mathcal{B}\mathbb{T}$ is the Eilenberg-Maclane object:

$$\mathcal{K}(\mathbb{T},p) = Z^{p}(\Delta;\mathbb{T}).$$

(Here Δ is the cosimplicial object formed by the standard simplexes.)

Commutative DGAs/ \mathbb{R} (with nuclear topology) are related to simplicial manifolds by contravariant adjoint functors defined in terms of the simplicial DGA $\Omega^{\bullet}(\Delta)$.

For a DGA \mathcal{A} we write

$$\operatorname{Spec}(\mathcal{A}) = \operatorname{Hom}_{DGA}(\mathcal{A}; \Omega^{\bullet}(\Delta)),$$

and, for a simplicial manifold \mathcal{M} ,

$$\mathcal{A}_{\mathcal{M}} = \operatorname{Map}_{spll}(\mathcal{M}; \Omega^{\bullet}(\Delta)).$$

Commutative DGAs/ \mathbb{R} (with nuclear topology) are related to simplicial manifolds by contravariant adjoint functors defined in terms of the simplicial DGA $\Omega^{\bullet}(\Delta)$.

For a DGA \mathcal{A} we write

$$\operatorname{Spec}(\mathcal{A}) = \operatorname{Hom}_{DGA}(\mathcal{A}; \Omega^{\bullet}(\Delta)),$$

and, for a simplicial manifold \mathcal{M} ,

$$\mathcal{A}_{\mathcal{M}} = \operatorname{Map}_{spll}(\mathcal{M}; \Omega^{\bullet}(\Delta)).$$

But simplicial manifolds give us only positively-graded DGAs.

Examples

(i) $\mathcal{A}_M = \mathrm{C}^{\infty}(M)$

(ii) Spec
$$(\Omega^{\bullet}(M)) = S_M$$

(iii) We can now define $\mathcal{B}\mathfrak{g}$ by means of the usual Lie algebra cochain algebra

$$\mathcal{A}_{\mathcal{B}\mathfrak{g}} \;=\; \wedge^{ullet}(\mathfrak{g}^*)$$

A homomorphism $\wedge^{\bullet}(\mathfrak{g}^*) \to \Omega^{\bullet}(M)$ is just a \mathfrak{g} -valued 1-form on M which satisfies the Maurer-Cartan equation.

If $\mathfrak{g} = \operatorname{Lie}(G)$ with dim $G < \infty$, then $\operatorname{Spec}(\mathcal{A}_{\mathcal{B}\mathfrak{g}}) = \mathfrak{S}_G/G$. In SmHtp this is equivalent to the *group-germ* of G, i.e.

$$\mathcal{B}\mathfrak{g}_p = \{(g_1,\ldots,g_p) \in U^p : g_ig_{i+1}\ldots g_j \in U\}$$

for a convex neighbourhood of $1 \in G$.

The based loop space

The loop space $\Omega_{x}M$ at a point x of a manifold M is a group in SmHtp.

Any group in Htp can be represented by an honest topological group.

Milnor's construction of $\check{\Omega}_{\times}M$ as a group: achieve associativity by using unparametrized paths obtain inverses by cancelling return paths.

$$\check{\Omega}_{x}M = \pi_{1}(M^{(1)}_{\Delta}, x)$$

This is an infinite-dimensional Lie group.

Kapranov's description of $\omega_x M = \text{Lie}(\check{\Omega}_x M)$:

choose a coordinate chart at
$$x$$

 $\omega_x M = FL^{\geq 2}(T_x M),$

i.e. the sub-Lie-algebra of the free Lie algebra $FL(T_xM)$ consisting of terms of degree ≥ 2 .

Kapranov's description of $\omega_X M = \text{Lie}(\check{\Omega}_X M)$:

choose a coordinate chart at
$$x$$

 $\omega_x M = FL^{\geq 2}(T_x M),$

i.e. the sub-Lie-algebra of the free Lie algebra $FL(T_xM)$ consisting of terms of degree ≥ 2 .

$$\operatorname{Hom}(\check{\Omega}_{\times}M;G) = \operatorname{Bdl}_{G}^{conn}(M)$$

The vector fields ∂_i of the chart give covariant derivatives D_i in a bundle with connection. Define $FL^{\geq 2}(T_x) \to \mathfrak{g}$ by

$$\begin{split} [\partial_i,\partial_j] &\mapsto & [D_i,D_j] = \mathcal{K}_{ij} \\ & [\partial_i,[\partial_j,\partial_k]] &\mapsto & [D_i,[D_j,D_k]] = D_i \mathcal{K}_{jk} \end{split}$$
 Jacobi identity \longleftrightarrow Bianchi identity

Better:

 $[\Delta^1; M_{\Delta}^{(1)}]_{sm}$ is the smooth groupoid of unparametrized paths in *M*. Its infinitesimal version is the Lie algebroid $\{FL(T_x)\}$.

This presents the object $M_{\Delta}^{(1)}$ as a bundle of infinitesimal structures over $|M| = M_{\Delta}^{(1)}$.

M as an object of SmHtp:

 $M \rightarrow |M|$ corresponds to $\Omega^0(M) \leftarrow \Omega^{\bullet}(M)$

To make this into a fibration we replace $\Omega^0(M)$ by the equivalent DGA $\Omega^{\bullet}(M; \mathcal{F})$, where:

 $\mathcal{F} = \{\mathcal{F}_x\}$ is a bundle of algebras $\mathcal{F}_x =$ infinite jets of smooth functions at x \mathcal{F} has a flat connection.

The fibre of $M \to |M|$ at x is represented by the algebra \mathcal{F}_x of formal power series, whose spectrum is a point.

The information contained in \mathcal{F}_x is precisely the choice of the tangent space \mathcal{T}_x .

The replacement $\Omega^{\bullet}(M; \mathcal{F})$ for $\Omega^{0}(M)$ arises in Fedosov's deformation quantization.

 $\mathcal{F}_x \cong \hat{S}(T_x^*) = \hat{S}_x$ by the choice of an exponential map. This isomorphism gives us a flat connection in the bundle $\{\hat{S}_x\}$.

 $p \in \wedge^2(T_x)$ defines a quantization $\hat{S}_x[[\hbar]]$ of \hat{S}_x .

The induced connection in the quantization is flat only mod \hbar , but if [p, p] = 0 it can be altered power-by-power in \hbar to make it flat.

 $H^0(\Omega^{\bullet}(M; \hat{S}[[\hbar]]))$ is the quantization of $\Omega^0(M)$.