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Aspects of physical space:

local smooth structure global homotopy type
ultra-violet infra-red

operator-product expansions TFTs

Mfds ⊂ SmHtp ⊃ Htp

M̂fds ← SmHtp → Htp
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A basic adjunction:

groups ←→ based homotopy types

π1(M, x) ←− (M, x)

G 7−→ BG

[M;BG ] = Hom(π1(M, x);G )

Two ideas:

(i) space as a set with a topology, vs space as a set with paths
(ii) the ‘radar’ perspective
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The adjunction becomes an equivalence on promoting π1(M, x) to
the loop space ΩxM, a group in Htp.

The edifice of algebraic topology exploits the fact that ΩxM
can be constructed perturbatively from π1(M,X ): we have paths,
paths between paths, . . . .

The local description of a object of SmHtp is also perturbative
in nature: we expand functions in Taylor series at a given point.

The structures of these very different perturbative theories
have remarkable similarities.
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The vector space of k-fold operations

g× . . . × g −→ g

one can perform in a Lie algebra g, e.g.

(ξ1, ξ2, . . . , ξ5) 7−→ [[ξ1, [ξ2, ξ3], [ξ4, ξ5]]

is H(k−1)(n−1)(Ck(Rn);R).

The Lie expressions correspond to planetary systems.
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Origins of SmHtp

For a Lie group G and an abelian Lie group A with G -action
we can define cohomology groups

H∗alg(G ;A)

with the properties

H0
alg(G ;A) = AG

H1
alg(G ;A) = Homcr(G ;A)/ ∼

H2
alg(G ;A) = {extensions A→ E → G}/ ∼

Is there a ‘space’ BG such that H∗alg(G ;A) = H∗(BG ;A)?
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If G is discrete then H∗alg(G ;A) = H∗(BG ;A), where

[X ;BG ] = BdlG (X )

If A is discrete, we still have H∗alg(G ;A) = H∗(BG ;A)

for all G , BUT if G is a real vector space V then

H∗alg(V ;R) = ∧∗(V ∗)

and if G is reductive then

H∗alg(G ;R) = H∗(GC/G ;R).

Thus
H∗alg(G ;Z)⊗ R → H∗alg(G ;R)

is far from an isomorphism.
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The van Est spectral sequence suggests there is a fibration

Bg→ BG → BG ,

where Bg is a ‘space’ such that H∗(Bg;R) = H∗Lie(g;R).

But BG looks like a point for cohomology with discrete
coefficients.

Question Is any object of SmHtp obtained by putting a bundle
of infinitesimal structures on an ordinary homotopy type?
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Provisional definition:

SmHtp is the category of ‘half-exact homotopy functors’

Htpopp → Mfds.

BG is the functor X 7→ FlatG (X ), where
FlatG (X ) = {Flat G − bundles on X}/ ∼,

Bg is X 7→ Flatg(X ),
the classes of flat connections in the trivial g-bundle.

The van Est fibration becomes the Puppe sequence

. . . → [X ;G ]→ Flatg(X ) → FlatG (X ) → BdlG (X ).
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Motivation: Quillen’s algebraic K -theory

If A is the ring of integers in a number field then

A× ↪→ (A⊗ R)× = (R×)r × (C×)c .

Ki (A) → Ki (A⊗ R)

The K -theory of A is K ∗A(point), where X 7→ KA(X ) is the
group-completion of the semigroup-valued functor

X 7→ FlatA−Mod(X ).

For a topological ring, we can perform the group-completion in
SmHtp.

K∗(C) = {Z C× 0 C× 0 C× 0 . . .}

K∗(R) = {Z R× 0 T 0 R× 0 . . .}
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The inadequacy of homotopy functors:

SmHtp is a homotopy category, and we need a category of
‘spaces’ from which it arises.

Two candidates: simplicial manifolds and commutative
DGAs

A simplicial manifold M defines the manifold-valued
homotopy-functor

X 7→ [X ;M]spll ,

where X is a discrete simplicial space
— in the language of ‘spaces with two topologies’

X 7→ [X ; |Mdiscr | ].
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A smooth manifold M is identified with a constant simplicial
manifold.

The forgetful functor

SmHtp → Htp

is given by M 7→ |M|, and the forgetful functor

SmHtp → M̂fds

is M 7→ π0(M).
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Think of a simplicial manifold M = {Mp} as the manifold M0

equipped with a “generalized equivalence relation”.

Examples

(i) If U = {Uα} is an open covering of a manifold M we have a
simplicial manifold

MU = {
⊔
α

Uα
⊔
α,β

Uα ∩ Uβ . . . }.

The inclusion MU → M is an equivalence in SmHtp.
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(ii) If we choose a metric on M, and a small ε > 0, we have the
thickening M∆ of M, with

M∆,p = {(x0, . . . , xp) ∈ Mp+1 : d(xi , xj) < ε}.

We should think of this as “M with nearby points identified”: it
represents the homotopy type of |M| of M as an object of SmHtp.

(iii) SM , for which SM,p is the manifold of smooth singular
simplexes in M.

M∆ and SM are equivalent in SmHtp.
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(iv) Any smooth groupoid or smooth category is a simplicial
manifold, for example BG , with BGp = Gp.

[M;BG ]sm = BdlG (M)

[M
(1)
∆ ;BG ]sm = BdlconnG (M)

[M
(p)
∆ ;BG ]sm = FlatG (M) for p ≥ 2,

where M
(p)
∆ denotes the p-skeleton of M∆.
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In particular we get the ‘differential’ or Deligne-Cheeger-Simons
cohomology:

[M
(1)
∆ ;BT]sm = H2

sm(M),

and, more generally,

[M
(p)
∆ ;K(T, p)]sm = Hp+1

sm (M),

where K(T, p) = B . . .BT is the Eilenberg-Maclane object:

K(T, p) = Zp(∆;T).

(Here ∆ is the cosimplicial object formed by the standard
simplexes.)
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Commutative DGAs/R (with nuclear topology) are related to
simplicial manifolds by contravariant adjoint functors defined in
terms of the simplicial DGA Ω•(∆).

For a DGA A we write

Spec(A) = HomDGA(A; Ω•(∆)),

and, for a simplicial manifold M,

AM = Mapspll(M; Ω•(∆)).

But simplicial manifolds give us only positively-graded DGAs.



17

Commutative DGAs/R (with nuclear topology) are related to
simplicial manifolds by contravariant adjoint functors defined in
terms of the simplicial DGA Ω•(∆).

For a DGA A we write

Spec(A) = HomDGA(A; Ω•(∆)),

and, for a simplicial manifold M,

AM = Mapspll(M; Ω•(∆)).

But simplicial manifolds give us only positively-graded DGAs.



18

Examples

(i) AM = C∞(M)

(ii) Spec(Ω•(M)) = SM

(iii) We can now define Bg by means of the usual Lie algebra
cochain algebra

ABg = ∧•(g∗)

A homomorphism ∧•(g∗)→ Ω•(M) is just a g-valued 1-form
on M which satisfies the Maurer-Cartan equation.

If g = Lie(G ) with dimG <∞, then Spec(ABg) = SG/G .
In SmHtp this is equivalent to the group-germ of G , i.e.

Bgp = {(g1, . . . , gp) ∈ Up : gigi+1 . . . gj ∈ U}

for a convex neighbourhood of 1 ∈ G .
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The based loop space

The loop space ΩxM at a point x of a manifold M is a group
in SmHtp.

Any group in Htp can be represented by an honest topological
group.

Milnor’s construction of Ω̌xM as a group:
achieve associativity by using unparametrized paths
obtain inverses by cancelling return paths.

Ω̌xM = π1(M
(1)
∆ , x)

This is an infinite-dimensional Lie group.
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Kapranov’s description of ωxM = Lie(Ω̌xM):

choose a coordinate chart at x
ωxM = FL≥2(TxM),

i.e. the sub-Lie-algebra of the free Lie algebra FL(TxM) consisting
of terms of degree ≥ 2.

Hom(Ω̌xM;G ) = BdlconnG (M)

The vector fields ∂i of the chart give covariant derivatives Di in a
bundle with connection. Define FL≥2(Tx)→ g by

[∂i , ∂j ] 7→ [Di ,Dj ] = Kij

[∂i , [∂j , ∂k ]] 7→ [Di , [Dj ,Dk ]] = DiKjk

Jacobi identity ←→ Bianchi identity
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Better:

[∆1;M
(1)
∆ ]sm is the smooth groupoid of unparametrized paths

in M. Its infinitesimal version is the Lie algebroid {FL(Tx)}.

This presents the object M
(1)
∆ as a bundle of infinitesimal

structures over |M| = M
(1)
∆ .
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M as an object of SmHtp:

M → |M| corresponds to Ω0(M) ← Ω•(M)

To make this into a fibration we replace Ω0(M) by the
equivalent DGA Ω•(M;F), where:
F = {Fx} is a bundle of algebras
Fx = infinite jets of smooth functions at x
F has a flat connection.

The fibre of M → |M| at x is represented by the algebra Fx of
formal power series, whose spectrum is a point.

The information contained in Fx is precisely the choice of the
tangent space Tx .
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The replacement Ω•(M;F) for Ω0(M)
arises in Fedosov’s deformation quantization.

Fx
∼= Ŝ(T ∗x ) = Ŝx by the choice of an exponential map.

This isomorphism gives us a flat connection in the bundle {Ŝx}.

p ∈ ∧2(Tx) defines a quantization Ŝx [[~]] of Ŝx .

The induced connection in the quantization is flat only mod ~,
but if [p, p] = 0 it can be altered power-by-power in ~ to make it
flat.

H0(Ω•(M; Ŝ [[~]])) is the quantization of Ω0(M).


