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m1(M, x) — (M, x)
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A basic adjunction:

groups <— based homotopy types

7T]_(M,X) — (M7X)
G — BG

[M; BG] = Hom(m1(M,x); G)

Two ideas:

(i) space as a set with a topology, vs space as a set with paths
(i) the ‘radar’ perspective
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The adjunction becomes an equivalence on promoting 71 (M, x) to
the loop space 2, M, a group in Htp.

The edifice of algebraic topology exploits the fact that 2, M
can be constructed perturbatively from 71 (M, X): we have paths,
paths between paths, ....

The local description of a object of SmHtp is also perturbative
in nature: we expand functions in Taylor series at a given point.

The structures of these very different perturbative theories
have remarkable similarities.



The vector space of k-fold operations
gx ... Xg — ¢
one can perform in a Lie algebra g, e.g.
(&1:&2,...&) — [[&, [€2, €8], [€a. &5]]
is Hik—1)(n—1)(Ck(R"); R).

The Lie expressions correspond to planetary systems.



Origins of SmHtp

For a Lie group G and an abelian Lie group A with G-action
we can define cohomology groups

jaklg(G; A)
with the properties

Hglg(G;A) = AG
HY, (G A) = Home(G; A)/ ~

H§lg(G;A) = {extensions A — E — G}/ ~



Origins of SmHtp

For a Lie group G and an abelian Lie group A with G-action
we can define cohomology groups

1g(G1 A)

alg

with the properties

alg(G A) = AG
H;Ig(G;A) = Hom(G;A)/ ~

H

a1g(G;A) = {extensions A —» E — G}/ ~

Is there a ‘space’ BG such that H; (G A) = H*(BG; A)?



If G is discrete then H*

(G A) = H*(BG; A), where

[X: BG] = Bdlg(X)

If Ais discrete, we still have H}),(G; A) = H*(BG;A)

for all G, BUT if G is a real vector space V then

ag(ViR) = A% (V)

and if G is reductive then
Wg(GiR) = H*(Gc/G;R).

Thus
Hi(GiZ) &R — Hi(GiR)

is far from an isomorphism.



The van Est spectral sequence suggests there is a fibration
Bg — BG — BG,
where Bg is a ‘space’ such that H*(Bg;R) = H{,.(g;R).

But BG looks like a point for cohomology with discrete
coefficients.



The van Est spectral sequence suggests there is a fibration
Bg — BG — BG,
where Bg is a ‘space’ such that H*(Bg;R) = H{,.(g;R).

But BG looks like a point for cohomology with discrete
coefficients.

Question Is any object of SmHtp obtained by putting a bundle
of infinitesimal structures on an ordinary homotopy type?



Provisional definition:

SmHtp is the category of ‘half-exact homotopy functors’

Htp®PP — Mifds.



Provisional definition:

SmHtp is the category of ‘half-exact homotopy functors’

Htp®PP — Mifds.

BG is the functor X — Flatg(X), where
Flatg(X) = {Flat G — bundles on X}/ ~,

Bgis X — Flatg(X),
the classes of flat connections in the trivial g-bundle.

The van Est fibration becomes the Puppe sequence

. = [X;G] = Flaty(X) — Flatg(X) — Bdlg(X).
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Motivation: Quillen’s algebraic K-theory
If Ais the ring of integers in a number field then
A — (AQR)* = (R*)" x (C*)-.
Ki(A) — Ki(A®R)

The K-theory of A is K;(point), where X = Ka(X) is the
group-completion of the semigroup-valued functor

X — Flats_mod (X)

For a topological ring, we can perform the group-completion in
SmHtp.
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Motivation: Quillen’s algebraic K-theory
If Ais the ring of integers in a number field then
A — (AQR)* = (R*)" x (C*)-.
Ki(A) — Ki(A®R)

The K-theory of A is K;(point), where X = Ka(X) is the
group-completion of the semigroup-valued functor

X — Flats_mod (X)

For a topological ring, we can perform the group-completion in
SmHtp.

K(C) = {Z C*0C*0C*0 ..}
K.(R) = {Z R* 0T 0 R 0 ...}



The inadequacy of homotopy functors:

SmHtp is a homotopy category, and we need a category of
‘spaces’ from which it arises.
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The inadequacy of homotopy functors:

SmHtp is a homotopy category, and we need a category of
‘spaces’ from which it arises.

Two candidates: simplicial manifolds and commutative
DGAs

A simplicial manifold M defines the manifold-valued
homotopy-functor
X — [X;M]splla

where X is a discrete simplicial space
— in the language of ‘spaces with two topologies’

X [X; ’Mdiscr‘ ]
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A smooth manifold M is identified with a constant simplicial
manifold.

The forgetful functor
SmHtp — Htp
is given by M +— | M|, and the forgetful functor
SmHtp — Mfds

is M +— FQ(M).

12
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Think of a simplicial manifold M = {M,} as the manifold M,
equipped with a “generalized equivalence relation”.

Examples

(i) IfU = {U,} is an open covering of a manifold M we have a
simplicial manifold

MY = [Us | JUanUs ...}

&3 075

The inclusion MY — M is an equivalence in SmHtp.
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(i) If we choose a metric on M, and a small € > 0, we have the
thickening Ma of M, with

Map, = {(x0,--,%p) € MPTL: d(x;, %) < e}

We should think of this as "M with nearby points identified”: it
represents the homotopy type of |M| of M as an object of SmHtp.
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(i) If we choose a metric on M, and a small € > 0, we have the
thickening Ma of M, with

Map, = {(x0,--,%p) € MPTL: d(x;, %) < e}

We should think of this as "M with nearby points identified”: it
represents the homotopy type of |M| of M as an object of SmHtp.

(iii)  Sm, for which Sy, is the manifold of smooth singular
simplexes in M.

Mpa and Sy are equivalent in SmHtp.



(iv)

Any smooth groupoid or smooth category is a simplicial

manifold, for example BG, with BG, = GP.
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(iv) Any smooth groupoid or smooth category is a simplicial
manifold, for example BG, with BG, = GP.

[M; BGlem = Bdlg(M)
MY, BGlen = BAIP™(M)
[MX’);BG]sm = Flatg(M) for p > 2,

where I\/IX’) denotes the p-skeleton of Mx.
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In particular we get the ‘differential’ or Deligne-Cheeger-Simons
cohomology:
(MR); BTlewn = Him(M).

and, more generally,
(ML K(T,p)lsm = HES (M),
where IC(T, p) = B...BT is the Eilenberg-Maclane object:
K(T,p) = ZP(A;T).

(Here A is the cosimplicial object formed by the standard
simplexes.)



Commutative DGAs/R (with nuclear topology) are related to
simplicial manifolds by contravariant adjoint functors defined in

terms of the simplicial DGA Q°*(A).
For a DGA A we write

Spec(A) = Hompga(A; Q°(A)),
and, for a simplicial manifold M,

AM = Mapspll(M;Q.(A))'
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Commutative DGAs/R (with nuclear topology) are related to
simplicial manifolds by contravariant adjoint functors defined in
terms of the simplicial DGA Q°*(A).

For a DGA A we write

Spec(A) = Hompga(A; Q°(A)),
and, for a simplicial manifold M,

AM = Mapspll(M;Q.(A))'

But simplicial manifolds give us only positively-graded DGAs.

17
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Examples
(i) Am = C=(M)
(i) Spec(Q*(M)) = Sum

(iii) We can now define Bg by means of the usual Lie algebra

cochain algebra
Apg = A*(g")

A homomorphism A®(g*) — Q°*(M) is just a g-valued 1-form
on M which satisfies the Maurer-Cartan equation.

If g = Lie(G) with dim G < oo, then Spec(Apy) = S¢/G.
In SmHtp this is equivalent to the group-germ of G, i.e.

Bg, = {(g1,---.8p) € UP : gigit1...87 € U}

for a convex neighbourhood of 1 € G.
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The based loop space

The loop space Q2,M at a point x of a manifold M is a group
in SmHtp.

Any group in Htp can be represented by an honest topological
group.

Milnor's construction of .M as a group:
achieve associativity by using unparametrized paths
obtain inverses by cancelling return paths.

OM = m(MPY, x)

This is an infinite-dimensional Lie group.
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Kapranov's description of w,M = Lie(SV?XM):
choose a coordinate chart at x
wxM = FLZZ(TXM),

i.e. the sub-Lie-algebra of the free Lie algebra FL(T<M) consisting
of terms of degree > 2.
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Kapranov's description of w,M = Lie($2,M):
choose a coordinate chart at x
wxM = FLZ?(T M),
i.e. the sub-Lie-algebra of the free Lie algebra FL(T<M) consisting
of terms of degree > 2.

Hom(Q,M; G) = BdIL™(M)

The vector fields 0; of the chart give covariant derivatives D; in a
bundle with connection. Define FLZ2?(T,) — g by

[0i,0;)] — [Di, Dj] = Ki;
[0:,10;,0k]] = [Di,[Dj, D]l = DiKix

Jacobi identity ¢<—  Bianchi identity
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Better:

AL M(Al)]sm is the smooth groupoid of unparametrized paths
in M. Its infinitesimal version is the Lie algebroid {FL(Tx)}.

This presents the object I\/I(Al) as a bundle of infinitesimal

structures over |[M| = I\/I(Al).
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M as an object of SmHtp:
M — |M| corresponds to QO(M) <« Q*(M)

To make this into a fibration we replace Q°(M) by the
equivalent DGA Q°*(M; F), where:
F = {Fx} is a bundle of algebras
Fx = infinite jets of smooth functions at x
F has a flat connection.

The fibre of M — |M| at x is represented by the algebra F, of
formal power series, whose spectrum is a point.

The information contained in F is precisely the choice of the
tangent space Tx.
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The replacement Q*(M; F) for Q°(M)
arises in Fedosov's deformation quantization.

A,

Fx = 5(TF) = 5, by the choice of an exponential map.
This isomorphism gives us a flat connection in the bundle {5x}.

p € N2(Ty) defines a quantization 5,[[h]] of 5.

The induced connection in the quantization is flat only mod 5,
but if [p, p] = 0 it can be altered power-by-power in i to make it
flat.

HO(Q*(M:; S[[h]])) is the quantization of Q°(M).



