The Smooth Homotopy Category

Graeme Segal

Aspects of physical space:

local smooth structure ultra-violet
global homotopy type infra-red

Aspects of physical space:

local smooth structure ultra-violet
operator-product expansions
global homotopy type infra-red

TFTs

Aspects of physical space:

$$
\begin{array}{cc}
\text { local smooth structure } & \text { global homotopy type } \\
\text { ultra-violet } & \text { infra-red }
\end{array}
$$

operator-product expansions
TFTs

Mfds \subset SmHtp \supset Htp

Aspects of physical space:

local smooth structure ultra-violet
global homotopy type infra-red

Mfds \subset SmHtp \supset Htp
$\widehat{\text { Mfds }} \leftarrow$ SmHtp \rightarrow Htp

A basic adjunction:

| groups | \longleftrightarrow | based homotopy types |
| :---: | :---: | :---: | :---: |
| $\pi_{1}(M, x)$ | \longleftrightarrow | (M, x) |
| G | \longmapsto | $B G$ |

$$
[M ; B G]=\operatorname{Hom}\left(\pi_{1}(M, x) ; G\right)
$$

A basic adjunction:

$$
\begin{array}{rll}
\text { groups } & \longleftrightarrow & \text { based homotopy types } \\
\pi_{1}(M, x) & \longleftarrow & (M, x) \\
G & \longmapsto & B G \\
{[M ; B G]} & = & \operatorname{Hom}\left(\pi_{1}(M, x) ; G\right)
\end{array}
$$

Two ideas:
(i) space as a set with a topology, vs space as a set with paths
(ii) the 'radar' perspective

The adjunction becomes an equivalence on promoting $\pi_{1}(M, x)$ to the loop space $\Omega_{x} M$, a group in Htp.

The adjunction becomes an equivalence on promoting $\pi_{1}(M, x)$ to the loop space $\Omega_{x} M$, a group in Htp.

The edifice of algebraic topology exploits the fact that $\Omega_{x} M$ can be constructed perturbatively from $\pi_{1}(M, X)$: we have paths, paths between paths,

The adjunction becomes an equivalence on promoting $\pi_{1}(M, x)$ to the loop space $\Omega_{x} M$, a group in Htp.

The edifice of algebraic topology exploits the fact that $\Omega_{x} M$ can be constructed perturbatively from $\pi_{1}(M, X)$: we have paths, paths between paths,....

The local description of a object of SmHtp is also perturbative in nature: we expand functions in Taylor series at a given point.

The structures of these very different perturbative theories have remarkable similarities.

The vector space of k-fold operations

$$
\mathfrak{g} \times \ldots \times \mathfrak{g} \longrightarrow \mathfrak{g}
$$

one can perform in a Lie algebra \mathfrak{g}, e.g.

$$
\left(\xi_{1}, \xi_{2}, \ldots, \xi_{5}\right) \longmapsto\left[\left[\xi_{1},\left[\xi_{2}, \xi_{3}\right],\left[\xi_{4}, \xi_{5}\right]\right]\right.
$$

is $H_{(k-1)(n-1)}\left(C_{k}\left(\mathbb{R}^{n}\right) ; \mathbb{R}\right)$.
The Lie expressions correspond to planetary systems.

Origins of SmHtp

For a Lie group G and an abelian Lie group A with G-action we can define cohomology groups

$$
H_{\mathrm{alg}}^{*}(G ; A)
$$

with the properties

$$
\begin{gathered}
H_{\mathrm{alg}}^{0}(G ; A)=A^{G} \\
H_{\mathrm{alg}}^{1}(G ; A)=\operatorname{Hom}_{\mathrm{cr}}(G ; A) / \sim \\
H_{\mathrm{alg}}^{2}(G ; A)=\{\text { extensions } A \rightarrow E \rightarrow G\} / \sim
\end{gathered}
$$

Origins of SmHtp

For a Lie group G and an abelian Lie group A with G-action we can define cohomology groups

$$
H_{\mathrm{alg}}^{*}(G ; A)
$$

with the properties

$$
\begin{gathered}
H_{\mathrm{alg}}^{0}(G ; A)=A^{G} \\
H_{\mathrm{alg}}^{1}(G ; A)=\operatorname{Hom}_{\mathrm{cr}}(G ; A) / \sim \\
H_{\mathrm{alg}}^{2}(G ; A)=\{\text { extensions } A \rightarrow E \rightarrow G\} / \sim
\end{gathered}
$$

Is there a 'space' $\mathcal{B} G$ such that $H_{\mathrm{alg}}^{*}(G ; A)=H^{*}(\mathcal{B} G ; A)$?

If G is discrete then $H_{\mathrm{alg}}^{*}(G ; A)=H^{*}(B G ; A)$, where

$$
[X ; B G]=\operatorname{Bdl}_{G}(X)
$$

If A is discrete, we still have $H_{\text {alg }}^{*}(G ; A)=H^{*}(B G ; A)$ for all G, BUT if G is a real vector space V then

$$
H_{\mathrm{alg}}^{*}(V ; \mathbb{R})=\wedge^{*}\left(V^{*}\right)
$$

and if G is reductive then

$$
H_{\mathrm{alg}}^{*}(G ; \mathbb{R})=H^{*}\left(G_{\mathbb{C}} / G ; \mathbb{R}\right)
$$

Thus

$$
H_{\mathrm{alg}}^{*}(G ; \mathbb{Z}) \otimes \mathbb{R} \rightarrow H_{\mathrm{alg}}^{*}(G ; \mathbb{R})
$$

is far from an isomorphism.

The van Est spectral sequence suggests there is a fibration

$$
\mathcal{B g} \rightarrow \mathcal{B G} \rightarrow B G
$$

where $\mathcal{B g}$ is a 'space' such that $H^{*}(\mathcal{B g} ; \mathbb{R})=H_{\text {Lie }}^{*}(\mathfrak{g} ; \mathbb{R})$.
But $\mathcal{B G}$ looks like a point for cohomology with discrete coefficients.

The van Est spectral sequence suggests there is a fibration

$$
\mathcal{B g} \rightarrow \mathcal{B G} \rightarrow B G
$$

where $\mathcal{B g}$ is a 'space' such that $H^{*}(\mathcal{B g} ; \mathbb{R})=H_{\text {Lie }}^{*}(\mathfrak{g} ; \mathbb{R})$.
But $\mathcal{B G}$ looks like a point for cohomology with discrete coefficients.

Question Is any object of SmHtp obtained by putting a bundle of infinitesimal structures on an ordinary homotopy type?

Provisional definition:

SmHtp is the category of 'half-exact homotopy functors'

$$
\mathrm{Htp}^{\mathrm{opp}} \rightarrow \text { Mfds. }
$$

Provisional definition:

SmHtp is the category of 'half-exact homotopy functors'

$$
\text { Htp }{ }^{\text {opp }} \rightarrow \text { Mfds. }
$$

$\mathcal{B} G$ is the functor $X \mapsto \operatorname{Flat}_{G}(X)$, where Flat $_{G}(X)=\{$ Flat $G-$ bundles on $X\} / \sim$,
$\mathcal{B g}$ is $X \mapsto \operatorname{Flat}_{\mathfrak{g}}(X)$,
the classes of flat connections in the trivial \mathfrak{g}-bundle.
The van Est fibration becomes the Puppe sequence
$\ldots \rightarrow[X ; G] \rightarrow \operatorname{Flat}_{\mathfrak{g}}(X) \rightarrow \operatorname{Flat}_{G}(X) \rightarrow \operatorname{Bdl}_{G}(X)$.

Motivation: Quillen's algebraic K-theory

If A is the ring of integers in a number field then

$$
\begin{aligned}
& A^{\times} \hookrightarrow(A \otimes \mathbb{R})^{\times}=\left(\mathbb{R}^{\times}\right)^{r} \times\left(\mathbb{C}^{\times}\right)^{c} . \\
& K_{i}(A) \rightarrow K_{i}(A \otimes \mathbb{R})
\end{aligned}
$$

The K-theory of A is K_{A}^{*} (point), where $X \mapsto K_{A}(X)$ is the group-completion of the semigroup-valued functor

$$
X \mapsto \operatorname{Flat}_{A-\mathrm{Mod}}(X)
$$

For a topological ring, we can perform the group-completion in SmHtp.

Motivation: Quillen's algebraic K-theory

If A is the ring of integers in a number field then

$$
\begin{aligned}
A^{\times} \hookrightarrow & (A \otimes \mathbb{R})^{\times}=\left(\mathbb{R}^{\times}\right)^{r} \times\left(\mathbb{C}^{\times}\right)^{c} . \\
& K_{i}(A) \rightarrow K_{i}(A \otimes \mathbb{R})
\end{aligned}
$$

The K-theory of A is K_{A}^{*} (point), where $X \mapsto K_{A}(X)$ is the group-completion of the semigroup-valued functor

$$
X \mapsto \operatorname{Flat}_{A-\operatorname{Mod}}(X)
$$

For a topological ring, we can perform the group-completion in SmHtp.

$$
\begin{aligned}
K_{*}(\mathbb{C}) & =\left\{\begin{array}{llllllll}
\mathbb{Z} & \mathbb{C}^{\times} & 0 & \mathbb{C}^{\times} & 0 & \mathbb{C}^{\times} & 0 & \ldots
\end{array}\right\} \\
K_{*}(\mathbb{R}) & =\left\{\begin{array}{llllllll}
\mathbb{Z} & \mathbb{R}^{\times} & 0 & \mathbb{T} & 0 & \mathbb{R}^{\times} & 0 & \ldots
\end{array}\right\}
\end{aligned}
$$

The inadequacy of homotopy functors:
SmHtp is a homotopy category, and we need a category of 'spaces' from which it arises.

The inadequacy of homotopy functors:
SmHtp is a homotopy category, and we need a category of 'spaces' from which it arises.

Two candidates: simplicial manifolds and commutative DGAs

A simplicial manifold \mathcal{M} defines the manifold-valued homotopy-functor

$$
X \mapsto[X ; \mathcal{M}]_{s p l /},
$$

where X is a discrete simplicial space

- in the language of 'spaces with two topologies'

$$
X \mapsto\left[X ;\left|\mathcal{M}^{\text {discr }}\right|\right]
$$

A smooth manifold M is identified with a constant simplicial manifold.

The forgetful functor

$$
\text { SmHtp } \rightarrow \text { Htp }
$$

is given by $\mathcal{M} \mapsto|\mathcal{M}|$, and the forgetful functor

$$
\text { SmHtp } \rightarrow \widehat{\text { Mfds }}
$$

$$
\text { is } \mathcal{M} \mapsto \pi_{0}(\mathcal{M})
$$

Think of a simplicial manifold $\mathcal{M}=\left\{\mathcal{M}_{p}\right\}$ as the manifold \mathcal{M}_{0} equipped with a "generalized equivalence relation".

Examples

(i) If $\mathcal{U}=\left\{U_{\alpha}\right\}$ is an open covering of a manifold M we have a simplicial manifold

$$
M^{\mathcal{U}}=\left\{\bigsqcup_{\alpha} U_{\alpha} \bigsqcup_{\alpha, \beta} U_{\alpha} \cap U_{\beta} \ldots\right\} .
$$

The inclusion $M^{\mathcal{U}} \rightarrow M$ is an equivalence in SmHtp.
(ii) If we choose a metric on M, and a small $\varepsilon>0$, we have the thickening M_{Δ} of M, with

$$
M_{\Delta, p}=\left\{\left(x_{0}, \ldots, x_{p}\right) \in M^{p+1}: d\left(x_{i}, x_{j}\right)<\varepsilon\right\} .
$$

We should think of this as " M with nearby points identified": it represents the homotopy type of $|M|$ of M as an object of SmHtp.
(ii) If we choose a metric on M, and a small $\varepsilon>0$, we have the thickening M_{Δ} of M, with

$$
M_{\Delta, p}=\left\{\left(x_{0}, \ldots, x_{p}\right) \in M^{p+1}: d\left(x_{i}, x_{j}\right)<\varepsilon\right\} .
$$

We should think of this as " M with nearby points identified": it represents the homotopy type of $|M|$ of M as an object of SmHtp.
(iii) \mathcal{S}_{M}, for which $\mathcal{S}_{M, p}$ is the manifold of smooth singular simplexes in M.
M_{Δ} and \mathcal{S}_{M} are equivalent in SmHtp.
(iv) Any smooth groupoid or smooth category is a simplicial manifold, for example $\mathcal{B} G$, with $\mathcal{B} G_{p}=G^{p}$.
(iv) Any smooth groupoid or smooth category is a simplicial manifold, for example $\mathcal{B} G$, with $\mathcal{B} G_{p}=G^{p}$.

$$
\begin{gathered}
{[M ; \mathcal{B} G]_{s m}=\operatorname{Bdl}_{G}(M)} \\
{\left[M_{\Delta}^{(1)} ; \mathcal{B} G\right]_{s m}=\operatorname{Bdl}_{G}^{\text {conn }}(M)} \\
{\left[M_{\Delta}^{(p)} ; \mathcal{B} G\right]_{s m}=\operatorname{Flat}_{G}(M) \quad \text { for } p \geq 2}
\end{gathered}
$$

where $M_{\Delta}^{(p)}$ denotes the p-skeleton of M_{Δ}.

In particular we get the 'differential' or Deligne-Cheeger-Simons cohomology:

$$
\left[M_{\Delta}^{(1)} ; \mathcal{B} \mathbb{T}\right]_{s m}=H_{s m}^{2}(M)
$$

and, more generally,

$$
\left[M_{\Delta}^{(p)} ; \mathcal{K}(\mathbb{T}, p)\right]_{s m}=H_{s m}^{p+1}(M)
$$

where $\mathcal{K}(\mathbb{T}, p)=\mathcal{B} \ldots \mathcal{B} \mathbb{T}$ is the Eilenberg-Maclane object:

$$
\mathcal{K}(\mathbb{T}, p)=Z^{p}(\Delta ; \mathbb{T})
$$

(Here Δ is the cosimplicial object formed by the standard simplexes.)

Commutative DGAs/ \mathbb{R} (with nuclear topology) are related to simplicial manifolds by contravariant adjoint functors defined in terms of the simplicial DGA $\Omega^{\bullet}(\Delta)$.

For a DGA \mathcal{A} we write

$$
\operatorname{Spec}(\mathcal{A})=\operatorname{Hom}_{D G A}\left(\mathcal{A} ; \Omega^{\bullet}(\Delta)\right)
$$

and, for a simplicial manifold \mathcal{M},

$$
\mathcal{A}_{\mathcal{M}}=\operatorname{Map}_{\text {spl/ }}\left(\mathcal{M} ; \Omega^{\bullet}(\Delta)\right)
$$

Commutative DGAs/ \mathbb{R} (with nuclear topology) are related to simplicial manifolds by contravariant adjoint functors defined in terms of the simplicial DGA $\Omega^{\bullet}(\Delta)$.

For a DGA \mathcal{A} we write

$$
\operatorname{Spec}(\mathcal{A})=\operatorname{Hom}_{D G A}\left(\mathcal{A} ; \Omega^{\bullet}(\Delta)\right)
$$

and, for a simplicial manifold \mathcal{M},

$$
\mathcal{A}_{\mathcal{M}}=\operatorname{Map}_{\text {spl/ }}\left(\mathcal{M} ; \Omega^{\bullet}(\Delta)\right)
$$

But simplicial manifolds give us only positively-graded DGAs.

Examples

(i) $\mathcal{A}_{M}=\mathrm{C}^{\infty}(M)$
(ii) $\operatorname{Spec}\left(\Omega^{\bullet}(M)\right)=\mathcal{S}_{M}$
(iii) We can now define $\mathcal{B g}$ by means of the usual Lie algebra cochain algebra

$$
\mathcal{A}_{\mathcal{B g}}=\wedge^{\bullet}\left(\mathfrak{g}^{*}\right)
$$

A homomorphism $\wedge^{\bullet}\left(\mathfrak{g}^{*}\right) \rightarrow \Omega^{\bullet}(M)$ is just a \mathfrak{g}-valued 1-form on M which satisfies the Maurer-Cartan equation.

If $\mathfrak{g}=\operatorname{Lie}(G)$ with $\operatorname{dim} G<\infty$, then $\operatorname{Spec}\left(\mathcal{A}_{\mathcal{B g}}\right)=\mathfrak{S}_{G} / G$. In SmHtp this is equivalent to the group-germ of G, i.e.

$$
\mathcal{B} \mathfrak{g}_{p}=\left\{\left(g_{1}, \ldots, g_{p}\right) \in U^{p}: g_{i} g_{i+1} \ldots g_{j} \in U\right\}
$$

for a convex neighbourhood of $1 \in G$.

The based loop space

The loop space $\Omega_{x} M$ at a point x of a manifold M is a group in SmHtp.

Any group in Htp can be represented by an honest topological group.

Milnor's construction of $\check{\Omega}_{x} M$ as a group: achieve associativity by using unparametrized paths obtain inverses by cancelling return paths.

$$
\check{\Omega}_{x} M=\pi_{1}\left(M_{\Delta}^{(1)}, x\right)
$$

This is an infinite-dimensional Lie group.

Kapranov's description of $\omega_{x} M=\operatorname{Lie}\left(\check{\Omega}_{x} M\right)$:
choose a coordinate chart at x

$$
\omega_{x} M=F L^{\geq 2}\left(T_{x} M\right)
$$

i.e. the sub-Lie-algebra of the free Lie algebra $F L\left(T_{x} M\right)$ consisting of terms of degree ≥ 2.

Kapranov's description of $\omega_{x} M=\operatorname{Lie}\left(\check{\Omega}_{x} M\right)$:
choose a coordinate chart at x

$$
\omega_{x} M=F L^{\geq 2}\left(T_{x} M\right)
$$

i.e. the sub-Lie-algebra of the free Lie algebra $F L\left(T_{x} M\right)$ consisting of terms of degree ≥ 2.

$$
\operatorname{Hom}\left(\check{\Omega}_{x} M ; G\right)=\operatorname{Bdl}_{G}^{c o n n}(M)
$$

The vector fields ∂_{i} of the chart give covariant derivatives D_{i} in a bundle with connection. Define $F L^{\geq 2}\left(T_{x}\right) \rightarrow \mathfrak{g}$ by

$$
\begin{aligned}
{\left[\partial_{i}, \partial_{j}\right] } & \mapsto\left[D_{i}, D_{j}\right]=K_{i j} \\
{\left[\partial_{i},\left[\partial_{j}, \partial_{k}\right]\right] } & \mapsto\left[D_{i},\left[D_{j}, D_{k}\right]\right]=D_{i} K_{j k}
\end{aligned}
$$

Jacobi identity \longleftrightarrow Bianchi identity

Better:

$\left[\Delta^{1} ; M_{\Delta}^{(1)}\right]_{s m}$ is the smooth groupoid of unparametrized paths in M. Its infinitesimal version is the Lie algebroid $\left\{F L\left(T_{x}\right)\right\}$.

This presents the object $M_{\Delta}^{(1)}$ as a bundle of infinitesimal structures over $|M|=M_{\Delta}^{(1)}$.

M as an object of SmHtp:

$M \rightarrow|M| \quad$ corresponds to $\quad \Omega^{0}(M) \leftarrow \Omega^{\bullet}(M)$
To make this into a fibration we replace $\Omega^{0}(M)$ by the equivalent DGA $\Omega^{\bullet}(M ; \mathcal{F})$, where:
$\mathcal{F}=\left\{\mathcal{F}_{x}\right\}$ is a bundle of algebras
$\mathcal{F}_{X}=$ infinite jets of smooth functions at x
\mathcal{F} has a flat connection.
The fibre of $M \rightarrow|M|$ at x is represented by the algebra \mathcal{F}_{x} of formal power series, whose spectrum is a point.

The information contained in \mathcal{F}_{x} is precisely the choice of the tangent space T_{x}.

The replacement $\Omega^{\bullet}(M ; \mathcal{F})$ for $\Omega^{0}(M)$ arises in Fedosov's deformation quantization.
$\mathcal{F}_{x} \cong \hat{S}\left(T_{x}^{*}\right)=\hat{S}_{x}$ by the choice of an exponential map. This isomorphism gives us a flat connection in the bundle $\left\{\hat{S}_{x}\right\}$.
$p \in \wedge^{2}\left(T_{x}\right)$ defines a quantization $\hat{S}_{x}[[\hbar]]$ of \hat{S}_{x}.
The induced connection in the quantization is flat only $\bmod \hbar$, but if $[p, p]=0$ it can be altered power-by-power in \hbar to make it flat.
$H^{0}\left(\Omega^{\bullet}(M ; \hat{S}[[\hbar]])\right)$ is the quantization of $\Omega^{0}(M)$.

