A biased survey of
 Low-brow Topological Gauge Theory

Constantin Teleman

UC Berkeley
Austin, 14 January 2019

I will review some progress in understanding gauge theory input into equivariant topology. This leads to a 'retro' flavored lecture, but we will touch upon some recent work on Coulomb branches and gauged Gromov-Witten theory. Some topics:
(1) The Verlinde ring of a compact group, a 2D TQFT, and the twisted equivariant K-theory ${ }^{\tau} K_{G}(G), \tau \in H^{4}(B G ; \mathbb{Z})$
(2) Deformations: Higgs bundles, gauged linear σ-model
(3) Interpretation via Coulomb branches of 3D, 4D gauge theory
(9) Gauge theory as representation theory on categories,
(3) Flag varieties as irreducibles, Whittaker picture and 「W-classes
(1) (Will not discuss 4D and Langlands duality)

Some names: Atiyah-Bott, Segal, Hitchin, Moore, Seiberg, Witten, Jeffrey-Kirwan, Givental, Kontsevich, Costello, Hopkins, Lurie, Bezrukavnikov, Braverman, Finkelberg, Kapustin, Nakajima, Neitzke, Nadler, Ben-Zvi, ... and of course the Birthday Boy.

Prehistory

$\left\{\right.$ Compact group $\left.G, \tau \in H^{4}(B G ; \mathbb{Z})\right\} \rightsquigarrow 2 D$ conformal field theory. Hilbert space of states: $\bigoplus H \otimes H^{*}$, over τ^{\prime}-projective positive energy irr. representations H of the free loop group $L G$.
On a conformal surface, the CFT is assembled from its chiral/anti-chiral components using the Chern-Simons 3D topological field theory.
Reduction over a circle gives the 2D Verlinde theory V, a K-theory version of $2 D$ topological Yang-Mills theory.
$V: S^{1} \mapsto$ the Verlinde ring $R(G, \tau)$ of PERs with their fusion product, (merging a pair of circles to a single one via a conformal pair of pants). When $\pi_{0} G=\pi_{1} G=1, R(G, \tau)=$ quotient of the representation ring $R(G)$ by an explicit ideal.
A theorem in topology (Freed, Hopkins, -) identifies $R(G, \tau)$ with the Pontryagin ring ${ }^{\tau} K_{G}^{\text {top }}(G)$. Viewing $G \ltimes G$ as the flat connections on S^{1}, the Pontryagin product is induced by the pair of pants, matching the fusion operation.

TQFT structure from topology

A general surface induces operations on ${ }^{\tau} K_{G}^{\text {top }}(G)$, leading to a TQFT structure on V over the K-theory spectrum (enhanced from \mathbb{C}).

When $\partial^{+} S \neq \emptyset$, the correspondence diagram $\left\{\rho_{ \pm}\right\}$defines a map

$$
\left(\rho_{+}\right)!\circ \rho_{-}^{*}:{ }^{\tau} K_{G}(G) \rightarrow{ }^{\tau} K_{G}(G) \otimes{ }^{\tau} K_{G}(G)
$$

which (together with a certain trace) assemble to a K-linear TQFT.
[However, this enhanced theory is not fully extended (to points).]

Verlinde deformations

$V:($ closed surface $S) \mapsto(\operatorname{dim}$ of) the space of Θ-functions for G at level τ. This can be enhanced, for instance to Θ-sections over the moduli of flat $G_{\mathbb{C}}$-bundles. Keep this finite by using graded dims, for the filtration by degree along the (affine) fibers of the projection from flat to all bundles. This gives a formal deformation in a parameter t (returning V at $t=0$).

Closely related is the gauged linear σ-model for a unitary representation E. Here, $S \mapsto$ the index of the Θ-line bundle over the holomorphic mapping space of S to the quotient stack $G_{\mathbb{C}} \ltimes E$, instead of just over $G_{\mathbb{C}}$-bundles.

The mapping space consists of pairs: one (algebraic) $G_{\mathbb{C}}$-bundle and one section of the associated E-bundle on S, plus an obstruction bundle H^{1} :

$$
H^{*}\left(\operatorname{Bun}_{\mathbb{C}} G(S) ; \Theta^{\tau} \otimes \operatorname{Sym} \operatorname{Index}_{S}^{\vee}(E)\right)
$$

Tracking symmetric degrees by t leads to a deformation of $V, R(G, \tau(t))$.

A computation of ${ }^{\tau} K_{G}(G)$

Theorem (C. Douglas)
When $\pi_{0}=\pi_{1}=\{1\},{ }^{\tau} K_{G}(G)=K_{G} \otimes_{K_{*}^{G}(\Omega G)}{ }^{\tau} K_{G}$.
Here, ΩG carries the Pontryagin product and G acts by conjugation.
The augmentations are: the push-forward $\Omega G \rightarrow p t$, and the same after a line bundle $\mathcal{O}(\tau)$ twist. Geometrically, this is the intersection of two subvarieties in $\operatorname{Spec}_{0}^{G}(\Omega G)$. They turn out to be Lagrangian for a symplectic form (obvious for $G=T$).

This extends to the deformed Verlinde rings: t-deform ${ }^{\tau} K_{G}$ by twisting by the total symmetric power of the \mathbb{P}^{1}-index bundle of E over ΩG.

Fact of note: the augmentation fiber remains Lagrangian.

Coulomb branches for 3/4D pure gauge theory

The following spaces are now called the Coulomb branches of pure 3/4D pure gauge theory:

$$
C_{3}(G):=\operatorname{Spec}_{*}^{G}(\Omega G ; \mathbb{C}) ; \quad C_{4}(G):=\operatorname{Spec}_{*}^{G}(\Omega G ; \mathbb{C})
$$

Theorem (Bezrukavnikov, Finkelberg, Mirkovic)
(1) Spec $H_{*}^{G}(\Omega G)$ is an affine resolution of singularities of $\left(T^{*} T_{\mathbb{C}}^{\vee}\right) / W$.
(2) Spec $H_{*}^{G}(\Omega G)$ is algebraic symplectic, and Spec $H_{*}(\Omega G)$ Lagrangian.
(3) Spec $K_{*}^{G}(\Omega G)$ is an affine resolution of singularities of $\left(T_{\mathbb{C}} \times T_{\mathbb{C}}^{\vee}\right) / W$.
(9) Spec $K_{*}^{G}(\Omega G)$ is algebraic symplectic, and $\operatorname{Spec} K_{*}(\Omega G)$ Lagrangian.
(0) $C_{3}(G), C_{4}(G)$ are the phase spaces of the Toda completely integrable systems for G, under projection to $\mathfrak{t}_{\mathbb{C}} / W$, resp. $T_{\mathbb{C}} / W$.

The Verlinde theory calculation in $C_{4}(G)$ is not accidental, it is part of a "character calculus" for gauged 2D σ-models (H for C_{3}, K for C_{4}).

Example: $G=S U(2)$

> C_{3} with Neumann, Dirichlet and Yang-Mills/Verlinde Lagrangians. x, ξ : coordinates on T^{\vee}, \mathfrak{t}.
> The Toda projection to the axis ξ^{2} of adj. orbits gives an integrable system, which is also an abelian group scheme over the base \mathfrak{t} / W. The unit section is black.

C_{4} is vertically periodicized; the picture is good near $1 \in T^{\vee}$ at large level.

Rigidifying ${ }^{\tau(t)} K_{G}^{\text {top }}(G)$ by Matrix Factorization

The complexified ring of ${ }^{\tau} K_{G}^{\text {top }}(G)$ is the Jacobian ring of the function

$$
g \mapsto \Psi(g):=\frac{1}{2} \log ^{2} g+\operatorname{Tr}_{E}\left(\operatorname{Li}_{2}\left(g^{-1}\right)\right)
$$

on regular conjugacy classes g, with the proviso that "critical point of Ψ " means " $d \Psi$ is a weight". We square in the quadratic form defined by τ.
This formula for deformed Verlinde theories (Woodward, -) generalizes Witten's for topological Yang-Mills theory (which appears as $\tau \rightarrow \infty$).

Jacobian rings are Hochschild cohomologies of Matrix factorization categories associated to a superpotential, of brany fame in 2D mirror symmetry, where they define mirror models of Gromov-Witten theory. (Matrix factorizations: 2-periodic curved complexes $E^{0} \rightleftarrows E^{1}$, with differential squaring to Ψ.)
So this is a "mirror" of 2D gauge theory.

MFs also appeared in a partial rigidification of the FHT theorem.
An invertible function (like e^{ψ}) is a $B \mathbb{Z}$-action on the category of vector bundles on a space: this is a rigid form of a circle action.
The quotient stack $G \ltimes G$, a rigid version of the loop space $L B G$, has a loop rotation $B \mathbb{Z}$-action - even after τ-twisting.

Theorem (Freed,-)
The G-equivariant, τ-twisted MF category over G with respect to the $B \mathbb{Z}$ loop-rotation action is equivalent to the category of τ^{\prime}-PERs of $L G$.
(Reason why: interpret $G \ltimes G$ as flat connections, $L G \ltimes \Omega^{1}\left(S^{1} ; \mathfrak{g}\right)$.
A boson-fermion correspondence converts this into the crossed product algebra $L G \ltimes C \operatorname{liff}(L \mathfrak{g})$, with Dirac operator as (curved) differential.
A basis of objects in the category consists of $H \otimes S^{ \pm}$, where H runs over appropriate $L G$-representations and $S^{ \pm}$are the $L \mathfrak{g}$-spinors.)

Fact: these two matrix factorization descriptions are closely related.

Reconciliation

$\operatorname{Spec}\left(T \ltimes_{\tau} \mathbb{C}[T]\right) \cong(\mathfrak{t} \times \Lambda) / \pi_{1}$, differs from $\operatorname{Spec}(T \ltimes \mathbb{C}[T])=T \times \Lambda$ by coupling the π_{1} action on \mathfrak{t} to Λ. $\Psi=\frac{1}{2} \xi^{2}+\lambda(\xi)$, with one critical point on each sheet.

$C_{4}(T)=T_{\mathbb{C}} \times T_{\mathbb{C}}^{\vee}$ with the graph of the Verlinde Lagrangian $\frac{1}{2} d \log ^{2}$. Its intercepts with $T \times\{1\}$ are in bijection with the Verlinde points $\Lambda / \pi_{1} T$.

Coulomb branches as classifying spaces for gauge theory I

The spaces $C_{3,4}$ carry a character theory for 2D (" A-model") gauge theories, serving as classifying spaces for the latter. In examples coming from gauged Gromov-Witten theory, the character calculus carries much TQFT information (Seidel operators, J-function...).

Precisely: 2D TQFTS are generated by categories; gauge symmetry is a G-action on the category.
For B-models, the meaning is straightforward, but for A-model theories (GW) the action must factor through the topology of the group.
C_{3} carries the characters of gauged A-models.
C_{4} should do that for K-linear categories (gauge TQFTs over K), or for $L G$-actions on linear categories. (I only understand this from examples.)
One precise statement is a (partially verified) equivalence between two 3D TQFTs: pure G-gauge theory $P G$ versus Rozansky-Witten theory of C_{3}. An analogue for C_{4} is less clear ($L G$-gauge theory?).

Coulomb branches as classifying spaces for gauge theory II

Precise consequences of this may be stated (and proved in examples). Namely, gauged 2D theories give rise to a sheaf of categories with Lagrangian support on C_{3} (C_{4}, in the K-linear case).

A construction has been proposed [KRS] of a 2-category of sheaves of categories on hyper-Kaehler manifolds, related to Rozansky-Witten TQFT. A precise claim would be that this $K R S$ 2-category is equivalent to the 2-category of \mathbb{C}-linear categories with G-action.

2D TQFTs with gauge symmetry are boundary conditions for $P G$. Equivalence with RW would give a correspondence of boundary conditions. While the KRS program is not fully developed, enough can be established for $C_{3,4}$ using their integrable system structure (\rightsquigarrow preferred co-ordinates).

Example: $G=S U(2)$

C_{3} with Neumann, Dirichlet and Verlinde ($\exp d \Psi$) Lagrangians. x, ξ are the coordinates on T^{\vee}, \mathfrak{t}.

The Toda projection to the axis ξ^{2} of adj. orbits gives an integrable system, which is also an abelian group scheme over the base \mathfrak{t} / W. The unit section is in black.
C_{4} is vertically periodicized; the picture is good near $1 \in T^{\vee}$ at large level.
General 2D gauge TQFT are generated by categories with G-action and have a "character" in $C_{3,4}$.
The group structure along the Toda fibers corresponds to the tensor product of TQFTs. Hom categories are computed by matrix factorizations.

Whittaker construction

The space C_{3} has two important alternative constructions - Adjoint and Whittaker - as an algebraic symplectic quotient:

$$
C_{3} \cong T_{\text {reg }}^{*} G_{\mathbb{C}}^{\vee} / /_{A d} G_{\mathbb{C}}^{\vee} \cong N_{\chi} \backslash \backslash T^{*} G_{\mathbb{C}}^{\vee} / / \chi_{\chi} N
$$

with reduction by the Adjoint and natural actions, but moment value a regular nilpotent character χ of $\mathfrak{n} \subset \mathfrak{g}_{\mathbb{C}}^{\vee}$. The second, Toda isomorphism is compatible to the projection to $\mathfrak{h} / W=\left(\mathfrak{g}^{\vee}\right)^{*} / / G_{\mathbb{C}}^{\vee}$, the base of the Toda integrable system, and captures the diagonalization of the latter.

The fibers of the Whittaker construction correspond to the GW flag varieties of G (their Fukaya categories as G-representations).

The symplectic structures of $C_{3,4}$ lead to deformation quantizations $N C_{3,4}$, which are realized as loop-rotation-equivariant versions of $H, K_{G}^{*}(\Omega G)$.

Remark

I do not know a Whittaker construction for C_{4}.

Whittaker interpretation in the Coulomb branch

Braverman established a striking connection between the (small) quantum J-function of (full) flag varieties and Whittaker matrix coefficients.

Recall the universal Whittaker module $W h=U(\mathfrak{g}) \otimes_{\mathfrak{n}} \mathbb{C}_{\chi}$.
Theorem (A. Braverman 04, w/ some Coulomb branch improvements)
(1) $Q H_{G}^{*}(G / T)$ deforms naturally to a module over $N C_{3}$ (as $H^{\text {per }}$).
(2) This can be additively identified with $U\left(\mathfrak{h}^{\vee}\right) \cong \mathbb{C}_{q(\chi)} \otimes_{\overline{\mathfrak{n}}} W h^{\vee}$. In particular, the $Z\left(\mathfrak{g}^{\vee}\right)$ - and $H^{*}(B G)$-module structure match.
(3) Thereunder, 1 corresponds to the equivariant J-function: the (lowest-weight-regularized) matrix coefficient $\langle w| 1|w\rangle$ is J .
(9) The solution function to the $N C_{3}$-module over the Toda base is the equivariant Gromov-Witten Gamma-function $\Gamma W_{G}(G / T)$.

Remark

(1) The ΓW-function is the quantum S-matrix (2-point) image of the characteristic Γ-class, which is associated to the series $x \mapsto \Gamma_{h}(h+x)$.
(2) 「W can be interpreted as the inverse Euler class of X within the space of centered holomorphic disks within X.
(3) This interpretation explains heuristically the "solution" property of ΓW_{G} : it reduces the near-triviality of its G-gauged version to the fact that holomorphic $G_{\mathbb{C}}$-bundles on the disk are trivial.
(9) The solution property is known in the toric GW world
(6) The class $\Gamma W_{G}(E)$ of a representation can be used to construct, from $C_{3,4}$ and $N C_{3,4}$, the Coulomb branch of the gauged linear σ-model.
(0) Examples suggest a relation akin to the Fourier transform between $\Gamma W_{G}(X)$ and the gauged $\Gamma W(X)$, in the torus case. Specifically, the respective modules in $N C_{3}$ seem to be mutual Laplace transforms (?).

