A biased survey of Low-brow Topological Gauge Theory

Constantin Teleman

UC Berkeley

Austin, 14 January 2019

I will review some progress in understanding gauge theory input into equivariant topology. This leads to a 'retro' flavored lecture, but we will touch upon some recent work on *Coulomb branches* and gauged Gromov-Witten theory. Some topics:

- Interview of a compact group, a 2D TQFT, and the twisted equivariant K-theory ^TK_G(G), τ ∈ H⁴(BG; Z)
- **2** Deformations: Higgs bundles, gauged linear σ -model
- **③** Interpretation via Coulomb branches of 3D, 4D gauge theory
- Gauge theory as representation theory on categories,
- § Flag varieties as irreducibles, Whittaker picture and ΓW -classes
- (Will not discuss 4D and Langlands duality)

Some names: Atiyah-Bott, Segal, Hitchin, Moore, Seiberg, Witten, Jeffrey-Kirwan, Givental, Kontsevich, Costello, Hopkins, Lurie, Bezrukavnikov, Braverman, Finkelberg, Kapustin, Nakajima, Neitzke, Nadler, Ben-Zvi, ...

and of course the Birthday Boy.

Prehistory

{Compact group G, $\tau \in H^4(BG; \mathbb{Z})$ } \rightsquigarrow 2D conformal field theory. Hilbert space of states: $\bigoplus H \otimes H^*$, over τ' -projective positive energy irr. representations H of the free loop group LG.

On a conformal surface, the CFT is assembled from its chiral/anti-chiral components using the *Chern-Simons* 3D topological field theory. Reduction over a circle gives the 2D Verlinde theory V, a K-theory version of 2D topological Yang-Mills theory.

 $V: S^1 \mapsto$ the Verlinde ring $R(G, \tau)$ of PERs with their fusion product, (merging a pair of circles to a single one via a conformal pair of pants). When $\pi_0 G = \pi_1 G = 1$, $R(G, \tau) =$ quotient of the representation ring R(G) by an explicit ideal.

A theorem in topology (Freed, Hopkins, -) identifies $R(G, \tau)$ with the Pontryagin ring ${}^{\tau}K_{G}^{top}(G)$. Viewing $G \ltimes G$ as the flat connections on S^1 , the Pontryagin product is induced by the pair of pants, matching the fusion operation.

C. Teleman (Berkeley)

TQFT structure from topology

A general surface induces operations on ${}^{\tau}K_{G}^{top}(G)$, leading to a TQFT structure on V over the K-theory spectrum (enhanced from \mathbb{C}).

When $\partial^+ S \neq \emptyset$, the correspondence diagram $\{\rho_{\pm}\}$ defines a map

$$(\rho_+)_! \circ \rho_-^* : {}^{\tau}\!K_G(G) \to {}^{\tau}\!K_G(G) \otimes {}^{\tau}\!K_G(G)$$

which (together with a certain trace) assemble to a *K*-linear TQFT. [**However**, this enhanced theory is not *fully extended* (to points).]

Verlinde deformations

 $V : (closed surface S) \mapsto (dim of)$ the space of Θ -functions for G at level τ .

This can be enhanced, for instance to Θ -sections over the moduli of *flat* $G_{\mathbb{C}}$ -bundles. Keep this finite by using graded dims, for the filtration by degree along the (affine) fibers of the projection from flat to all bundles. This gives a formal deformation in a parameter t (returning V at t = 0).

Closely related is the gauged linear σ -model for a unitary representation E. Here, $S \mapsto$ the index of the Θ -line bundle over the holomorphic mapping space of S to the quotient stack $G_{\mathbb{C}} \ltimes E$, instead of just over $G_{\mathbb{C}}$ -bundles.

The mapping space consists of pairs: one (algebraic) $G_{\mathbb{C}}$ -bundle and one section of the associated *E*-bundle on *S*, plus an obstruction bundle H^1 :

 $H^*(Bun_{\mathbb{C}}G(S); \Theta^{\tau} \otimes \text{Sym Index}_{S}^{\vee}(E)).$

Tracking symmetric degrees by t leads to a deformation of $V, R(G, \tau(t))$.

A computation of ${}^{\tau}K_G(G)$

Theorem (C. Douglas) When $\pi_0 = \pi_1 = \{1\}$, ${}^{\tau}K_G(G) = K_G \otimes_{K^G_*(\Omega G)} {}^{\tau}K_G$.

Here, ΩG carries the Pontryagin product and G acts by conjugation.

The augmentations are: the push-forward $\Omega G \rightarrow pt$, and the same after a line bundle $\mathcal{O}(\tau)$ twist. Geometrically, this is the intersection of two subvarieties in Spec $\mathcal{K}_0^G(\Omega G)$. They turn out to be Lagrangian for a symplectic form (obvious for G = T).

This extends to the deformed Verlinde rings: *t*-deform ${}^{\tau}K_{G}$ by twisting by the total symmetric power of the \mathbb{P}^{1} -*index bundle* of *E* over ΩG .

Fact of note: the augmentation fiber remains Lagrangian.

Coulomb branches for 3/4D pure gauge theory

The following spaces are now called the *Coulomb branches* of pure 3/4D pure gauge theory:

$$C_3(G) := \operatorname{Spec} H^G_*(\Omega G; \mathbb{C}); \quad C_4(G) := \operatorname{Spec} K^G_*(\Omega G; \mathbb{C})$$

Theorem (Bezrukavnikov, Finkelberg, Mirkovic)

- Spec $H^G_*(\Omega G)$ is an affine resolution of singularities of $(T^*T^{\vee}_{\mathbb{C}})/W$.
- **2** Spec $H^{G}_{*}(\Omega G)$ is algebraic symplectic, and Spec $H_{*}(\Omega G)$ Lagrangian.
- Spec $K^G_*(\Omega G)$ is an affine resolution of singularities of $(T_{\mathbb{C}} \times T^{\vee}_{\mathbb{C}})/W$.
- Spec $K^{G}_{*}(\Omega G)$ is algebraic symplectic, and Spec $K_{*}(\Omega G)$ Lagrangian.
- $C_3(G), C_4(G)$ are the phase spaces of the Toda completely integrable systems for G, under projection to $t_{\mathbb{C}}/W$, resp. $T_{\mathbb{C}}/W$.

The Verlinde theory calculation in $C_4(G)$ is not accidental, it is part of a "character calculus" for gauged 2D σ -models (*H* for C_3 , *K* for C_4).

C. Teleman (Berkeley)

Example: G = SU(2)

 C_3 with Neumann, Dirichlet and Yang-Mills/Verlinde Lagrangians. x, ξ : coordinates on T^{\vee}, t .

The Toda projection to the axis ξ^2 of adj. orbits gives an integrable system, which is also an abelian group scheme over the base t/W. The unit section is black.

 C_4 is vertically periodicized; the picture is good near $1 \in T^{\vee}$ at large level.

Rigidifying $\tau(t) \mathcal{K}_{G}^{top}(G)$ by Matrix Factorization

The complexified ring of ${}^{\tau}K^{top}_{G}(G)$ is the Jacobian ring of the function

$$\mathsf{g}\mapsto \Psi(g):=rac{1}{2}\log^2 g+\mathsf{Tr}_{E}\left(\mathsf{Li}_2(tg^{-1})
ight)$$

on regular conjugacy classes g, with the proviso that "critical point of Ψ " means " $d\Psi$ is a weight". We square in the quadratic form defined by τ . This formula for deformed Verlinde theories (Woodward, -) generalizes Witten's for topological Yang-Mills theory (which appears as $\tau \to \infty$).

Jacobian rings are Hochschild cohomologies of *Matrix factorization* categories associated to a superpotential, of brany fame in 2D mirror symmetry, where they define mirror models of Gromov-Witten theory. (Matrix factorizations: 2-periodic curved complexes $E^0 \rightleftharpoons E^1$, with differential squaring to Ψ .) So this is a "mirror" of 2D gauge theory.

MFs also appeared in a partial rigidification of the FHT theorem.

An invertible function (like e^{Ψ}) is a $B\mathbb{Z}$ -action on the category of vector bundles on a space: this is a rigid form of a circle action. The quotient stack $G \ltimes G$, a rigid version of the loop space *LBG*, has a loop rotation $B\mathbb{Z}$ -action — even after τ -twisting.

Theorem (Freed,-)

The G-equivariant, τ -twisted MF category over G with respect to the BZ loop-rotation action is equivalent to the category of τ' -PERs of LG.

(Reason why: interpret $G \ltimes G$ as flat connections, $LG \ltimes \Omega^1(S^1; \mathfrak{g})$. A boson-fermion correspondence converts this into the crossed product algebra $LG \ltimes \operatorname{Cliff}(L\mathfrak{g})$, with Dirac operator as (curved) differential. A basis of objects in the category consists of $H \otimes S^{\pm}$, where H runs over appropriate LG-representations and S^{\pm} are the $L\mathfrak{g}$ -spinors.)

Fact: these two matrix factorization descriptions are closely related.

Reconciliation

Spec($T \ltimes_{\tau} \mathbb{C}[T]$) $\cong (\mathfrak{t} \times \Lambda)/\pi_1$, differs from Spec($T \ltimes \mathbb{C}[T]$) = $T \times \Lambda$ by coupling the π_1 action on \mathfrak{t} to Λ . $\Psi = \frac{1}{2}\xi^2 + \lambda(\xi)$, with one critical point on each sheet. $C_4(T) = T_{\mathbb{C}} \times T_{\mathbb{C}}^{\vee}$ with the graph of the Verlinde Lagrangian $\frac{1}{2}d \log^2$. Its intercepts with $T \times \{1\}$ are in bijection with the Verlinde points $\Lambda/\pi_1 T$.

Coulomb branches as classifying spaces for gauge theory I

The spaces $C_{3,4}$ carry a *character theory* for 2D ("A-model") gauge theories, serving as *classifying spaces* for the latter. In examples coming from gauged Gromov-Witten theory, the character calculus carries much TQFT information (Seidel operators, *J*-function...).

Precisely: 2D TQFTS are generated by categories; gauge symmetry is a G-action on the category.

For *B*-models, the meaning is straightforward, but for *A*-model theories (GW) the action must factor through the topology of the group. C_3 carries the characters of gauged *A*-models.

 C_4 should do that for K-linear categories (gauge TQFTs over K), or for LG-actions on linear categories. (I only understand this from examples.)

One precise statement is a (partially verified) equivalence between two 3D TQFTs: pure *G*-gauge theory *PG* versus Rozansky-Witten theory of C_3 . An analogue for C_4 is less clear (*LG*-gauge theory?).

Coulomb branches as classifying spaces for gauge theory II

Precise consequences of this may be stated (and proved in examples). Namely, gauged 2D theories give rise to a sheaf of categories with Lagrangian support on C_3 (C_4 , in the K-linear case).

A construction has been proposed [KRS] of a 2-category of sheaves of categories on hyper-Kaehler manifolds, related to Rozansky-Witten TQFT. A precise claim would be that this *KRS* 2-category is equivalent to the 2-category of \mathbb{C} -linear categories with *G*-action.

2D TQFTs with gauge symmetry are boundary conditions for *PG*. Equivalence with RW would give a correspondence of boundary conditions.

While the KRS program is not fully developed, enough can be established for $C_{3,4}$ using their integrable system structure (\rightsquigarrow preferred co-ordinates).

Example: G = SU(2)

 C_3 with Neumann, Dirichlet and Verlinde (exp $d\Psi$) Lagrangians. x, ξ are the coordinates on T^{\vee}, \mathfrak{t} .

The Toda projection to the axis ξ^2 of adj. orbits gives an integrable system, which is also an abelian group scheme over the base t/W. The unit section is in black.

 C_4 is vertically periodicized; the picture is good near $1 \in T^{\vee}$ at large level. General 2D gauge TQFT are generated by categories with *G*-action and have a "character" in $C_{3,4}$.

The group structure along the Toda fibers corresponds to the tensor product of TQFTs. Hom categories are computed by matrix factorizations.

Whittaker construction

The space C_3 has two important alternative constructions – Adjoint and Whittaker – as an algebraic symplectic quotient:

$$C_{3} \cong T^{*}_{reg} G^{\vee}_{\mathbb{C}} / /_{_{\mathcal{A}d}} G^{\vee}_{\mathbb{C}} \cong N_{\chi} \backslash \backslash T^{*} G^{\vee}_{\mathbb{C}} / /_{\chi} N$$

with reduction by the Adjoint and natural actions, but moment value a regular nilpotent character χ of $\mathfrak{n} \subset \mathfrak{g}_{\mathbb{C}}^{\vee}$. The second, *Toda isomorphism* is compatible to the projection to $\mathfrak{h}/W = (\mathfrak{g}^{\vee})^*//G_{\mathbb{C}}^{\vee}$, the base of the Toda integrable system, and captures the diagonalization of the latter.

The fibers of the Whittaker construction correspond to the GW flag varieties of G (their Fukaya categories as G-representations).

The symplectic structures of $C_{3,4}$ lead to deformation quantizations $NC_{3,4}$, which are realized as loop-rotation-equivariant versions of $H, K_G^*(\Omega G)$.

Remark

I do not know a Whittaker construction for C_4 .

Whittaker interpretation in the Coulomb branch

Braverman established a striking connection between the (small) quantum *J*-function of (full) flag varieties and Whittaker matrix coefficients.

Recall the universal Whittaker module $Wh = U(\mathfrak{g}) \otimes_{\mathfrak{n}} \mathbb{C}_{\chi}$.

Theorem (A. Braverman 04, w/ some Coulomb branch improvements)

- $QH^*_G(G/T)$ deforms naturally to a module over NC_3 (as HC^{per}).
- 2 This can be additively identified with U(𝔥[∨]) ≅ C_{q(\chi)} ⊗_{n̄} Wh[∨]. In particular, the Z(𝔅[∨])- and H*(BG)-module structure match.
- Thereunder, 1 corresponds to the equivariant J-function: the (lowest-weight-regularized) matrix coefficient \langle w|1|w \rangle is J.
- The solution function to the NC₃-module over the Toda base is the equivariant Gromov-Witten Gamma-function $\Gamma W_G(G/T)$.

Remark

- O The ΓW-function is the quantum S-matrix (2-point) image of the characteristic Γ-class, which is associated to the series x → Γ_h(h + x).
- **2** ΓW can be interpreted as the inverse Euler class of X within the space of centered holomorphic disks within X.
- This interpretation explains heuristically the "solution" property of ΓW_G : it reduces the near-triviality of its *G*-gauged version to the fact that holomorphic $G_{\mathbb{C}}$ -bundles on the disk are trivial.
- In the solution property is known in the toric GW world
- The class $\Gamma W_G(E)$ of a representation can be used to construct, from $C_{3,4}$ and $NC_{3,4}$, the Coulomb branch of the gauged linear σ -model.
- Examples suggest a relation akin to the Fourier transform between $\Gamma W_G(X)$ and the gauged $\Gamma W(X)$, in the torus case. Specifically, the respective modules in NC_3 seem to be mutual Laplace transforms (?).