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Introduction: cast of characters

I will review some progress in understanding gauge theory input into
equivariant topology. This leads to a ‘retro’ flavored lecture, but we will
touch upon some recent work on Coulomb branches and gauged
Gromov-Witten theory. Some topics:

1 The Verlinde ring of a compact group, a 2D TQFT,
and the twisted equivariant K -theory τKG (G ), τ ∈ H4(BG ;Z)

2 Deformations: Higgs bundles, gauged linear σ-model

3 Interpretation via Coulomb branches of 3D, 4D gauge theory

4 Gauge theory as representation theory on categories,

5 Flag varieties as irreducibles, Whittaker picture and ΓW -classes

6 (Will not discuss 4D and Langlands duality)

Some names: Atiyah-Bott, Segal, Hitchin, Moore, Seiberg, Witten,
Jeffrey-Kirwan, Givental, Kontsevich, Costello, Hopkins, Lurie,
Bezrukavnikov, Braverman, Finkelberg, Kapustin, Nakajima, Neitzke,
Nadler, Ben-Zvi, ...
and of course the Birthday Boy.
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Twisted K -theory and the Verlinde ring

Prehistory

{Compact group G , τ ∈ H4(BG ;Z)}  2D conformal field theory.
Hilbert space of states:

⊕
H ⊗ H∗, over τ ′-projective positive energy irr.

representations H of the free loop group LG .

On a conformal surface, the CFT is assembled from its chiral/anti-chiral
components using the Chern-Simons 3D topological field theory.
Reduction over a circle gives the 2D Verlinde theory V , a K -theory version
of 2D topological Yang-Mills theory.

V : S1 7→ the Verlinde ring R(G , τ) of PERs with their fusion product,
(merging a pair of circles to a single one via a conformal pair of pants).
When π0G = π1G = 1, R(G , τ) = quotient of the representation ring
R(G ) by an explicit ideal.

A theorem in topology (Freed, Hopkins, -) identifies R(G , τ) with the
Pontryagin ring τK top

G (G ). Viewing G n G as the flat connections on S1,
the Pontryagin product is induced by the pair of pants, matching the
fusion operation.
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Twisted K -theory and the Verlinde ring

TQFT structure from topology

A general surface induces operations on τK top
G (G ), leading to a TQFT

structure on V over the K -theory spectrum (enhanced from C). 

Js Eats

FlatBunds

FlatBunoloff FTatfundats

FlatG (S)
ρ− ↙ ↘ ρ+

FlatG (∂−S) FlatG (∂+S)

When ∂+S 6= ∅, the correspondence diagram {ρ±} defines a map

(ρ+)! ◦ ρ∗− : τKG (G )→ τKG (G )⊗ τKG (G )

which (together with a certain trace) assemble to a K -linear TQFT.

[However, this enhanced theory is not fully extended (to points).]
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Deformations

Verlinde deformations

V : (closed surface S) 7→ (dim of) the space of Θ-functions for G at level τ .

This can be enhanced, for instance to Θ-sections over the moduli of flat
GC-bundles. Keep this finite by using graded dims, for the filtration by
degree along the (affine) fibers of the projection from flat to all bundles.
This gives a formal deformation in a parameter t (returning V at t = 0).

Closely related is the gauged linear σ-model for a unitary representation E .
Here, S 7→ the index of the Θ-line bundle over the holomorphic mapping
space of S to the quotient stack GC n E , instead of just over GC-bundles.

The mapping space consists of pairs: one (algebraic) GC-bundle and one
section of the associated E -bundle on S , plus an obstruction bundle H1:

H∗
(
BunCG (S); Θτ ⊗ Sym Index∨S (E )

)
.

Tracking symmetric degrees by t leads to a deformation of V ,R(G , τ(t)).
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Deformations

A computation of τKG (G )

Theorem (C. Douglas)

When π0 = π1 = {1}, τKG (G ) = KG ⊗KG
∗ (ΩG)

τKG .

Here, ΩG carries the Pontryagin product and G acts by conjugation.

The augmentations are:
the push-forward ΩG → pt, and
the same after a line bundle O(τ) twist.
Geometrically, this is the intersection of
two subvarieties in SpecKG

0 (ΩG ).
They turn out to be Lagrangian for a
symplectic form (obvious for G = T ).

t.tt

it

This extends to the deformed Verlinde rings: t-deform τKG by twisting by
the total symmetric power of the P1-index bundle of E over ΩG .

Fact of note: the augmentation fiber remains Lagrangian.
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Deformations

Coulomb branches for 3/4D pure gauge theory

The following spaces are now called the Coulomb branches of pure 3/4D
pure gauge theory:

C3(G ) := SpecHG
∗ (ΩG ;C); C4(G ) := SpecKG

∗ (ΩG ;C)

Theorem (Bezrukavnikov, Finkelberg, Mirkovic)

1 SpecHG
∗ (ΩG ) is an affine resolution of singularities of (T ∗T∨C )/W.

2 SpecHG
∗ (ΩG ) is algebraic symplectic, and SpecH∗(ΩG ) Lagrangian.

3 SpecKG
∗ (ΩG ) is an affine resolution of singularities of (TC×T∨C )/W.

4 SpecKG
∗ (ΩG ) is algebraic symplectic, and SpecK∗(ΩG ) Lagrangian.

5 C3(G ),C4(G ) are the phase spaces of the Toda completely integrable
systems for G, under projection to tC/W, resp. TC/W.

The Verlinde theory calculation in C4(G ) is not accidental, it is part of a
“character calculus” for gauged 2D σ-models (H for C3, K for C4).
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Deformations

Example: G = SU(2)

                   Trivial 
                          representation 
    
 
                   Invariant                                           KRS object 
            subcategory 
                                                                          A spectral component 
 
                                                                          Zero section of  T^ 
 
                       1 in T^ 
                                        Underlying category 
 
 
 
 
 
 

C3 with Neumann, Dirichlet and
Yang-Mills/Verlinde Lagrangians.
x , ξ : coordinates on T∨, t.

The Toda projection to the axis ξ2

of adj. orbits gives an integrable
system, which is also an abelian
group scheme over the base t/W .
The unit section is black.

C4 is vertically periodicized; the picture is good near 1 ∈ T∨ at large level.
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Matrix Factorizations

Rigidifying τ(t)K top
G (G ) by Matrix Factorization

The complexified ring of τK top
G (G ) is the Jacobian ring of the function

g 7→ Ψ(g) :=
1

2
log2 g + TrE

(
Li2(tg−1)

)
on regular conjugacy classes g , with the proviso that “critical point of Ψ”
means “dΨ is a weight”. We square in the quadratic form defined by τ .
This formula for deformed Verlinde theories (Woodward, -) generalizes
Witten’s for topological Yang-Mills theory (which appears as τ →∞).

Jacobian rings are Hochschild cohomologies of Matrix factorization
categories associated to a superpotential, of brany fame in 2D mirror
symmetry, where they define mirror models of Gromov-Witten theory.
(Matrix factorizations: 2-periodic curved complexes E 0 � E 1, with
differential squaring to Ψ.)
So this is a “mirror” of 2D gauge theory.
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Matrix Factorizations

MFs also appeared in a partial rigidification of the FHT theorem.

An invertible function (like eΨ) is a BZ-action on the category of vector
bundles on a space: this is a rigid form of a circle action.
The quotient stack G n G , a rigid version of the loop space LBG , has a
loop rotation BZ-action — even after τ -twisting.

Theorem (Freed,-)

The G-equivariant, τ -twisted MF category over G with respect to the BZ
loop-rotation action is equivalent to the category of τ ′-PERs of LG.

(Reason why: interpret G n G as flat connections, LG n Ω1(S1; g).
A boson-fermion correspondence converts this into the crossed product
algebra LG n Cliff(Lg), with Dirac operator as (curved) differential.
A basis of objects in the category consists of H ⊗ S±, where H runs over
appropriate LG -representations and S± are the Lg-spinors.)

Fact: these two matrix factorization descriptions are closely related.
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Matrix Factorizations

Reconciliation

t.tt
Spec(T nτ C[T ]) ∼= (t× Λ)/π1,
differs from Spec(T nC[T ]) = T × Λ
by coupling the π1 action on t to Λ.
Ψ = 1

2ξ
2 + λ(ξ), with one critical

point on each sheet.

C4(T ) = TC × T∨C with the graph
of the Verlinde Lagrangian 1

2d log2.
Its intercepts with T × {1} are in
bijection with the Verlinde points
Λ/π1T .
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Relation to 3 dimensions

Coulomb branches as classifying spaces for gauge theory I

The spaces C3,4 carry a character theory for 2D (“A-model”) gauge
theories, serving as classifying spaces for the latter. In examples coming
from gauged Gromov-Witten theory, the character calculus carries much
TQFT information (Seidel operators, J-function...).

Precisely: 2D TQFTS are generated by categories; gauge symmetry is a
G -action on the category.
For B-models, the meaning is straightforward, but for A-model theories
(GW) the action must factor through the topology of the group.
C3 carries the characters of gauged A-models.

C4 should do that for K -linear categories (gauge TQFTs over K ), or for
LG -actions on linear categories. (I only understand this from examples.)

One precise statement is a (partially verified) equivalence between two 3D
TQFTs: pure G -gauge theory PG versus Rozansky-Witten theory of C3.
An analogue for C4 is less clear (LG -gauge theory?).
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Relation to 3 dimensions

Coulomb branches as classifying spaces for gauge theory II

Precise consequences of this may be stated (and proved in examples).
Namely, gauged 2D theories give rise to a sheaf of categories with
Lagrangian support on C3 (C4, in the K -linear case).

A construction has been proposed [KRS] of a 2-category of sheaves of
categories on hyper-Kaehler manifolds, related to Rozansky-Witten TQFT.
A precise claim would be that this KRS 2-category is equivalent to the
2-category of C-linear categories with G -action.

2D TQFTs with gauge symmetry are boundary conditions for PG .
Equivalence with RW would give a correspondence of boundary conditions.

While the KRS program is not fully developed, enough can be established
for C3,4 using their integrable system structure ( preferred co-ordinates).
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Relation to 3 dimensions

Example: G = SU(2)

                   Trivial 
                          representation 
    
 
                   Invariant                                           KRS object 
            subcategory 
                                                                          A spectral component 
 
                                                                          Zero section of  T^ 
 
                       1 in T^ 
                                        Underlying category 
 
 
 
 
 
 

C3 with Neumann, Dirichlet and
Verlinde (exp dΨ) Lagrangians.
x , ξ are the coordinates on T∨, t.

The Toda projection to the axis ξ2

of adj. orbits gives an integrable
system, which is also an abelian
group scheme over the base t/W .
The unit section is in black.

C4 is vertically periodicized; the picture is good near 1 ∈ T∨ at large level.

General 2D gauge TQFT are generated by categories with G -action and
have a “character” in C3,4.
The group structure along the Toda fibers corresponds to the tensor
product of TQFTs. Hom categories are computed by matrix factorizations.
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Recent developments

Whittaker construction

The space C3 has two important alternative constructions – Adjoint and
Whittaker – as an algebraic symplectic quotient:

C3
∼= T ∗regG

∨
C //Ad G

∨
C
∼= Nχ\\T ∗G∨C //χN

with reduction by the Adjoint and natural actions, but moment value a
regular nilpotent character χ of n ⊂ g∨C. The second, Toda isomorphism is
compatible to the projection to h/W = (g∨)∗//G∨C , the base of the Toda
integrable system, and captures the diagonalization of the latter.

The fibers of the Whittaker construction correspond to the GW flag
varieties of G (their Fukaya categories as G -representations).

The symplectic structures of C3,4 lead to deformation quantizations NC3,4,
which are realized as loop-rotation-equivariant versions of H,K ∗G (ΩG ).

Remark

I do not know a Whittaker construction for C4.
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Recent developments

Whittaker interpretation in the Coulomb branch

Braverman established a striking connection between the (small) quantum
J-function of (full) flag varieties and Whittaker matrix coefficients.

Recall the universal Whittaker module Wh = U(g)⊗n Cχ.

Theorem (A. Braverman 04, w/ some Coulomb branch improvements)

1 QH∗G (G/T ) deforms naturally to a module over NC3 (as HCper ).

2 This can be additively identified with U(h∨) ∼= Cq(χ) ⊗n Wh∨.
In particular, the Z (g∨)- and H∗(BG )-module structure match.

3 Thereunder, 1 corresponds to the equivariant J-function: the
(lowest-weight-regularized) matrix coefficient 〈w |1|w〉 is J.

4 The solution function to the NC3-module over the Toda base is the
equivariant Gromov-Witten Gamma-function ΓWG (G/T ).
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Recent developments

Remark

1 The ΓW -function is the quantum S-matrix (2-point) image of the
characteristic Γ-class, which is associated to the series x 7→ Γh(h + x).

2 ΓW can be interpreted as the inverse Euler class of X within the
space of centered holomorphic disks within X .

3 This interpretation explains heuristically the “solution” property of
ΓWG : it reduces the near-triviality of its G -gauged version to the fact
that holomorphic GC-bundles on the disk are trivial.

4 The solution property is known in the toric GW world

5 The class ΓWG (E ) of a representation can be used to construct, from
C3,4 and NC3,4, the Coulomb branch of the gauged linear σ-model.

6 Examples suggest a relation akin to the Fourier transform between
ΓWG (X ) and the gauged ΓW (X ), in the torus case. Specifically, the
respective modules in NC3 seem to be mutual Laplace transforms (?).
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