CHARACTERISTIC CLASSES: EXERCISES

ARUN DEBRAY JULY 6. 2020

These exercises are not in order. (3) is the most important one. Do the ones that look the most interesting to you.

- (1) If you have not seen the associated bundle construction before, verify that it produces a vector bundle.
- (2) Think about why the associated bundle to the frame bundle and the standard representation of $\operatorname{GL}_n(\mathbb{R})$ on \mathbb{R}^n is the tangent bundle, and the associated bundle for the dual representation on $(\mathbb{R}^n)^*$ is the cotangent bundle.
- (3) In this exercise, we'll compute $c(\mathbb{CP}^n) = (1+x)^{n+1}$, where $x \in H^2(\mathbb{CP}^n) \cong \mathbb{Z}$ is a generator. Poincaré dual to $\mathbb{CP}^{n-1} \subset \mathbb{CP}^n$.
 - (a) Let $Q = \underline{\mathbb{C}}^{n+1}/S$, the universal quotient bundle: its fiber over an $\ell \in \mathbb{CP}^n$ is \mathbb{C}^{n+1}/ℓ . Show that $\operatorname{Hom}(S, Q) \cong T\mathbb{CP}^n$. (Hint: let ℓ be a complex line in \mathbb{C}^{n+1} and ℓ^{\perp} be a complimentary subspace, i.e. $\ell \oplus \ell^{\perp} \cong \mathbb{C}^{n+1}$. Then, $\operatorname{Hom}(\ell, \ell^{\perp})$ can be identified with the neighborhood of $\ell \in \mathbb{CP}^n$ of lines which are graphs of functions $\ell \to \ell^{\perp}$.)
 - (b) Using this, show that $T\mathbb{CP}^n \oplus \text{Hom}(S,S) \cong (S^*)^{\oplus (n+1)}$.
 - (c) If E is any line bundle, show that Hom(E, E) is trivial.
 - (d) If $E \to \mathbb{CP}^n$ is a line bundle, show that $c_1(E^*) = -c_1(E)$. (Hint: use the fact that $E^* \cong \overline{E}$ and naturality of Chern classes.)
 - (e) Applying (3c) and (3d) to (3b), conclude $c(\mathbb{CP}^n) = (1+x)^{n+1}$.
- (4) Let's construct some classifying spaces.
 - (a) Suppose G is a discrete group. Show that any K(G,1) (i.e. a connected space with $\pi_1 = G$ and all higher homotopy groups vanishing) is a model for BG. Thus S^1 is a \mathbb{BZ} and \mathbb{RP}^{∞} is a $\mathbb{BZ}/2$.
 - (b) In the rest of exercise, we construct BO_n as an infinite-dimensional manifold. Fix a separable Hilbert space, such as ℓ^2 . The Stiefel manifold $\operatorname{St}_n(\ell^2)$ is the set of linear isometric embeddings $\mathbb{R}^n \hookrightarrow \ell^2$ (i.e. injective linear maps preserving the inner product), topologized as a subspace of $\operatorname{Hom}(\mathbb{R}^n, \ell^2)$. O_n acts on $\operatorname{St}_k(\ell^2)$ by precomposition.

The infinite-dimensional Grassmannian $\operatorname{Gr}_n(\ell^2)$ is the space of *n*-dimensional subspaces of ℓ^2 , topologized in a similar way to finite-dimensional Grassmannians. There's a projection $\pi: \operatorname{St}_n(\ell^2) \twoheadrightarrow \operatorname{Gr}_n(\ell^2)$ sending a map $b: \mathbb{R}^n \to \ell^2$ to its image.

- (i) Why is the unit sphere in an infinite-dimensional Hilbert space contractible?
- (ii) Show that $\operatorname{St}_n(\ell^2)$ is contractible. (Hint: if e_i denotes the sequence with a 1 in position i and 0 everywhere else, define two homotopies, one which pushes any embedding to one orthogonal to the standard embedding $s: \mathbb{R}^n \to \ell^2$ as the first n coordinates, and the other which contracts the subspace of embeddings orthogonal to s onto s).
- (iii) Show that the O_n -action on $St_n(\ell^2)$ is free, so $St_n(\ell^2)$ is an EO_n .
- (iv) Show that $\pi: \operatorname{St}_n(\ell^2) \to \operatorname{Gr}_n(\ell^2)$ is the quotient by the O_n -action, so $\operatorname{Gr}_n(\ell^2)$ is a BO_n .¹ (5) If you have seen Čech cohomology, this exercise will construct c_1 using that perspective.
- - (a) Analogously to the transition functions of a vector bundle, describe how the data of a principal G-bundle $P \to X$ can be specified by a trivializing open cover \mathfrak{U} of P and transition functions $g_{UV} \colon U \cap V \to G.$
 - (b) Let $h_{UV} := \det \circ g_{UV} : U \cap V \to U_1$. The h_{UV} collectively define a U₁-valued Čech 1-cochain. Show it is a cocycle.

¹Using complex vector spaces, Grassmannians, and Stiefel manifolds everywhere gives $EU_n \to BU_n$. Now, if $G \subset U_n$, EU_n/G is a BG. Since every compact Lie group admits a finite-dimensional unitary representation, this gives models for BG for any compact Lie group G.

- (c) Consider the long exact sequence in cohomology associated to the short exact sequence $0 \to \mathbb{Z} \to \mathbb{R} \to \mathbb{R}/\mathbb{Z} \cong U_1 \to 0$. We define the *first Chern class* of P to be the image of $[\{h_{UV}\}] \in \check{H}^1(X; U_1)$ under the connecting morphism to $\check{H}^2(X; \mathbb{Z})$. Show that if P is nontrivial, $\{h_{UV}\}$ is not in the image of $\check{Z}^1(X; \mathbb{R}) \to \check{Z}^1(X; U_1)$. (Hint: if this is the case, P admits a reduction of structure group to a principal \mathbb{R} -bundle, where \mathbb{R} carries the usual topology. Why are all principal \mathbb{R} -bundles trivial?)
- (d) If n = 1, why is $c_1(P) \neq 0$ iff P is nontrivial?
- (e) Why does $c_1(P) = 0$ iff P admits a reduction of structure to SU_n ?
- (6) If $E \to M$ is a vector bundle, its determinant bundle $\text{Det}E \to M$ is its top exterior power, which is a line bundle. Use the locus-of-dependency definition of Chern classes to show that $c_1(E) = c_1(\text{Det}E)$.
- (7) Use Chern-Weil theory to compute the first Chern class of \mathbb{CP}^1 .

Less crucial but perhaps still interesting:

- (8) There is a finite analogue of the correspondence between principal GL_n -bundles and vector bundles, relating *n*-fold covering spaces $X' \to X$ and principal S_n -bundles.²
 - (a) Consider a variant of the associated bundle construction for sets. Let $[n] := \{1, \ldots, n\}$, and given a principal S_n -bundle $P \to X$, let $P \times_{S_n} [n]$ denote the quotient of $P \times [n]$ by the equivalence relation $(p \cdot \sigma, i) \sim (p, \sigma(i))$ for all $\sigma \in S_n$. Show $P \times_{S_n} [n] \to X$ is an *n*-fold covering map. (Don't get too bogged down in the details.)
 - (b) Can you define a map going the other way, from *n*-fold covering maps to principal S_n -bundles? Hint: first work over a point. Given a set with *n* elements, how can one canonically build an S_n -torsor?
 - (c) Show that these constructions are mutually inverse.

 $^{^{2}}$ This is not just a party trick, and in fact is useful for counting Hurwitz numbers, but that's out of scope for now.