CHARACTERISTIC CLASSES: EXERCISES

ARUN DEBRAY JULY 7, 2020

These exercises are not in order. Do the ones that look the most interesting to you. Some are a lot easier than others.

- (1) Analogously to yesterday's calculation of $c(\mathbb{CP}^n)$, show that $w(\mathbb{RP}^n) = (1+x)^{n+1}$, where x is the nonzero element of $H^1(\mathbb{RP}^n; \mathbb{Z}/2) \cong \mathbb{Z}/2$.
- (2) For which n is \mathbb{RP}^n orientable? Spin?
- (3) In this exercise, we show Stiefel-Whitney numbers are unoriented bordism invariants.¹
 - (a) Let W be a compact (n + 1)-manifold with boundary M. Show that $TW|_M \cong TM \oplus \mathbb{R}$, so $w(TW|_M) = w(TM)$.
 - (b) Associated to the pair $W \hookrightarrow M$, we have long exact sequences in homology and cohomology. Let $\partial_{\downarrow} \colon H_{n+1}(W, M; \mathbb{Z}/2) \to H_n(M; \mathbb{Z}/2)$ and $\partial^{\uparrow} \colon H^n(M; \mathbb{Z}/2) \to H^{n+1}(W, M; \mathbb{Z}/2)$ be the boundary maps. Show that if $i_1 + \cdots + i_k = n$, then $\partial^{\uparrow}(w_{i_1}(M) \cdots w_{i_k}(M)) = 0$.
 - (c) The cap product pairing is compatible with the long exact sequence of a pair, in that $\langle \partial^{\uparrow} x, y \rangle = \langle x, \partial_{\downarrow} y \rangle$ (this is true in general and not just here). Conclude $\langle w_{i_1}(M) \cdots w_{i_k}(M), [M] \rangle = 0$.
 - (d) Which \mathbb{RP}^n , for $n \leq 5$, are not null-bordant?
- (4) In this exercise, we study orientations and spin structures from a Čech cohomology point of view.
 - (a) Use the determinant det: $O_n \to O_1 \cong \mathbb{Z}/2$ to mimic yesterday's exercise and build a characteristic class in $H^1(-;\mathbb{Z}/2)$ that is precisely the obstruction for a principal O_n -bundle P to admit a reduction of structure group to a principal SO_n -bundle. This class is $w_1(P)$, of course.
 - (b) Recall that $\operatorname{Spin}_n \to \operatorname{SO}_n$ is the unique connected (n > 0) double cover of SO_n , with kernel denoted $\{\pm 1\}$. Assume that our open cover \mathfrak{U} of X is good (all $U \in \mathfrak{U}$, as well as pairwise, triple, etc. intersections of elements of \mathfrak{U} , are contractible; such a cover exists on any manifold). Let $P \to X$ be a principal SO_n -bundle, and for each pair $U, V \in \mathfrak{U}$, choose a lift of the transition function $g_{UV} \colon U \cap V \to \operatorname{SO}_n$ to $\tilde{g}_{UV} \colon U \cap V \to \operatorname{Spin}_n$. Comparing these lifts on triple intersections defines a class $\{\tilde{g}_{UV}\tilde{g}_{VW}\tilde{g}_{UW}\} \in \check{C}^2(X,\mathfrak{U}, \{\pm 1\})$. Why is it a cocycle?
 - (c) Suppose we chose different lifts to Spin_n . Show that the resulting cocycle differs by a coboundary. Thus we have defined a characteristic class obstructing a lift from an SO_n -bundle to a Spin_n -bundle; this is $w_2(P)$, of course.
 - (d) The set of spin structures on a vector bundle admitting a spin structure is a torsor for $H^1(X; \mathbb{Z}/2)$. Describe the $H^1(X; \mathbb{Z}/2)$ -action from this perspective.
- (5) Show that the top Stiefel-Whitney class of an odd-dimensional closed manifold vanishes. (Hint: what is the mod 2 Euler characteristic of an odd-dimensional closed manifold?)
- (6) If $M \subset \mathbb{R}^n$ is a closed, embedded (n-1)-dimensional manifold, show that M is orientable. (Hint: \mathbb{RP}^2 immerses in \mathbb{R}^3 , so this uses the fact that it's an embedding.)
- (7) Show that if n > 1, \mathbb{RP}^n does not embed in \mathbb{R}^{n+1} , and if in addition $n \neq 2^k 1$, \mathbb{RP}^n does not immerse in \mathbb{R}^{n+1} .
- (8) Bordism classes of real projective spaces generate a subring of $\Omega^{\mathcal{O}}_*$. What is the lowest-degree element that is not contained in this subring? Recall that $\Omega^{\mathcal{O}}_* \cong \mathbb{Z}/2[x_i \mid i \neq 2^j 1]$.
- (9) Show there is no vector bundle $V \to \mathbb{RP}^{\infty}$ such that $V \oplus S$ is trivial. (A vector bundle over a finite-dimensional CW complex always has such a "complement.")

¹The basic argument is quite general, and will apply to the other characteristic numbers we meet this week.