CHARACTERISTIC CLASSES: EXERCISES

ARUN DEBRAY JULY 8, 2020

These exercises are not in order. Do the ones that look the most interesting to you. Some are a lot easier than others.

- (1) For which n is \mathbb{CP}^n spin?
- (2) Which Stiefel-Whitney numbers of closed 4-manifolds coincide, analogously to $w_2 = w_1^2$ for 2-manifolds? (Hint: $\Omega_4^{O} \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$, so you should obtain two linearly independent Stiefel-Whitney numbers.)
- (3) The Wu manifold $W \coloneqq \mathrm{SU}_3/\mathrm{SO}_3$ has cohomology ring $H^*(W; \mathbb{Z}/2) \cong \mathbb{Z}/2[z_2, z_3]/(z_2^2, z_3^2)$, with $|z_i| = i$, and \mathcal{A} -action $\mathrm{Sq}(z_2) = z_2 + z_3$ and $\mathrm{Sq}(z_3) = z_3 + z_5$. Show W is not null-bordant (in fact, it generates $\Omega_5^{\mathrm{O}} \cong \mathbb{Z}/2$).
- (4) Let 4 | n. Then H*(BZ/n; Z/2) ≅ Z/2[x, y]/(x²) with |x| = 1 and |y| = 2. The axiomatics of Steenrod squares almost completely determine the A-action on H*(BZ/n; Z/2). Show Sq¹(y) = 0. (Hint: show that y is the mod 2 reduction of a class ỹ ∈ H²(BZ/n; Z), which is therefore c₁ of a nontrivial line bundle...)
 (5) Show that Ω₂^{Spin^c} and Ω₄^{Spin^c} are both infinite by finding an analogue to Stiefel-Whitney numbers
- (5) Show that Ω_2^{spin} and Ω_4^{spin} are both infinite by finding an analogue to Stiefel-Whitney numbers (we can use \mathbb{Z} cohomology because a spin^c structure induces an orientation) which maps to \mathbb{Z} , and producing examples where it doesn't vanish. (Hint: find a map $\text{Spin}_n^c \to U_1$, allowing one to define an associated principal U_1 -bundle given a principal Spin_n^c -bundle.)
- (6) Let M denote the mapping torus for complex conjugation on \mathbb{CP}^2 (i.e. the space $\mathbb{CP}^2 \times [0, 1]$, modulo the relation $(0, x) \sim (1, \overline{x})$). Is this orientable? Can you determine its mod 2 cohomology and Stiefel-Whitney classes?
- (7) There is a Čech-cohomological perspective on spin^c structures, where one chooses a good cover \mathfrak{U} and transition functions $g_{UV}: U \cap V \to SO_n$ as before, and lifts them to $\tilde{g}_{UV}: U \cap V \to Spin_n$ as before, possibly incoherently. From this perspective, a spin^c structure is "a principal U₁-bundle that doesn't quite work, but in the same ways as the spin structure doesn't work," i.e. transition functions $h_{UV}: U \cap V \to U_1$ whose cocycle condition might not be satisfied, but such that for all triple intersections $U \cap V \cap W$,

$\widetilde{g}_{UV}\widetilde{g}_{VW}\widetilde{g}_{WU} = h_{UV}h_{VW}h_{WU}.$

Show this is the same data as a spin^c structure. Can you also show how this provides a preimage of w_2 under $H^2(X;\mathbb{Z}) \to H^2(X;\mathbb{Z}/2)$?

(8) Show that if w_k is the first nonzero Stiefel-Whitney class of a vector bundle, then k is a power of 2.