CHARACTERISTIC CLASSES: EXERCISES

ARUN DEBRAY
JULY 8, 2020

These exercises are not in order. Do the ones that look the most interesting to you. Some are a lot easier than others.
(1) For which n is $\mathbb{C P}^{n}$ spin?
(2) Which Stiefel-Whitney numbers of closed 4-manifolds coincide, analogously to $w_{2}=w_{1}^{2}$ for 2manifolds? (Hint: $\Omega_{4}^{\mathrm{O}} \cong \mathbb{Z} / 2 \oplus \mathbb{Z} / 2$, so you should obtain two linearly independent Stiefel-Whitney numbers.)
(3) The $W u$ manifold $W:=\mathrm{SU}_{3} / \mathrm{SO}_{3}$ has cohomology ring $H^{*}(W ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[z_{2}, z_{3}\right] /\left(z_{2}^{2}, z_{3}^{2}\right)$, with $\left|z_{i}\right|=i$, and \mathcal{A}-action $\operatorname{Sq}\left(z_{2}\right)=z_{2}+z_{3}$ and $\operatorname{Sq}\left(z_{3}\right)=z_{3}+z_{5}$. Show W is not null-bordant (in fact, it generates $\Omega_{5}^{\mathrm{O}} \cong \mathbb{Z} / 2$).
(4) Let $4 \mid n$. Then $H^{*}(B \mathbb{Z} / n ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2[x, y] /\left(x^{2}\right)$ with $|x|=1$ and $|y|=2$. The axiomatics of Steenrod squares almost completely determine the \mathcal{A}-action on $H^{*}(B \mathbb{Z} / n ; \mathbb{Z} / 2)$. Show $\operatorname{Sq}^{1}(y)=0$. (Hint: show that y is the $\bmod 2$ reduction of a class $\widetilde{y} \in H^{2}(B \mathbb{Z} / n ; \mathbb{Z})$, which is therefore c_{1} of a nontrivial line bundle...)
(5) Show that $\Omega_{2}^{\mathrm{Spin}^{c}}$ and $\Omega_{4}^{\mathrm{Spin}^{c}}$ are both infinite by finding an analogue to Stiefel-Whitney numbers (we can use \mathbb{Z} cohomology because a spin ${ }^{c}$ structure induces an orientation) which maps to \mathbb{Z}, and producing examples where it doesn't vanish. (Hint: find a map $\operatorname{Spin}_{n}^{c} \rightarrow \mathrm{U}_{1}$, allowing one to define an associated principal U_{1}-bundle given a principal $\operatorname{Spin}_{n}^{c}$-bundle.)
(6) Let M denote the mapping torus for complex conjugation on $\mathbb{C P}^{2}$ (i.e. the space $\mathbb{C P}^{2} \times[0,1]$, modulo the relation $(0, x) \sim(1, \bar{x}))$. Is this orientable? Can you determine its mod 2 cohomology and Stiefel-Whitney classes?
(7) There is a Čech-cohomological perspective on spin^{c} structures, where one chooses a good cover \mathfrak{U} and transition functions $g_{U V}: U \cap V \rightarrow \mathrm{SO}_{n}$ as before, and lifts them to $\widetilde{g}_{U V}: U \cap V \rightarrow \mathrm{Spin}_{n}$ as before, possibly incoherently. From this perspective, a spin^{c} structure is "a principal U_{1}-bundle that doesn't quite work, but in the same ways as the spin structure doesn't work," i.e. transition functions $h_{U V}: U \cap V \rightarrow \mathrm{U}_{1}$ whose cocycle condition might not be satisfied, but such that for all triple intersections $U \cap V \cap W$,

$$
\widetilde{g}_{U V} \widetilde{g}_{V W} \widetilde{g}_{W U}=h_{U V} h_{V W} h_{W U} .
$$

Show this is the same data as a spin^{c} structure. Can you also show how this provides a preimage of w_{2} under $H^{2}(X ; \mathbb{Z}) \rightarrow H^{2}(X ; \mathbb{Z} / 2)$?
(8) Show that if w_{k} is the first nonzero Stiefel-Whitney class of a vector bundle, then k is a power of 2 .

