Day 5: Chern-Weil theory

Arun Debray

July 10, 2020

Today's plan

1. The generalized splitting principle and examples
2. Connections and curvature for principal G-bundles
3. Invariant polynomials and the Chern-Weil homomorphism
4. Examples of the Chern-Weil homomorphism

The generalized splitting principle: setup

- Fix our Lie group G and a maximal torus T of rank n (i.e. $T \cong \mathbb{T}^{n}$)
- Via the inclusion $i: T \hookrightarrow G$, we have models of $B G$ as $E G / G$ and $B T$ as $E G / T$, so $B i: B T \rightarrow B G$ is a fiber bundle with fiber G / T
- (Note: T is generally not normal in G)
- Let $P \rightarrow X$ be a principal G-bundle classified by a map $f_{P}: X \rightarrow B G$, and $q: Y \rightarrow X$ be the pullback of $B i$:

The generalized splitting principle

- Here's the diagram again:
- Theorem, part 1: there is a canonical reduction of structure group of $q^{*} P \rightarrow Y$ to T
- Theorem, part 2: $q^{*}: H^{*}(X ; \mathbb{Q}) \rightarrow H^{*}(Y ; \mathbb{Q})$ is injective

So?

- Suppose c is a characteristic class for principal G-bundles
- Via $B i$, it also defines a characteristic class for principal T-bundles
- Since q^{*} is injective, that characteristic class for the principal T-bundle we obtained over Y determines $c(P)$
- Since $T \cong \mathbb{T}^{n}$, that principal T-bundle decomposes (in a sense) as a product of n principal \mathbb{T}-bundles
- Therefore the characteristic class also factors as a product $\prod_{i=1}^{n}\left(1+x_{i}\right)$, where the x_{i} are the $c_{1} s$ of the principal \mathbb{T}-bundle summands. The x_{i} are called the roots of P

Example: Chern classes

- The diagonal matrices are a maximal torus in U_{n} of rank n
- Using associated bundles to pass between principal U_{n}-bundles and complex vector bundles, this tells us that a complex vector bundle $V \rightarrow X$ splits as a sum of line bundles L_{1}, \ldots, L_{n} when pulled back to Y
- $c_{1}\left(L_{i}\right)$ is called the $i^{\text {th }}$ Chern root, and $c_{k}(V)$ is the $k^{\text {th }}$ symmetric polynomial in the Chern roots
- $H^{*}\left(\mathrm{U}_{n} ; \mathbb{Z}\right)$ is free, so we can work over \mathbb{Z}

Chern classes and the flag manifold

- Y has a more concrete description in this case
- Namely, the flag manifold for $V \rightarrow X$
- A flag of an inner product space W is a decomposition of W as a sum of one-dimensional, orthogonal subspaces
- The flag manifold $Y \rightarrow X$ is a fiber bundle whose fiber at $x \in X$ is the space of flags of V_{x}
- (Ok, you need a Hermitian metric to define this, but the isomorphism type of the fiber bundle does not depend on this choice)

Example: Pontrjagin classes, part 1

- $G=\mathrm{SO}_{2 n}$: one maximal torus is the diagonal matrices in $\mathrm{U}_{n} \subset \mathrm{SO}_{n}$, which has rank n
- Upshot: if V is an oriented rank- $2 n$ vector bundle, $q^{*} V$ splits as a sum of complex line bundles L_{1}, \ldots, L_{n}, but the symmetric polynomial gets squared:

$$
p_{i}\left(q^{*} V\right)=\sigma_{i}\left(c_{1}\left(L_{1}\right), \ldots, c_{1}\left(L_{n}\right)\right)^{2}
$$

- This is because the Pontrjagin classes of V are the Chern classes of $V_{\mathbb{C}}$, and the Chern roots of $V_{\mathbb{C}}$ come in pairs $\pm x_{1}, \ldots, \pm x_{n}$
- The Euler class also splits:

$$
e\left(q^{*} V\right)=\sigma_{n}\left(c_{1}\left(L_{1}\right), \ldots, c_{n}\left(L_{n}\right)\right)
$$

Example: Pontrjagin classes, part 2

- $G=\mathrm{SO}_{2 n+1}$ has a similar story: one maximal torus is the diagonal matrices in $\mathrm{U}_{n} \subset \mathrm{SO}_{2 n+1}$ (so the last diagonal entry is always 1)
- So an oriented rank-($2 n+1$) real vector bundle V, pulled back to Y, splits as a direct sum of n complex line bundles and a trivial real line bundle
- The Pontrjagin and Euler classes of V admit the same description as in the case $\mathrm{SO}_{2 n}$

Example (sort of): Stiefel-Whitney classes

- O_{n} isn't connected, so we can't use the theorem
- Nonetheless, enough of the structure persists with $\mathbb{Z} / 2$ coefficients and the subgroup $\mathrm{O}_{1}^{n} \subset \mathrm{O}_{n}$ to prove something via similar methods
- One can prove q^{*} is an injection on mod 2 cohomology and $q^{*} P$ admits a canonical reduction of structure group to a principal O_{1}^{n}-bundle
- Upshot: a rank-n real vector bundle V, after pullback to Y, splits as a direct sum of n real line bundles L_{1}, \ldots, L_{n}, and

$$
w_{k}(V)=\sigma_{i}\left(w_{1}\left(L_{1}\right), \ldots, w_{1}\left(L_{n}\right)\right)
$$

Invariant polynomials

- G is a Lie group, $\mathfrak{g}:=T_{e} G$ is its Lie algebra
- G acts on \mathfrak{g} by the adjoint representation, differentiating the action of G on itself by conjugation
- Example: $G=\mathrm{GL}_{n}(\mathbb{R}), \mathfrak{g}$ is all $n \times n$ matrices, and the adjoint representation is matrix conjugation
- If G is a subgroup of $G L_{n}(\mathbb{R}), \mathfrak{g}$ is a subspace of all $n \times n$ matrices, and the adjoint representation is also conjugation

Invariant polynomials

- The vector space of polynomial functions on \mathfrak{g} is $\operatorname{Sym}^{\bullet}\left(\mathfrak{g}^{*}\right)$
- That is, take the dual vector space \mathfrak{g}^{*}, and take symmetric functions on it
- Why does this get to be called polynomials? There is an identification $\operatorname{Sym}^{\bullet}\left(\left(\mathbb{R}^{n}\right)^{*}\right) \cong \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, but it uses the basis, so using $\operatorname{Sym}^{\bullet}\left(\mathfrak{g}^{*}\right)$ is basis-independent
- The invariant polynomials on \mathfrak{g} are the subspace of $\operatorname{Sym}{ }^{\bullet}\left(\mathfrak{g}^{*}\right)$ fixed by the G-action. This subspace is denoted $I^{\circ}(G)$
- Warning: $I^{\bullet}(G)$ is graded strangely: a degree- q polynomial carries grading $2 q$

Examples of invariant polynomials

- G connected and abelian (e.g. $\mathbb{R}^{n}, \mathbb{T}^{n}$): conjugation is trivial, so all polynomials are invariant
- $G=\mathrm{U}_{2}$ (2×2 unitary complex matrices), with Lie algebra \mathfrak{u}_{2} (2×2 complex matrices satisfying $A=-A^{*}$)
- Both $\operatorname{tr}(X)$ (degree 2) and $\operatorname{tr}\left(X^{2}\right)$ are U_{2}-invariant polynomials on \mathfrak{u}_{2}
- In fact, this is everything! $I^{\bullet}\left(\mathrm{U}_{2}\right) \cong \mathbb{R}\left[\operatorname{tr}(X), \operatorname{tr}\left(X^{2}\right)\right]$
- The same is true for $\mathrm{GL}_{2}(\mathbb{C})$
- $G=\mathrm{SU}_{2}: \mathfrak{s u}_{2}$ consists of traceless matrices, so
$I^{\bullet}\left(\mathrm{SU}_{2}\right)=\mathbb{R}\left[\operatorname{tr}\left(X^{2}\right)\right]$

Examples of invariant polynomials

- $G=\mathrm{SO}_{2 n}$: Lie algebra $\mathfrak{s o}_{2 n}$ is skew-symmetric real $2 n \times 2 n$ matrices
- We get a bunch of invariant polynomials $f_{4 i}$ of degree $4 i$ via

$$
\operatorname{det}(t-X)=\sum_{i=0}^{n} f_{4 i}(X) t^{2 i}
$$

because the determinant is invariant by conjugation by $\mathrm{SO}_{2 n}$ (similarly for U_{n})

- Also a new one:
- $X \in \mathfrak{s o}_{2 n}$ iff, as a map $X: \mathbb{R}^{n} \rightarrow\left(\mathbb{R}^{n}\right)^{*}, X^{*}=-X$
- In $\operatorname{Hom}\left(\mathbb{R}^{n},\left(\mathbb{R}^{n}\right)^{*}\right)=\left(\mathbb{R}^{n}\right)^{*} \otimes\left(\mathbb{R}^{n}\right)^{*}, X$ is alternating, so identified with $\omega_{X} \in \Lambda^{2}\left(\mathbb{R}^{n}\right)^{*}$
$-\operatorname{Det}\left(\mathbb{R}^{n}\right):=\Lambda^{n}\left(\mathbb{R}^{n}\right)^{*}$ is one-dimensional, so

$$
\frac{\omega_{X}^{n}}{n!}=P_{n}(X) \mathrm{vol},
$$

where vol is the volume form induced by the inner product

- P_{n} is a degree- n invariant polynomial, and $P_{n}\left(X^{2}\right)=\operatorname{det}(X)$, so $I^{\bullet}\left(\mathrm{SO}_{2 n}\right)$ is not a polynomial ring

Connections on principal G-bundles: background

- We'll need a more abstract perspective on connections today
- This perspective is useful in other places in geometry
- Refresher: If $E \rightarrow M$ is a vector bundle, $\Omega_{M}^{k}(E):=\Gamma\left(\Lambda^{k} T^{*} M \otimes E\right)$
- If V is a vector space, $\Omega_{M}^{k}(V):=\Omega_{M}^{k}(\underline{V}) . \Omega_{M}^{k}:=\Omega_{M}^{k}(\mathbb{R})$

Connections on principal G-bundles

- Let $\pi: P \rightarrow M$ be a principal G-bundle over a smooth manifold M
- We know what it means for a tangent vector $v \in T_{p} P$ to be vertical: $\left.d \pi\right|_{p}(v)=0$
- This defines a short exact sequence of vector bundles

$$
0 \rightarrow \operatorname{ker}\left(\pi_{*}\right) \rightarrow T P \rightarrow \pi^{*} T M \rightarrow 0
$$

- A connection is a G-invariant splitting of this sequence
- i.e., a choice of what it means for tangent vectors to P to be horizontal

The connection 1-form

- There is an identification $\operatorname{ker}\left(\pi_{*}\right) \cong \mathfrak{g}$, and a section $\pi^{*} T M \rightarrow T P$ is equivalent to a section $T P \rightarrow \operatorname{ker}\left(\pi^{*}\right)$, i.e. an element of $\Gamma_{P}\left(T^{*} P \otimes \operatorname{ker}\left(\pi_{*}\right)\right)=\Omega_{P}^{1}(\mathfrak{g})$
- This element is denoted Θ and called the connection 1-form; the horizontal vectors are $\operatorname{ker}(\Theta)$

The curvature 2-form

- Tensor the de Rham differential d: $\Lambda^{k} T^{*} P \rightarrow \Lambda^{k+1} T^{*} P$ with \mathfrak{g} to obtain d: $\Omega_{P}^{k}(\mathfrak{g}) \rightarrow \Omega_{P}^{k+1}(\mathfrak{g})$
- The wedge product has the form $\Omega_{P}^{k}(\mathfrak{g}) \times \Omega_{P}^{\ell}(\mathfrak{g}) \rightarrow \Omega_{P}^{k+\ell}(\mathfrak{g} \otimes \mathfrak{g})$
- The Lie bracket [-,-]: $\mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ induces $\Omega_{p}^{k}(\mathfrak{g} \otimes \mathfrak{g}) \rightarrow \Omega_{P}^{k}(\mathfrak{g})$
- Therefore we may define the curvature of Θ to be

$$
\Omega:=\mathrm{d} \Theta+[\Theta \wedge \Theta] \in \Omega_{p}^{2}(\mathfrak{g})
$$

Descending the curvature to M

- Under the G-action on P, Ω transforms in the adjoint representation
- Therefore it descends to M, but valued in the adjoint bundle $\mathfrak{g}_{P} \rightarrow M$, the associated bundle $P \times_{G} \mathfrak{g} \rightarrow M: \Omega \in \Omega_{M}^{2}\left(\mathfrak{g}_{P}\right)$
- If $G=\mathrm{GL}_{n}(\mathbb{R})$, so that P is associated to a rank-n vector bundle $V \rightarrow M, \mathfrak{g}_{P}=\operatorname{End} V$ (idea: $\mathfrak{g}=\operatorname{End}\left(\mathbb{R}^{n}\right)$), and this recovers the description of a connection from Monday

The Chern-Weil homomorphism

- Fix G and a principal G-bundle $P \rightarrow M$ (M is a smooth manifold)
- The Chern-Weil homomorphism is a map $I^{\bullet}(G) \rightarrow \Omega^{\bullet}(M)$
- $f \mapsto \omega_{f}:=f\left(\Omega^{\wedge(|f|)}\right)$
- Typechecking the degree: Ω is degree 2, and $|f|$ is in $I^{\bullet}(G)$ (so twice the polynomial degree), so this is a degree-preserving map

Nice properties of the Chern-Weil map

- Thus far, we've only defined ω_{f} as an element of Ω_{P}^{*}
- To show it descends to M, argue that contraction $\iota_{\zeta} \omega_{f}$ with any vertical vector field ζ gives zero
- Proof is a computation, using that $\iota_{\zeta} \Omega=0$
- ω_{f} is closed: compute $\mathrm{d} \omega_{f}$
- Then follows from the Bianchi identity $\mathrm{d} \Omega+[\Theta \wedge \Omega]=0$
- de Rham cohomology class does not depend on the choice of connection
- Naturality: given $\phi: N \rightarrow M, \phi^{*} \omega_{f}(P)=\omega_{f}\left(\phi^{*} P\right)$ (so long as you use the pullback connection on $\phi^{*} P$)

Universal targets

- Naturality suggests maybe we could do this once, on a moduli space $B_{\nabla} G$ for principal bundles with connection
- Problem: the functor sending a manifold to the stack of principal G-bundles with connection is not representable. That is, no such space $B_{\nabla} G$ exists
- Note: it does exist as a stack, in a sense; occasionally this is useful (Freed-Hopkins)
- Nonetheless, if $\pi_{0}(G)$ is finite, there is a model for $E G \rightarrow B G$ in which both are "Hilbert manifolds," i.e. possibly infinite-dimensional manifolds locally modeled on separable Hilbert spaces
- This is enough structure to run the Chern-Weil argument!

When is the Chern-Weil homomorphism an isomorphism?

- Theorem: if G is compact, $I^{*} \bullet(B G) \rightarrow H^{*}(B G ; \mathbb{R})$ is an isomorphism
- Proof begins with the case G is connected and abelian: easier since the adjoint representation is trivial
- Then relax abelian assumption: choose a maximal torus $T \subset G$, use the Serre spectral sequence to pass information from T to G
- Finally, relaxing connectedness is another Serre spectral sequence argument (!), using the short exact sequence $1 \rightarrow G_{0} \rightarrow G \rightarrow \pi_{0}(G) \rightarrow 1$

$G=\mathbb{T}$

- We know what to expect at the end: $H^{*}(B \mathbb{T} ; \mathbb{R})=H^{*}\left(\mathbb{C P}{ }^{\infty} ; \mathbb{R}\right)=\mathbb{R}\left[c_{1}\right],\left|c_{1}\right|=2$
- The Lie algebra of \mathbb{T} is $i \mathbb{R}$, with trivial Lie bracket because \mathbb{T} is abelian
- Thus $I^{\bullet}(\mathbb{T})=\mathbb{R}[x]$, with $|x|=2$
- The Chern-Weil homomorphism sends $P, \Theta \mapsto[\Omega] \in H_{\mathrm{dR}}^{2}(M)$, which is (a nonzero multiple of) $c_{1}(P)$

$G=\mathrm{SU}_{2}$

- $H^{*}\left(B S U_{2} ; \mathbb{R}\right) \cong \mathbb{R}\left[c_{2}\right],\left|c_{2}\right|=4$
- $I^{\bullet}\left(\mathrm{SU}_{2}\right)=\mathbb{R}[s]$, where $s(A):=\operatorname{tr}\left(A^{2}\right)$
- The Chern-Weil map is an isomorphism, as before
- Both of these can be proven by studying transgression in the Serre spectral sequence for $G \rightarrow E G \rightarrow B G$

$G=\mathrm{SL}_{2}(\mathbb{C})$

- G is noncompact; maximal compact is SU_{2}, so $H^{*}(B G ; \mathbb{R}) \cong H^{*}\left(B S U_{2} ; \mathbb{R}\right) \cong \mathbb{R}\left[c_{2}\right]$
- $I^{\bullet}\left(\mathrm{SL}_{2}(\mathbb{C})\right) \cong \mathbb{R}[s]$, where $s(A):=\operatorname{tr}\left(A^{2}\right)$
- Even though G is noncompact, the Chern-Weil map is an isomorphism

Nonexample: $G=\mathrm{SL}_{2}(\mathbb{R})$

- G is noncompact, with maximal compact SO_{2}, so $H^{*}(B G ; \mathbb{R}) \cong H^{*}\left(B S O_{2} ; \mathbb{R}\right) \cong \mathbb{R}\left[c_{1}\right],\left|c_{1}\right|=2$
- However, $I^{\bullet}\left(\mathrm{SL}_{2}(\mathbb{R})\right) \cong \mathbb{R}[s]$, with $s(A):=\operatorname{tr}\left(A^{2}\right)$, meaning s has degree 4
- The Chern-Weil map sends s to a multiple of c_{1}^{2}

