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Today’s plan

1. The generalized splitting principle and examples

2. Connections and curvature for principal G-bundles

3. Invariant polynomials and the Chern-Weil homomorphism

4. Examples of the Chern-Weil homomorphism



The generalized splitting principle: setup

É Fix our Lie group G and a maximal torus T of rank n (i.e.
T ∼= Tn)
É Via the inclusion i: T ,→ G, we have models of BG as EG/G and

BT as EG/T, so Bi: BT→ BG is a fiber bundle with fiber G/T
É (Note: T is generally not normal in G)

É Let P→ X be a principal G-bundle classified by a map
fP : X→ BG, and q: Y → X be the pullback of Bi:

Y
g //

q
��

BT

Bi
��

X
fP // BG.



The generalized splitting principle

É Here’s the diagram again:

Y
g //

q
��

BT

Bi
��

X
fP // BG.

É Theorem, part 1: there is a canonical reduction of structure
group of q∗P→ Y to T
É Theorem, part 2: q∗ : H∗(X;Q)→ H∗(Y;Q) is injective



So?

É Suppose c is a characteristic class for principal G-bundles
É Via Bi, it also defines a characteristic class for principal

T-bundles
É Since q∗ is injective, that characteristic class for the principal

T-bundle we obtained over Y determines c(P)
É Since T ∼= Tn, that principal T-bundle decomposes (in a sense)

as a product of n principal T-bundles
É Therefore the characteristic class also factors as a product
∏n

i=1(1+ xi), where the xi are the c1s of the principal
T-bundle summands. The xi are called the roots of P



Example: Chern classes

É The diagonal matrices are a maximal torus in Un of rank n
É Using associated bundles to pass between principal

Un-bundles and complex vector bundles, this tells us that a
complex vector bundle V→ X splits as a sum of line bundles
L1, . . . , Ln when pulled back to Y
É c1(Li) is called the ith Chern root, and ck(V) is the kth

symmetric polynomial in the Chern roots
É H∗(Un;Z) is free, so we can work over Z



Chern classes and the flag manifold

É Y has a more concrete description in this case
É Namely, the flag manifold for V→ X
É A flag of an inner product space W is a decomposition of W as

a sum of one-dimensional, orthogonal subspaces
É The flag manifold Y → X is a fiber bundle whose fiber at x ∈ X

is the space of flags of Vx
É (Ok, you need a Hermitian metric to define this, but the

isomorphism type of the fiber bundle does not depend on this
choice)



Example: Pontrjagin classes, part 1

É G= SO2n: one maximal torus is the diagonal matrices in
Un ⊂ SOn, which has rank n
É Upshot: if V is an oriented rank-2n vector bundle, q∗V splits

as a sum of complex line bundles L1, . . . , Ln, but the symmetric
polynomial gets squared:

pi(q
∗V) = σi(c1(L1), . . . , c1(Ln))

2.

É This is because the Pontrjagin classes of V are the Chern
classes of VC, and the Chern roots of VC come in pairs
±x1, . . . ,±xn

É The Euler class also splits:

e(q∗V) = σn(c1(L1), . . . , cn(Ln))



Example: Pontrjagin classes, part 2

É G= SO2n+1 has a similar story: one maximal torus is the
diagonal matrices in Un ⊂ SO2n+1 (so the last diagonal entry is
always 1)
É So an oriented rank-(2n+ 1) real vector bundle V, pulled back

to Y, splits as a direct sum of n complex line bundles and a
trivial real line bundle
É The Pontrjagin and Euler classes of V admit the same

description as in the case SO2n



Example (sort of): Stiefel-Whitney classes

É On isn’t connected, so we can’t use the theorem
É Nonetheless, enough of the structure persists with Z/2

coefficients and the subgroup On
1 ⊂ On to prove something via

similar methods
É One can prove q∗ is an injection on mod 2 cohomology and

q∗P admits a canonical reduction of structure group to a
principal On

1-bundle
É Upshot: a rank-n real vector bundle V, after pullback to Y,

splits as a direct sum of n real line bundles L1, . . . , Ln, and

wk(V) = σi(w1(L1), . . . , w1(Ln))



Invariant polynomials

É G is a Lie group, g := TeG is its Lie algebra
É G acts on g by the adjoint representation, differentiating the

action of G on itself by conjugation
É Example: G= GLn(R), g is all n× n matrices, and the adjoint

representation is matrix conjugation
É If G is a subgroup of GLn(R), g is a subspace of all n× n

matrices, and the adjoint representation is also conjugation



Invariant polynomials

É The vector space of polynomial functions on g is Sym•(g∗)
É That is, take the dual vector space g∗, and take symmetric

functions on it
É Why does this get to be called polynomials? There is an

identification Sym•((Rn)∗)∼= R[x1, . . . , xn], but it uses the
basis, so using Sym•(g∗) is basis-independent

É The invariant polynomials on g are the subspace of Sym•(g∗)
fixed by the G-action. This subspace is denoted I•(G)
É Warning: I•(G) is graded strangely: a degree-q polynomial

carries grading 2q



Examples of invariant polynomials

É G connected and abelian (e.g. Rn, Tn): conjugation is trivial,
so all polynomials are invariant
É G= U2 (2× 2 unitary complex matrices), with Lie algebra u2

(2× 2 complex matrices satisfying A= −A∗)
É Both tr(X) (degree 2) and tr(X2) are U2-invariant polynomials

on u2
É In fact, this is everything! I•(U2)∼= R[tr(X), tr(X2)]
É The same is true for GL2(C)

É G= SU2: su2 consists of traceless matrices, so
I•(SU2) = R[tr(X2)]



Examples of invariant polynomials

É G= SO2n: Lie algebra so2n is skew-symmetric real 2n× 2n
matrices
É We get a bunch of invariant polynomials f4i of degree 4i via

det(t− X) =
n
∑

i=0

f4i(X)t
2i

because the determinant is invariant by conjugation by SO2n
(similarly for Un)

É Also a new one:
É X ∈ so2n iff, as a map X : Rn→ (Rn)∗, X∗ = −X
É In Hom(Rn, (Rn)∗) = (Rn)∗ ⊗ (Rn)∗, X is alternating, so

identified with ωX ∈ Λ2(Rn)∗
É Det(Rn) := Λn(Rn)∗ is one-dimensional, so

ωn
X

n!
= Pn(X)vol,

where vol is the volume form induced by the inner product
É Pn is a degree-n invariant polynomial, and Pn(X2) = det(X), so

I•(SO2n) is not a polynomial ring



Connections on principal G-bundles: background

É We’ll need a more abstract perspective on connections today
É This perspective is useful in other places in geometry
É Refresher: If E→M is a vector bundle,
Ωk

M(E) := Γ (ΛkT∗M⊗ E)
É If V is a vector space, Ωk

M(V) := Ωk
M(V). Ω

k
M := Ωk

M(R)



Connections on principal G-bundles

É Let π: P→M be a principal G-bundle over a smooth manifold
M
É We know what it means for a tangent vector v ∈ TpP to be

vertical: dπ|p(v) = 0
É This defines a short exact sequence of vector bundles

0→ ker(π∗)→ TP→ π∗TM→ 0

É A connection is a G-invariant splitting of this sequence
É i.e., a choice of what it means for tangent vectors to P to be

horizontal



The connection 1-form

É There is an identification ker(π∗)∼= g, and a section
π∗TM→ TP is equivalent to a section TP→ ker(π∗), i.e. an
element of ΓP(T∗P⊗ ker(π∗)) = Ω1

P(g)
É This element is denoted Θ and called the connection 1-form;

the horizontal vectors are ker(Θ)



The curvature 2-form

É Tensor the de Rham differential d: ΛkT∗P→ Λk+1T∗P with g

to obtain d: Ωk
P(g)→ Ω

k+1
P (g)

É The wedge product has the form Ωk
P(g)×Ω

`
P(g)→ Ω

k+`
P (g⊗ g)

É The Lie bracket [–, –]: g⊗ g→ g induces Ωk
P(g⊗ g)→ Ωk

P(g)
É Therefore we may define the curvature of Θ to be

Ω := dΘ+ [Θ ∧Θ] ∈ Ω2
P(g)



Descending the curvature to M

É Under the G-action on P, Ω transforms in the adjoint
representation
É Therefore it descends to M, but valued in the adjoint bundle

gP→M, the associated bundle P×G g→M: Ω ∈ Ω2
M(gP)

É If G= GLn(R), so that P is associated to a rank-n vector
bundle V→M, gP = End V (idea: g= End(Rn)), and this
recovers the description of a connection from Monday



The Chern-Weil homomorphism

É Fix G and a principal G-bundle P→M (M is a smooth
manifold)
É The Chern-Weil homomorphism is a map I•(G)→ Ω•(M)
É f 7→ωf := f(Ω∧(|f |))
É Typechecking the degree: Ω is degree 2, and |f | is in I•(G) (so

twice the polynomial degree), so this is a degree-preserving
map



Nice properties of the Chern-Weil map

É Thus far, we’ve only defined ωf as an element of Ω∗P
É To show it descends to M, argue that contraction ιζωf with

any vertical vector field ζ gives zero
É Proof is a computation, using that ιζΩ= 0

É ωf is closed: compute dωf
É Then follows from the Bianchi identity dΩ+ [Θ ∧Ω] = 0

É de Rham cohomology class does not depend on the choice of
connection
É Naturality: given φ : N→M, φ∗ωf (P) =ωf (φ∗P) (so long as

you use the pullback connection on φ∗P)



Universal targets

É Naturality suggests maybe we could do this once, on a moduli
space B∇G for principal bundles with connection
É Problem: the functor sending a manifold to the stack of

principal G-bundles with connection is not representable.
That is, no such space B∇G exists
É Note: it does exist as a stack, in a sense; occasionally this is

useful (Freed-Hopkins)
É Nonetheless, if π0(G) is finite, there is a model for EG→ BG in

which both are “Hilbert manifolds,” i.e. possibly
infinite-dimensional manifolds locally modeled on separable
Hilbert spaces
É This is enough structure to run the Chern-Weil argument!



When is the Chern-Weil homomorphism an isomorphism?

É Theorem: if G is compact, I∗ • (BG)→ H∗(BG;R) is an
isomorphism
É Proof begins with the case G is connected and abelian: easier

since the adjoint representation is trivial
É Then relax abelian assumption: choose a maximal torus

T ⊂ G, use the Serre spectral sequence to pass information
from T to G
É Finally, relaxing connectedness is another Serre spectral

sequence argument (!), using the short exact sequence
1→ G0→ G→ π0(G)→ 1



G= T

É We know what to expect at the end:
H∗(BT;R) = H∗(CP∞;R) = R[c1], |c1|= 2
É The Lie algebra of T is iR, with trivial Lie bracket because T is

abelian
É Thus I•(T) = R[x], with |x|= 2
É The Chern-Weil homomorphism sends P,Θ 7→ [Ω] ∈ H2

dR(M),
which is (a nonzero multiple of) c1(P)



G= SU2

É H∗(BSU2;R)∼= R[c2], |c2|= 4
É I•(SU2) = R[s], where s(A) := tr(A2)
É The Chern-Weil map is an isomorphism, as before
É Both of these can be proven by studying transgression in the

Serre spectral sequence for G→ EG→ BG



G= SL2(C)

É G is noncompact; maximal compact is SU2, so
H∗(BG;R)∼= H∗(BSU2;R)∼= R[c2]
É I•(SL2(C))∼= R[s], where s(A) := tr(A2)
É Even though G is noncompact, the Chern-Weil map is an

isomorphism



Nonexample: G= SL2(R)

É G is noncompact, with maximal compact SO2, so
H∗(BG;R)∼= H∗(BSO2;R)∼= R[c1], |c1|= 2
É However, I•(SL2(R))∼= R[s], with s(A) := tr(A2), meaning s

has degree 4
É The Chern-Weil map sends s to a multiple of c2

1


