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Today’s plan

The generalized splitting principle and examples
Connections and curvature for principal G-bundles

Invariant polynomials and the Chern-Weil homomorphism

H W=

Examples of the Chern-Weil homomorphism



The generalized splitting principle: setup

» Fix our Lie group G and a maximal torus T of rank n (i.e.
T=ETY
» Via the inclusion i: T — G, we have models of BG as EG/G and
BT as EG/T, so Bi: BT — BG is a fiber bundle with fiber G/T
» (Note: T is generally not normal in G)
> Let P — X be a principal G-bundle classified by a map
fp: X — BG, and q: Y — X be the pullback of Bi:

y —2- BT

T

P

X —BG.



The generalized splitting principle

» Here’s the diagram again:

y —2- BT

T

P

X — BG.

» Theorem, part 1: there is a canonical reduction of structure
groupof P - Y to T

» Theorem, part 2: ¢*: H*(X; Q) — H*(Y; Q) is injective



So?

Suppose c is a characteristic class for principal G-bundles

Via Bi, it also defines a characteristic class for principal
T-bundles

Since g* is injective, that characteristic class for the principal
T-bundle we obtained over Y determines c(P)

Since T = T", that principal T-bundle decomposes (in a sense)
as a product of n principal T-bundles

Therefore the characteristic class also factors as a product

[ T:L,(1+x,), where the x; are the c;s of the principal
T-bundle summands. The x; are called the roots of P



Example: Chern classes

» The diagonal matrices are a maximal torus in U,, of rank n

» Using associated bundles to pass between principal
U,,-bundles and complex vector bundles, this tells us that a
complex vector bundle V — X splits as a sum of line bundles
Lq,...,L, when pulled back to Y

> ¢,(L;) is called the i Chern root, and ¢, (V) is the k™
symmetric polynomial in the Chern roots

» H*(U,;Z) is free, so we can work over Z



Chern classes and the flag manifold

\

Y has a more concrete description in this case
Namely, the flag manifold for V — X

A flag of an inner product space W is a decomposition of W as
a sum of one-dimensional, orthogonal subspaces

The flag manifold Y — X is a fiber bundle whose fiber at x € X
is the space of flags of V,

» (OKk, you need a Hermitian metric to define this, but the
isomorphism type of the fiber bundle does not depend on this
choice)



Example: Pontrjagin classes, part 1

» G = SO,,: one maximal torus is the diagonal matrices in
U,, € SO,,, which has rank n

» Upshot: if V is an oriented rank-2n vector bundle, g*V splits
as a sum of complex line bundles L,,...,L,, but the symmetric
polynomial gets squared:

pi(@V) = oi(c1 (L), ..., c1 (L))

» This is because the Pontrjagin classes of V are the Chern
classes of V¢, and the Chern roots of V- come in pairs
+xq,...,EX,

> The Euler class also splits:

e(q*V) = On(cl(Ll): cees Cn(Ln))



Example: Pontrjagin classes, part 2

» G = S0, has a similar story: one maximal torus is the
diagonal matrices in U,, C SO,,,,; (so the last diagonal entry is
always 1)

» So an oriented rank-(2n + 1) real vector bundle V, pulled back
to Y, splits as a direct sum of n complex line bundles and a
trivial real line bundle

» The Pontrjagin and Euler classes of V admit the same
description as in the case SO,,



Example (sort of): Stiefel-Whitney classes

> O, isn’t connected, so we can’t use the theorem

> Nonetheless, enough of the structure persists with Z/2
coefficients and the subgroup O] C O, to prove something via
similar methods

> One can prove q* is an injection on mod 2 cohomology and
g*P admits a canonical reduction of structure group to a
principal O}-bundle

» Upshot: a rank-n real vector bundle V, after pullback to Y,
splits as a direct sum of n real line bundles L4, ...,L,, and

wi (V) = oi(wq(Ly),...,w1(Ly))



Invariant polynomials

» G is a Lie group, g := T,G is its Lie algebra
» G acts on g by the adjoint representation, differentiating the
action of G on itself by conjugation
» Example: G = GL,(R), g is all n x n matrices, and the adjoint
representation is matrix conjugation
> If G is a subgroup of GL,(R), g is a subspace of all n x n
matrices, and the adjoint representation is also conjugation



Invariant polynomials

» The vector space of polynomial functions on g is Sym*®(g*)
> That is, take the dual vector space g*, and take symmetric
functions on it
» Why does this get to be called polynomials? There is an
identification Sym*((R")*) = R[xy,...,X,], but it uses the
basis, so using Sym*®(g*) is basis-independent
» The invariant polynomials on g are the subspace of Sym*(g*)
fixed by the G-action. This subspace is denoted I°(G)
»> Warning: I°(G) is graded strangely: a degree-q polynomial
carries grading 2q



Examples of invariant polynomials

> G connected and abelian (e.g. R", T™): conjugation is trivial,
so all polynomials are invariant
» G =U, (2 x 2 unitary complex matrices), with Lie algebra u,
(2 x 2 complex matrices satisfying A = —A*)
> Both tr(X) (degree 2) and tr(X?) are U,-invariant polynomials
on u,
> In fact, this is everything! I°(U,) = R[tr(X), tr(X?)]
» The same is true for GL,(C)
> G = SU,: su, consists of traceless matrices, so
I*(SU,) = R[tr(X?)]



Examples of invariant polynomials

» G =SO0,,: Lie algebra so,, is skew-symmetric real 2n x 2n

matrices

> We get a bunch of invariant polynomials f,; of degree 4i via

det(t—X) = D f, ()%

i=0

because the determinant is invariant by conjugation by SO,
(similarly for U,,)
> Also a new one:

>
>

>

X € s0,, iff, asamap X: R" — (R")*, X* = —X

In Hom(R", (R")*) = (R")* ® (R")*, X is alternating, so
identified with wy € A2(R")*

Det(R") := A"(R")* is one-dimensional, so

w
X —p (X)vol,

where vol is the volume form induced by the inner product
P, is a degree-n invariant polynomial, and P,(X?) = det(X), so
I*(SO,,) is not a polynomial ring



Connections on principal G-bundles: background

> We'll need a more abstract perspective on connections today

» This perspective is useful in other places in geometry
> R%fresher: If Ek — M is a vector bundle,
0k (E) := T(AFT*M ® E)
> If V is a vector space, QIIE,I(V) = Q’;,[(Z). Qﬁfd = QIIT/I(R)



Connections on principal G-bundles

» Let 7: P — M be a principal G-bundle over a smooth manifold
M

> We know what it means for a tangent vector v € T,P to be
vertical: dr|,(v) =0

» This defines a short exact sequence of vector bundles
0 — ker(w,) » TP - *TM — 0

> A connection is a G-invariant splitting of this sequence

> i.e., a choice of what it means for tangent vectors to P to be
horizontal



The connection 1-form

» There is an identification ker(r, ) = g, and a section
m*TM — TP is equivalent to a section TP — ker(7*), i.e. an
element of Ip(T*P @ ker(m,)) = Q},(g)

» This element is denoted © and called the connection 1-form;
the horizontal vectors are ker(®)



The curvature 2-form

> Tensor the de Rham differential d: AKT*P — AM1T*P with g
to obtain d: Q&(g) — Q&M (g)

» The wedge product has the form QX 5(g) % Qt H(g) — Qk“(g ®g)
» The Lie bracket [-,~]: g ® g — g induces Qp(g ®g)— QP(g)

» Therefore we may define the curvature of © to be

—d@+[@/\@]€ﬂ (9)



Descending the curvature to M

» Under the G-action on P, Q transforms in the adjoint
representation

» Therefore it descends to M, but valued in the adjoint bundle
gp — M, the associated bundle P x; g — M: Q € Q2,(gp)

» If G = GL,(R), so that P is associated to a rank-n vector
bundle V — M, gp = EndV (idea: g = End(R")), and this
recovers the description of a connection from Monday



The Chern-Weil homomorphism

» Fix G and a principal G-bundle P — M (M is a smooth
manifold)

» The Chern-Weil homomorphism is a map I*(G) — Q°*(M)

> £ oy 1= ()

» Typechecking the degree: Q is degree 2, and |f| is in I*(G) (so
twice the polynomial degree), so this is a degree-preserving
map



Nice properties of the Chern-Weil map

> Thus far, we've only defined wy as an element of Q,
> To show it descends to M, argue that contraction t, ¢ with
any vertical vector field { gives zero
> Proof is a computation, using that Q2 =0
> wy is closed: compute dwy
» Then follows from the Bianchi identity dQ+[©@ AQ] =0
» de Rham cohomology class does not depend on the choice of
connection
> Naturality: given ¢: N — M, ¢*w¢(P) = ws(¢*P) (so long as
you use the pullback connection on ¢ *P)



Universal targets

» Naturality suggests maybe we could do this once, on a moduli
space By G for principal bundles with connection

» Problem: the functor sending a manifold to the stack of
principal G-bundles with connection is not representable.
That is, no such space By G exists

> Note: it does exist as a stack, in a sense; occasionally this is
useful (Freed-Hopkins)

» Nonetheless, if 7(G) is finite, there is a model for EG — BG in
which both are “Hilbert manifolds,” i.e. possibly
infinite-dimensional manifolds locally modeled on separable
Hilbert spaces

» This is enough structure to run the Chern-Weil argument!



When is the Chern-Weil homomorphism an isomorphism?

» Theorem: if G is compact, I* ¢ (BG) — H*(BG;R) is an
isomorphism

» Proof begins with the case G is connected and abelian: easier
since the adjoint representation is trivial

» Then relax abelian assumption: choose a maximal torus
T C G, use the Serre spectral sequence to pass information
fromTto G

» Finally, relaxing connectedness is another Serre spectral
sequence argument (!), using the short exact sequence
1-5Gy—> G- ry(G)—1



We know what to expect at the end:

H*(BT;R) = H*(CP*°;R) = R[c1], |c;] =2

The Lie algebra of T is iR, with trivial Lie bracket because T is
abelian

Thus I*(T) = R[x], with |x| =2

The Chern-Weil homomorphism sends P,© — [Q2] € HSR(M ),
which is (a nonzero multiple of) ¢;(P)



G=SU2

> H*(BSUy;R) =R[c,], [y =4
> I°(SU,) = R[s], where s(A) := tr(A?)
» The Chern-Weil map is an isomorphism, as before

> Both of these can be proven by studying transgression in the
Serre spectral sequence for G — EG — BG



G = SL,(C)

» G is noncompact; maximal compact is SU,, so
H*(BG;R) = H*(BSU,; R) = R[c, ]
> I°(SL,(C)) = R[s], where s(A) := tr(A?)

» Even though G is noncompact, the Chern-Weil map is an
isomorphism



Nonexample: G = SL,(R)

> G is noncompact, with maximal compact SO,, so
H*(BG;R) = H*(BSO4;R) = R[c; ], lc;| =2

» However, I*(SLy(R)) = R[s], with s(A) := tr(A2), meaning s
has degree 4

» The Chern-Weil map sends s to a multiple of cf



