Day 5: Chern-Weil theory

Arun Debray

July 10, 2020

- 1. The generalized splitting principle and examples
- 2. Connections and curvature for principal G-bundles
- 3. Invariant polynomials and the Chern-Weil homomorphism
- 4. Examples of the Chern-Weil homomorphism

The generalized splitting principle: setup

- Fix our Lie group *G* and a maximal torus *T* of rank *n* (i.e. $T \cong \mathbb{T}^n$)
- Via the inclusion $i: T \hookrightarrow G$, we have models of *BG* as *EG/G* and *BT* as *EG/T*, so *Bi*: *BT* \rightarrow *BG* is a fiber bundle with fiber *G/T*

(Note: T is generally not normal in G)

Let $P \to X$ be a principal *G*-bundle classified by a map $f_P: X \to BG$, and $q: Y \to X$ be the pullback of *Bi*:

The generalized splitting principle

Here's the diagram again:

- ► Theorem, part 1: there is a canonical reduction of structure group of $q^*P \rightarrow Y$ to *T*
- ▶ Theorem, part 2: q^* : $H^*(X; \mathbb{Q}) \to H^*(Y; \mathbb{Q})$ is injective

- Suppose *c* is a characteristic class for principal *G*-bundles
- Via Bi, it also defines a characteristic class for principal *T*-bundles
- Since q* is injective, that characteristic class for the principal *T*-bundle we obtained over *Y* determines c(P)
- Since $T \cong \mathbb{T}^n$, that principal *T*-bundle decomposes (in a sense) as a product of *n* principal \mathbb{T} -bundles
- ► Therefore the characteristic class also factors as a product $\prod_{i=1}^{n} (1 + x_i)$, where the x_i are the c_1 s of the principal \mathbb{T} -bundle summands. The x_i are called the *roots* of *P*

- The diagonal matrices are a maximal torus in U_n of rank n
- ▶ Using associated bundles to pass between principal U_n -bundles and complex vector bundles, this tells us that a complex vector bundle $V \rightarrow X$ splits as a sum of line bundles L_1, \ldots, L_n when pulled back to Y
- c₁(L_i) is called the ith Chern root, and c_k(V) is the kth symmetric polynomial in the Chern roots
- $H^*(U_n; \mathbb{Z})$ is free, so we can work over \mathbb{Z}

Chern classes and the flag manifold

- Y has a more concrete description in this case
- ▶ Namely, the *flag manifold* for $V \rightarrow X$
- A *flag* of an inner product space W is a decomposition of W as a sum of one-dimensional, orthogonal subspaces
- ► The flag manifold $Y \to X$ is a fiber bundle whose fiber at $x \in X$ is the space of flags of V_x
 - (Ok, you need a Hermitian metric to define this, but the isomorphism type of the fiber bundle does not depend on this choice)

Example: Pontrjagin classes, part 1

- $G = SO_{2n}$: one maximal torus is the diagonal matrices in $U_n \subset SO_n$, which has rank *n*
- Upshot: if V is an oriented rank-2n vector bundle, q*V splits as a sum of complex line bundles L₁,...,L_n, but the symmetric polynomial gets squared:

$$p_i(q^*V) = \sigma_i(c_1(L_1), \dots, c_1(L_n))^2.$$

- ► This is because the Pontrjagin classes of V are the Chern classes of V_C, and the Chern roots of V_C come in pairs ±x₁,...,±x_n
- ► The Euler class also splits:

$$e(q^*V) = \sigma_n(c_1(L_1), \ldots, c_n(L_n))$$

- ► $G = SO_{2n+1}$ has a similar story: one maximal torus is the diagonal matrices in $U_n \subset SO_{2n+1}$ (so the last diagonal entry is always 1)
- So an oriented rank-(2n + 1) real vector bundle V, pulled back to Y, splits as a direct sum of n complex line bundles and a trivial real line bundle
- The Pontrjagin and Euler classes of V admit the same description as in the case SO_{2n}

Example (sort of): Stiefel-Whitney classes

- O_n isn't connected, so we can't use the theorem
- Nonetheless, enough of the structure persists with Z/2 coefficients and the subgroup Oⁿ₁ ⊂ O_n to prove something via similar methods
- One can prove q* is an injection on mod 2 cohomology and q*P admits a canonical reduction of structure group to a principal O₁ⁿ-bundle
- ▶ Upshot: a rank-*n* real vector bundle *V*, after pullback to *Y*, splits as a direct sum of *n* real line bundles L_1, \ldots, L_n , and

$$w_k(V) = \sigma_i(w_1(L_1), \dots, w_1(L_n))$$

- *G* is a Lie group, $\mathfrak{g} := T_e G$ is its Lie algebra
- ► *G* acts on g by the *adjoint representation*, differentiating the action of *G* on itself by conjugation
 - Example: $G = GL_n(\mathbb{R})$, \mathfrak{g} is all $n \times n$ matrices, and the adjoint representation is matrix conjugation
 - ▶ If *G* is a subgroup of $GL_n(\mathbb{R})$, \mathfrak{g} is a subspace of all $n \times n$ matrices, and the adjoint representation is also conjugation

Invariant polynomials

▶ The vector space of polynomial functions on g is Sym[•](g^{*})

- That is, take the dual vector space g*, and take symmetric functions on it
- Why does this get to be called polynomials? There is an identification Sym[●]((ℝⁿ)^{*}) ≅ ℝ[x₁,...,x_n], but it uses the basis, so using Sym[●](g^{*}) is basis-independent
- The invariant polynomials on g are the subspace of Sym[•](g^{*}) fixed by the G-action. This subspace is denoted I[•](G)
 - Warning: I[•](G) is graded strangely: a degree-q polynomial carries grading 2q

Examples of invariant polynomials

- ► G connected and abelian (e.g. ℝⁿ, Tⁿ): conjugation is trivial, so all polynomials are invariant
- $G = U_2$ (2 × 2 unitary complex matrices), with Lie algebra u_2 (2 × 2 complex matrices satisfying $A = -A^*$)
 - Both tr(X) (degree 2) and tr(X²) are U₂-invariant polynomials on u₂
 - ▶ In fact, this is everything! $I^{\bullet}(U_2) \cong \mathbb{R}[tr(X), tr(X^2)]$
 - The same is true for $GL_2(\mathbb{C})$
- $G = SU_2$: \mathfrak{su}_2 consists of traceless matrices, so $I^{\bullet}(SU_2) = \mathbb{R}[\operatorname{tr}(X^2)]$

Examples of invariant polynomials

• $G = SO_{2n}$: Lie algebra \mathfrak{so}_{2n} is skew-symmetric real $2n \times 2n$ matrices

• We get a bunch of invariant polynomials f_{4i} of degree 4*i* via

$$\det(t - X) = \sum_{i=0}^{n} f_{4i}(X) t^{2i}$$

because the determinant is invariant by conjugation by SO_{2n} (similarly for U_n)

Also a new one:

- ► $X \in \mathfrak{so}_{2n}$ iff, as a map $X : \mathbb{R}^n \to (\mathbb{R}^n)^*, X^* = -X$
- In Hom(ℝⁿ, (ℝⁿ)*) = (ℝⁿ)* ⊗ (ℝⁿ)*, X is alternating, so identified with ω_X ∈ Λ²(ℝⁿ)*
- $Det(\mathbb{R}^n) := \Lambda^n(\mathbb{R}^n)^*$ is one-dimensional, so

$$\frac{\omega_X^n}{n!} = P_n(X) \text{vol},$$

where vol is the volume form induced by the inner product

P_n is a degree-*n* invariant polynomial, and $P_n(X^2) = \det(X)$, so $I^{\bullet}(SO_{2n})$ is not a polynomial ring

Connections on principal G-bundles: background

- We'll need a more abstract perspective on connections today
- This perspective is useful in other places in geometry
- ► Refresher: If $E \to M$ is a vector bundle, $\Omega_M^k(E) := \Gamma(\Lambda^k T^* M \otimes E)$

• If *V* is a vector space, $\Omega_M^k(V) := \Omega_M^k(\underline{V})$. $\Omega_M^k := \Omega_M^k(\mathbb{R})$

Connections on principal G-bundles

- Let $\pi: P \to M$ be a principal *G*-bundle over a smooth manifold *M*
- ► We know what it means for a tangent vector $v \in T_p P$ to be *vertical*: $d\pi|_p(v) = 0$
- This defines a short exact sequence of vector bundles

$$0 \rightarrow \ker(\pi_*) \rightarrow TP \rightarrow \pi^*TM \rightarrow 0$$

A *connection* is a *G*-invariant splitting of this sequence i.e., a choice of what it means for tangent vectors to *P* to be horizontal

- There is an identification $\ker(\pi_*) \cong \mathfrak{g}$, and a section $\pi^*TM \to TP$ is equivalent to a section $TP \to \ker(\pi^*)$, i.e. an element of $\Gamma_P(T^*P \otimes \ker(\pi_*)) = \Omega_P^1(\mathfrak{g})$
- This element is denoted Θ and called the *connection* 1-*form*; the horizontal vectors are ker(Θ)

- ► Tensor the de Rham differential d: $\Lambda^k T^* P \to \Lambda^{k+1} T^* P$ with g to obtain d: $\Omega_p^k(\mathfrak{g}) \to \Omega_p^{k+1}(\mathfrak{g})$
- ► The wedge product has the form $\Omega_p^k(\mathfrak{g}) \times \Omega_p^\ell(\mathfrak{g}) \to \Omega_p^{k+\ell}(\mathfrak{g} \otimes \mathfrak{g})$
- ▶ The Lie bracket [-,-]: $\mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}$ induces $\Omega_p^k(\mathfrak{g} \otimes \mathfrak{g}) \to \Omega_p^k(\mathfrak{g})$
- Therefore we may define the *curvature* of Θ to be

$$\Omega := \mathrm{d}\Theta + [\Theta \wedge \Theta] \in \Omega_p^2(\mathfrak{g})$$

- Under the *G*-action on *P*, Ω transforms in the adjoint representation
- ► Therefore it descends to *M*, but valued in the *adjoint bundle* $\mathfrak{g}_P \to M$, the associated bundle $P \times_G \mathfrak{g} \to M$: Ω ∈ Ω²_M(\mathfrak{g}_P)
- ▶ If $G = \operatorname{GL}_n(\mathbb{R})$, so that *P* is associated to a rank-*n* vector bundle $V \to M$, $\mathfrak{g}_P = \operatorname{End} V$ (idea: $\mathfrak{g} = \operatorname{End}(\mathbb{R}^n)$), and this recovers the description of a connection from Monday

The Chern-Weil homomorphism

- Fix *G* and a principal *G*-bundle $P \rightarrow M$ (*M* is a smooth manifold)
- ► The Chern-Weil homomorphism is a map $I^{\bullet}(G) \rightarrow \Omega^{\bullet}(M)$

$$\blacktriangleright f \mapsto \omega_f := f(\Omega^{\wedge (|f|)})$$

Typechecking the degree: Ω is degree 2, and |*f*| is in *I*[•](*G*) (so twice the polynomial degree), so this is a degree-preserving map

Nice properties of the Chern-Weil map

- Thus far, we've only defined ω_f as an element of Ω_p^*
- ► To show it descends to *M*, argue that contraction $\iota_{\zeta} \omega_f$ with any vertical vector field ζ gives zero

• Proof is a computation, using that $\iota_{\zeta}\Omega = 0$

- ω_f is closed: compute $d\omega_f$
 - Then follows from the *Bianchi identity* $d\Omega + [\Theta \land \Omega] = 0$
- de Rham cohomology class does not depend on the choice of connection
- ► Naturality: given ϕ : $N \rightarrow M$, $\phi^* \omega_f(P) = \omega_f(\phi^* P)$ (so long as you use the pullback connection on $\phi^* P$)

Universal targets

- Naturality suggests maybe we could do this once, on a moduli space $B_{\nabla}G$ for principal bundles with connection
- Problem: the functor sending a manifold to the stack of principal *G*-bundles with connection is not representable. That is, no such space B_∇G exists
 - Note: it does exist as a stack, in a sense; occasionally this is useful (Freed-Hopkins)
- ► Nonetheless, if $\pi_0(G)$ is finite, there is a model for $EG \rightarrow BG$ in which both are "Hilbert manifolds," i.e. possibly infinite-dimensional manifolds locally modeled on separable Hilbert spaces
 - This is enough structure to run the Chern-Weil argument!

When is the Chern-Weil homomorphism an isomorphism?

- ► Theorem: if *G* is compact, $I^* \bullet (BG) \to H^*(BG; \mathbb{R})$ is an isomorphism
- Proof begins with the case G is connected and abelian: easier since the adjoint representation is trivial
- Then relax abelian assumption: choose a maximal torus *T* ⊂ *G*, use the Serre spectral sequence to pass information from *T* to *G*
- Finally, relaxing connectedness is another Serre spectral sequence argument (!), using the short exact sequence 1 → G₀ → G → π₀(G) → 1

- We know what to expect at the end: $H^*(B\mathbb{T};\mathbb{R}) = H^*(\mathbb{CP}^\infty;\mathbb{R}) = \mathbb{R}[c_1], |c_1| = 2$
- ► The Lie algebra of T is *i*R, with trivial Lie bracket because T is abelian
- Thus $I^{\bullet}(\mathbb{T}) = \mathbb{R}[x]$, with |x| = 2
- ► The Chern-Weil homomorphism sends $P, \Theta \mapsto [\Omega] \in H^2_{dR}(M)$, which is (a nonzero multiple of) $c_1(P)$

- $\blacktriangleright H^*(BSU_2; \mathbb{R}) \cong \mathbb{R}[c_2], |c_2| = 4$
- $I^{\bullet}(SU_2) = \mathbb{R}[s]$, where $s(A) \coloneqq tr(A^2)$
- ▶ The Chern-Weil map is an isomorphism, as before
- Both of these can be proven by studying transgression in the Serre spectral sequence for *G* → *EG* → *BG*

► *G* is noncompact; maximal compact is SU₂, so $H^*(BG; \mathbb{R}) \cong H^*(BSU_2; \mathbb{R}) \cong \mathbb{R}[c_2]$

►
$$I^{\bullet}(SL_2(\mathbb{C})) \cong \mathbb{R}[s]$$
, where $s(A) := tr(A^2)$

Even though G is noncompact, the Chern-Weil map is an isomorphism

- ► *G* is noncompact, with maximal compact SO₂, so $H^*(BG; \mathbb{R}) \cong H^*(BSO_2; \mathbb{R}) \cong \mathbb{R}[c_1], |c_1| = 2$
- ► However, $I^{\bullet}(SL_2(\mathbb{R})) \cong \mathbb{R}[s]$, with $s(A) := tr(A^2)$, meaning *s* has degree 4
- The Chern-Weil map sends *s* to a multiple of c_1^2