Day 1: four perspectives on characteristic classes

Arun Debray

July 6, 2020

- Brief review/introduction to vector bundles and principal G-bundles
- What are characteristic classes? And why?
- Brief introduction different perspectives on Chern classes (axiomatic definition; linear dependency of sections; Chern-Weil theory; classifying spaces)

- Today: four perspectives on characteristic classes
- Tomorrow: Stiefel-Whitney classes (real vector bundles, mod 2 cohomology)
- Wednesday: Steenrod squares and Wu classes (more mod 2 cohomology)
- Thursday: Chern, Pontrjagin, and Euler classes (real and complex vector bundles, Z cohomology)
- Friday: Chern-Weil theory (de Rham cohomology)

Vector bundles

- Idea: a continuously varying, locally trivial family of vector spaces over a base space X
- Formally, a map $\pi: V \to X$ such that there exists an open cover \mathfrak{U} of X and homeomorphisms $\varphi_U: \pi^{-1}(U) \to U \times \mathbb{R}^n$ which commute with to the projections down to X
- ▶ and, for all pairs $U, V \in \mathfrak{U}$, the *transition function* $g_{UV} := \varphi_V \varphi_U^{-1}$ is $GL_n(\mathbb{R})$ -equivariant
- Finally, the *cocycle condition* on triple intersections $U \cap V \cap W$: $g_{WU}g_{VW}g_{UV} = id$
- This defines a real vector bundle, and its rank is n; using Cⁿ gives a complex vector bundle
 - Rank 1 vector bundles are called line bundles

Examples of vector bundles

- ▶ On any smooth manifold *M*, the tangent bundle $TM \rightarrow M$ and the cotangent bundle $T^*M \rightarrow M$
- Direct sums, tensor products, duals, etc. of vector bundles

but: not an abelian category

- ► The *pullback* of a vector bundle $V \to X$ by a continuous map $f: Y \to X$ is a vector bundle $f^*V \to Y$ whose fiber at $y \in Y$ is $V_{f(y)}$
- ▶ The *tautological bundle* $S \to \mathbb{RP}^n$ or $S \to \mathbb{CP}^n$, a real, resp. complex line bundle
 - A point x of \mathbb{RP}^n is a line in \mathbb{R}^{n+1} ; the fiber of S at x is that line
 - Generalizes to Grassmannians and tautological vector bundles

Vector bundles: when are we gonna have to use this?

- Much of differential geometry is stated and proven in terms of vector bundles (and things called connections on them): *TM* and *T***M*, but also spinor bundles and the like
- In general, vector bundles interpolate between geometry and homotopy theory
 - They feel more like geometric objects (especially if you choose a connection)
 - ... but their classification depends only on the homotopy type of X
 - Upshot: allows information from differential geometry to be used in homotopy theory and vice versa!

- ▶ For the next few slides, *G* is any topological group
- A *G*-torsor is a space *X* with a free transitive right *G*-action
- Choosing a basepoint on *X* provides an identification $X \cong G$ but the point is, we (usually) have no canonical choice

- Circles are SO_2 -torsors, lines are \mathbb{R} -torsors
- Affine *n*-space \mathbb{A}^n is an \mathbb{R}^n -torsor
- ▶ The set of bases of a vector space *V* is a GL(*V*)-torsor
- ► The set of orientations on an orientable manifold *M* is an *H*⁰(*M*; Z/2)-torsor

- A principal *G*-bundle $P \rightarrow X$ is a continuously varying family of *G*-torsors over *X*
- (so, local trivializations, continuous transition maps...)
- ▶ \implies the map $P \rightarrow X$ is the quotient map for the *G*-action

Examples of principal bundles

- ▶ On an *n*-manifold *M*, the *frame bundle* $\mathscr{B}_{GL}(M) \to M$ is the principal $GL_n(\mathbb{R})$ -bundle whose fiber at *x* is the $GL_n(\mathbb{R})$ -torsor of bases of T_xM
- The orientation bundle over a manifold M has fiber at x equal to the set of orientations of a small neighborhood of x.
 - A principal $\mathbb{Z}/2$ -bundle
 - A trivialization is an orientation of M
- Unlike for vector bundles, principal *G*-bundles are nonlinear, so no duals, direct sums, etc.
- Like vector bundles, principal bundles pull back: given $P \to X$ and $f: Y \to X$, define $f^*P \to Y$ to have fiber at y equal to the fiber of P at f(y)

The associated bundle construction

- ► Input data: $P \rightarrow X$ a principal *G*-bundle and *V* a *G*-representation
- ▶ Output data: a vector bundle $P \times_G V \rightarrow X$, defined to be the quotient of $P \times V$ by the equivalence relation $(p \cdot g, v) \sim (p, g \cdot v)$
- Intuition: "using up" the G-actions on P and V, or maybe using the ways in which P is twisted to build a vector bundle twisted in the same ways
- Useful in geometry, where geometric aspects of a vector bundle you care about are secretly controlled by a principal *G*-bundle via this construction

- ► Taking the associated bundle of a principal O_n -bundle and the standard representation of O_n on \mathbb{R} defines a bijection between isomorphism classes of principal O_n -bundles over a space and rank-*n* real vector bundles over a space
- ► Likewise with U_n and complex vector bundles; can instead use GL_n(ℝ) and GL_n(ℂ) if you want
- More directly, the Gram-Schmidt algorithm defines a bijection between isomorphism classes of GL_n(R)-bundles and O_n-bundles (resp. GL_n(C) and U_n)

Principal bundles: when are we gonna have to use this?

- Vector bundles of interest in differential geometry are all associated bundles for the bundle of frames: *TM*, *T***M*, exterior powers; spinor bundles; and more
 - Often, one gets info on the bundle of frames, then uses the associated bundle construction to propagate that information to several vector bundles at once
- Useful for slickly defining orientations, spin structures, spin^c structures, ...
- Gauge theory is all about connections on principal bundles, both in math and in physics

- Fix some kind of vector or principal bundle (e.g. complex vector bundle; principal SU₂-bundle; etc.), a *d* ∈ N, and a commutative ring *A*
- ► A *characteristic class* for these bundles is a procedure for associating to each bundle $E \rightarrow X$ a cohomology class $c(P) \in H^d(X; A)$ which is natural under pullback
- ▶ Naturality: given $f: Y \to X$, need $c(f^*E) = f^*c(E)$ in $H^d(Y;A)$

- More algebraic invariants of geometric or topological information
- Often detect or obstruct useful topological or geometric properties (orientability, flatness, null-bordism, ...)
- Sweet spot in "conservation of effort:" the best things in algebraic topology are both informative and computable

Approach 1: the axiomatic definition of Chern classes

- ▶ Chern classes are characteristic classes $c_i(V) \in H^{2i}(X; \mathbb{Z})$ for complex vector bundles $V \to X$, $i \ge 0$.
- Define them to satisfy a short list of axioms; it is a theorem of Grothendieck this uniquely characterizes them

(implicit: naturality)

► $c_0(E) = 1$

▶ the Whitney sum formula $c(E \oplus F) = c(E)c(F)$

• Here c(E) is the total Chern class $c_0(E) + c_1(E) + c_2(E) + \dots$

Nontriviality: if *x* is the generator of $H^2(\mathbb{CP}^n;\mathbb{Z}) \cong \mathbb{Z}$, then $c(S \to \mathbb{CP}^n) = 1 - x$.

• Here $S \to \mathbb{CP}^n$ is the tautological line bundle

▶ Use the orientation of \mathbb{CP}^n to pick a specific isomorphism $H^2(\mathbb{CP}^n;\mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}$

Approach 1: advantages and disadvantages

- Succinct, but no intuition for what Chern classes *are*
- Can make some computations: if $E \oplus \underline{\mathbb{C}}^k$ is trivial, c(E) = 1
 - Also some calculations on projective complex manifolds
 - ... but pretty inflexible for computations

Approach 2: linear dependency of generic sections

- Idea: at least on a manifold, produce submanifolds from the vector bundle data, giving classes in homology
- Then use Poincaré duality to turn these into cohomology classes
- It is a theorem that every complex vector bundle on a finite-dimensional CW complex pulls back from a vector bundle on an oriented manifold, so this suffices

Approach 2: Poincaré duality is best theorem

- An orientation of a closed *n*-manifold *M* determines a *fundamental class*, an element $[M] \in H_n(M; \mathbb{Z})$ (well, with any coefficients)
- Cap product with this class defines an isomorphism called *Poincaré duality* $H^k(M; \mathbb{Z}) \to H_{n-k}(M; \mathbb{Z})$
- For k = n this corresponds to integration in de Rham theory
- With field coefficients, the universal coefficient theorem reformulates this as a duality pairing H^k(M;k) ⊗_k H^{n-k}(M;k) → k
- ▶ If you only need $\mathbb{Z}/2$ coefficients, no orientation is necessary

Defining Chern classes using Poincaré duality

Given a closed, oriented *n*-manifold *M* and a complex vector bundle V → M, choose k generic sections s₁,...,s_k and let N ⊂ M be the subset on which s₁,...,s_k are linearly dependent

• e.g., if k = 1, N is the zero set of s_1

- ► For a generic choice of $s_1, ..., s_k$, N is a closed, oriented submanifold of dimension n 2k. Push its fundamental class forward to define $[N] \in H_{n-2k}(M)$
 - "Generic" means suitable transversality hypotheses, etc., and is satisfied on a subset of full measure (as usual with such constructions in differential topology)
 - The homology class [N] does not depend on any of the choices we made
- Now, the k^{th} Chern class of V is the Poincaré dual of [N], which is a degree n (n 2k) = 2k cohomology class

Approach 2: advantages and disadvantages

- Yay: makes clearer what Chern classes are measuring: an obstruction to linearly independent sections
- Non-functoriality of Poincaré duality means proving naturality is a headache
- That characteristic classes pull back from manifolds is not an obvious theorem

- Define Chern classes in de Rham theory, using concepts from differential geometry
- This is how characteristic classes tend to appear in quantum field theory

Approach 3: connections

Let *M* be a smooth manifold and *V* → *M* be a real vector bundle. A *connection* on *V* is an ℝ-linear map
∇: Γ(*TM*) ⊗_ℝ Γ(*V*) → Γ(*V*) which is C[∞](*M*)-linear in the first argument and satisfies the *Leibniz rule*

$$\nabla_{\nu(f\psi)} = (\nu \cdot f)\psi + f\nabla_{\nu}\psi$$

where $\nabla_{v}(\psi) \coloneqq \nabla(v, \psi)$

- Idea: this is a way to differentiate sections of V
- ► Locally, $\nabla = d + A$, where *A* is a "matrix-valued one-form," namely an element of $\Omega^1_M(\operatorname{End} V) := \Gamma(T^*M \otimes \operatorname{End} V)$
- Theorem: the space of connections on V is an infinite-dimensional affine space, and in particular nonempty

► The *curvature* of a connection is a matrix-valued 2-form $F_{\nabla} \in \Omega^2_M(\operatorname{End} V) := \Gamma(\Lambda^2 T^* M \otimes \operatorname{End} V)$ defined by the formula

$$\nabla_X \circ \nabla_Y - \nabla_Y \circ \nabla_X - \nabla_{[X,Y]}$$

Vector bundles are locally trivial, but connections are not, and the curvature measures this

Approach 3: Chern classes in de Rham cohomology

- ► The trace map induces a map tr: $\Omega_M^k(\operatorname{End} V) \to \Omega_M^k$
- Given a complex vector bundle $V \rightarrow M$, choose a connection ∇ on V
- ► Wedge its curvature form together *k* times to get $(F_{\nabla})^k \in \Omega_M^{2k}(\operatorname{End} V)$
- Take the trace, land in Ω_M^{2k}
- Theorem: this is a closed form, and its de Rham cohomology class does not depend on the choice of ▽!
- ► Define the k^{th} Chern class of V to be $(1/2\pi i)^k [\operatorname{tr}((F_\nabla)^k)] \in H^{2k}_{\mathrm{dR}}(M)$

Approach 3: advantages and disadvantages

- If you like geometry or quantum field theory, you'll probably like this approach the best
- Again, tells you something about what Chern classes actually are
- But doesn't work to get classes in integral cohomology, nor on non-manifolds, and it depends on choices
- Sometimes computable. Sometimes not.

Approach 4: the search for the universal bundle

- ► Idea: create a moduli space *BG* of principal *G*-bundles, carrying the "universal" or "maximally twisted" principal *G*-bundle $EG \rightarrow BG$
- ▶ key fact: every principal *G*-bundle $P \rightarrow X$ is isomorphic to $f^*EG \rightarrow X$ for some $f: X \rightarrow BG$, and moreover in a unique way (*f* is unique up to homotopy)
- Then, cohomology classes on BG give characteristic classes, and vice versa

- Let G be a topological group. A *classifying space* for G, denoted BG, is any space which can be realized as the quotient of a contractible space EG by a free G-action
- Key facts about classifying spaces
 - ► Homotopy classes of maps $f: X \to BG$ are in natural bijection with isomorphism classes of principal *G*-bundles $P \to X$ via $f \mapsto (f^*EG \to X)$
 - BG always exists but is not unique! But any two choices are homotopy equivalent
 - **B***G* is often infinite-dimensional

Approach 4: examples of classifying spaces

- ► S^1 is a $B\mathbb{Z}$, because $\mathbb{R}/\mathbb{Z} \cong S^1$
- ▶ \mathbb{RP}^{∞} is a $B\mathbb{Z}/2$, because S^{∞} is contractible!
 - Can take either S[∞] := colim_n Sⁿ, or the unit sphere in an infinite-dimensional Banach space; this produces homotopy-equivalent but non-homeomorphic models for BZ/2
 - Similarly, \mathbb{CP}^{∞} is a BU_1
- Classifying spaces of Lie groups tend to look like infinite-dimensional Grassmannians

Approach 4: stabilization

- H*(BGL_n(R)) gives characteristic classes of principal GL_n(R)-bundles, hence real rank-n bundles via the associated bundle construction. So how do we obtain characteristic classes for all real bundles at once?
- The inclusion GL_n(ℝ) → GL_{n+1}(ℝ) induces maps BGL_n(ℝ) → BGL_{n+1}(ℝ). Let BGL(ℝ) denote the colimit of these maps
 - From the moduli POV, $BGL_n(\mathbb{R}) \to BGL_{n+1}(\mathbb{R})$ sends a vector bundle $V \to X$ to $V \oplus \underline{R} \to X$
- ► Thus H*(BGL(ℝ)) gives characteristic classes for all real vector bundles at once
- All this works for complex vector bundles as well

- We've been using $GL_n(\mathbb{R})$, but it's more common to see O_n in the literature
- There's essentially no difference (you do have to choose a metric to get a principal O_n-bundle of frames, but this is a contractible choice so don't worry about it)
- Likewise with $GL_n(\mathbb{C})$ and U_n

- ► There is a theorem that $H^*(BGL(\mathbb{C}); \mathbb{Z}) \cong \mathbb{Z}[c_1, c_2, c_3, ...]$ with $|c_i| = 2i$
- So we define the *i*th Chern class of a complex vector bundle $V \rightarrow X$ to be f^*c_i , where $f: X \rightarrow BGL(\mathbb{C})$ is in the homotopy class of maps classifying the stabilization of *E*

Approach 4: advantages and disadvantages

- It's nice to know that we got 'em all (for any *G*, or for real or complex vector bundles)
- ► *BG* is often useful for other reasons
- ▶ But, *BG* is mysterious, and often big
- ▶ We're also black-boxing how *H*^{*}(*BG*) is actually computed

Foreshadowing the problem session

- ► Hands-on examples of vector bundles and principal bundles
- Seeing what we can compute with these different approaches
- A fifth perspective??