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Today’s plan

É Brief review/introduction to vector bundles and principal
G-bundles
É What are characteristic classes? And why?
É Brief introduction different perspectives on Chern classes

(axiomatic definition; linear dependency of sections;
Chern-Weil theory; classifying spaces)



This week’s plan

É Today: four perspectives on characteristic classes
É Tomorrow: Stiefel-Whitney classes (real vector bundles, mod

2 cohomology)
É Wednesday: Steenrod squares and Wu classes (more mod 2

cohomology)
É Thursday: Chern, Pontrjagin, and Euler classes (real and

complex vector bundles, Z cohomology)
É Friday: Chern-Weil theory (de Rham cohomology)



Vector bundles

É Idea: a continuously varying, locally trivial family of vector
spaces over a base space X
É Formally, a map π: V→ X such that there exists an open cover

U of X and homeomorphisms ϕU : π−1(U)→ U ×Rn which
commute with to the projections down to X
É and, for all pairs U, V ∈ U, the transition function

gUV := ϕVϕ
−1
U is GLn(R)-equivariant

É Finally, the cocycle condition on triple intersections U ∩ V ∩W:
gWUgVWgUV = id
É This defines a real vector bundle, and its rank is n; using Cn

gives a complex vector bundle
É Rank 1 vector bundles are called line bundles



Examples of vector bundles

É On any smooth manifold M, the tangent bundle TM→M and
the cotangent bundle T∗M→M
É Direct sums, tensor products, duals, etc. of vector bundles
É but: not an abelian category

É The pullback of a vector bundle V→ X by a continuous map
f : Y → X is a vector bundle f ∗V→ Y whose fiber at y ∈ Y is
Vf(y)

É The tautological bundle S→ RPn or S→ CPn, a real, resp.
complex line bundle
É A point x of RPn is a line in Rn+1; the fiber of S at x is that line
É Generalizes to Grassmannians and tautological vector bundles



Vector bundles: when are we gonna have to use this?

É Much of differential geometry is stated and proven in terms of
vector bundles (and things called connections on them): TM
and T∗M, but also spinor bundles and the like
É In general, vector bundles interpolate between geometry and

homotopy theory
É They feel more like geometric objects (especially if you choose

a connection)
É . . . but their classification depends only on the homotopy type

of X
É Upshot: allows information from differential geometry to be

used in homotopy theory and vice versa!



G-torsors

É For the next few slides, G is any topological group
É A G-torsor is a space X with a free transitive right G-action
É Choosing a basepoint on X provides an identification X ∼= G —

but the point is, we (usually) have no canonical choice



G-torsors: examples

É Circles are SO2-torsors, lines are R-torsors
É Affine n-space An is an Rn-torsor
É The set of bases of a vector space V is a GL(V)-torsor
É The set of orientations on an orientable manifold M is an

H0(M;Z/2)-torsor



Principal G-bundles

É A principal G-bundle P→ X is a continuously varying family of
G-torsors over X
É (so, local trivializations, continuous transition maps. . . )
É =⇒ the map P→ X is the quotient map for the G-action



Examples of principal bundles

É On an n-manifold M, the frame bundleBGL(M)→M is the
principal GLn(R)-bundle whose fiber at x is the GLn(R)-torsor
of bases of TxM
É The orientation bundle over a manifold M has fiber at x equal

to the set of orientations of a small neighborhood of x.
É A principal Z/2-bundle
É A trivialization is an orientation of M

É Unlike for vector bundles, principal G-bundles are nonlinear,
so no duals, direct sums, etc.
É Like vector bundles, principal bundles pull back: given P→ X

and f : Y → X, define f ∗P→ Y to have fiber at y equal to the
fiber of P at f(y)



The associated bundle construction

É Input data: P→ X a principal G-bundle and V a
G-representation
É Output data: a vector bundle P×G V→ X, defined to be the

quotient of P×V by the equivalence relation (p ·g, v)∼ (p, g · v)
É Intuition: “using up” the G-actions on P and V, or maybe

using the ways in which P is twisted to build a vector bundle
twisted in the same ways
É Useful in geometry, where geometric aspects of a vector

bundle you care about are secretly controlled by a principal
G-bundle via this construction



Associated bundles

É Taking the associated bundle of a principal On-bundle and the
standard representation of On on R defines a bijection
between isomorphism classes of principal On-bundles over a
space and rank-n real vector bundles over a space
É Likewise with Un and complex vector bundles; can instead use

GLn(R) and GLn(C) if you want
É More directly, the Gram-Schmidt algorithm defines a bijection

between isomorphism classes of GLn(R)-bundles and
On-bundles (resp. GLn(C) and Un)



Principal bundles: when are we gonna have to use this?

É Vector bundles of interest in differential geometry are all
associated bundles for the bundle of frames: TM, T∗M,
exterior powers; spinor bundles; and more
É Often, one gets info on the bundle of frames, then uses the

associated bundle construction to propagate that information
to several vector bundles at once

É Useful for slickly defining orientations, spin structures, spinc

structures, . . .
É Gauge theory is all about connections on principal bundles,

both in math and in physics



Characteristic classes

É Fix some kind of vector or principal bundle (e.g. complex
vector bundle; principal SU2-bundle; etc.), a d ∈ N, and a
commutative ring A
É A characteristic class for these bundles is a procedure for

associating to each bundle E→ X a cohomology class
c(P) ∈ Hd(X; A) which is natural under pullback
É Naturality: given f : Y → X, need c(f ∗E) = f ∗c(E) in Hd(Y; A)



Ok, but why?

É More algebraic invariants of geometric or topological
information
É Often detect or obstruct useful topological or geometric

properties (orientability, flatness, null-bordism, . . . )
É Sweet spot in “conservation of effort:” the best things in

algebraic topology are both informative and computable



Approach 1: the axiomatic definition of Chern classes

É Chern classes are characteristic classes ci(V) ∈ H2i(X;Z) for
complex vector bundles V→ X, i≥ 0.
É Define them to satisfy a short list of axioms; it is a theorem of

Grothendieck this uniquely characterizes them



Approach 1: the axioms

É (implicit: naturality)
É c0(E) = 1
É the Whitney sum formula c(E⊕ F) = c(E)c(F)
É Here c(E) is the total Chern class c0(E) + c1(E) + c2(E) + . . .

É Nontriviality: if x is the generator of H2(CPn;Z)∼= Z, then
c(S→ CPn) = 1− x.
É Here S→ CPn is the tautological line bundle
É Use the orientation of CPn to pick a specific isomorphism

H2(CPn;Z)
∼=→ Z



Approach 1: advantages and disadvantages

É Succinct, but no intuition for what Chern classes are
É Can make some computations: if E⊕Ck is trivial, c(E) = 1
É Also some calculations on projective complex manifolds
É . . . but pretty inflexible for computations



Approach 2: linear dependency of generic sections

É Idea: at least on a manifold, produce submanifolds from the
vector bundle data, giving classes in homology
É Then use Poincaré duality to turn these into cohomology

classes
É It is a theorem that every complex vector bundle on a

finite-dimensional CW complex pulls back from a vector
bundle on an oriented manifold, so this suffices



Approach 2: Poincaré duality is best theorem

É An orientation of a closed n-manifold M determines a
fundamental class, an element [M] ∈ Hn(M;Z) (well, with any
coefficients)
É Cap product with this class defines an isomorphism called

Poincaré duality Hk(M;Z)→ Hn−k(M;Z)
É For k= n this corresponds to integration in de Rham theory
É With field coefficients, the universal coefficient theorem

reformulates this as a duality pairing
Hk(M; k)⊗k Hn−k(M; k)→ k
É If you only need Z/2 coefficients, no orientation is necessary



Defining Chern classes using Poincaré duality

É Given a closed, oriented n-manifold M and a complex vector
bundle V→M, choose k generic sections s1, . . . , sk and let
N ⊂M be the subset on which s1, . . . , sk are linearly dependent
É e.g., if k= 1, N is the zero set of s1

É For a generic choice of s1, . . . , sk, N is a closed, oriented
submanifold of dimension n− 2k. Push its fundamental class
forward to define [N] ∈ Hn−2k(M)
É “Generic” means suitable transversality hypotheses, etc., and is

satisfied on a subset of full measure (as usual with such
constructions in differential topology)

É The homology class [N] does not depend on any of the choices
we made

É Now, the kth Chern class of V is the Poincaré dual of [N],
which is a degree n− (n− 2k) = 2k cohomology class



Approach 2: advantages and disadvantages

É Yay: makes clearer what Chern classes are measuring: an
obstruction to linearly independent sections
É Non-functoriality of Poincaré duality means proving naturality

is a headache
É That characteristic classes pull back from manifolds is not an

obvious theorem



Approach 3: Chern-Weil theory

É Define Chern classes in de Rham theory, using concepts from
differential geometry
É This is how characteristic classes tend to appear in quantum

field theory



Approach 3: connections

É Let M be a smooth manifold and V→M be a real vector
bundle. A connection on V is an R-linear map
∇: Γ (TM)⊗R Γ (V)→ Γ (V) which is C∞(M)-linear in the first
argument and satisfies the Leibniz rule

∇v(fψ) = (v · f)ψ+ f∇vψ

where ∇v(ψ) :=∇(v,ψ)
É Idea: this is a way to differentiate sections of V
É Locally, ∇= d+ A, where A is a “matrix-valued one-form,”

namely an element of Ω1
M(End V) := Γ (T∗M⊗ End V)

É Theorem: the space of connections on V is an
infinite-dimensional affine space, and in particular nonempty



Approach 3: curvature

É The curvature of a connection is a matrix-valued 2-form
F∇ ∈ Ω2

M(End V) := Γ (Λ2T∗M⊗ End V) defined by the formula

∇X ◦∇Y −∇Y ◦∇X −∇[X,Y]

É Vector bundles are locally trivial, but connections are not, and
the curvature measures this



Approach 3: Chern classes in de Rham cohomology

É The trace map induces a map tr: Ωk
M(End V)→ Ωk

M

É Given a complex vector bundle V→M, choose a connection ∇
on V
É Wedge its curvature form together k times to get
(F∇)k ∈ Ω2k

M (End V)
É Take the trace, land in Ω2k

M

É Theorem: this is a closed form, and its de Rham cohomology
class does not depend on the choice of ∇!
É Define the kth Chern class of V to be
(1/2πi)k[tr((F∇)k)] ∈ H2k

dR(M)



Approach 3: advantages and disadvantages

É If you like geometry or quantum field theory, you’ll probably
like this approach the best
É Again, tells you something about what Chern classes actually

are
É But doesn’t work to get classes in integral cohomology, nor on

non-manifolds, and it depends on choices
É Sometimes computable. Sometimes not.



Approach 4: the search for the universal bundle

É Idea: create a moduli space BG of principal G-bundles,
carrying the “universal” or “maximally twisted” principal
G-bundle EG→ BG
É key fact: every principal G-bundle P→ X is isomorphic to

f ∗EG→ X for some f : X→ BG, and moreover in a unique way
(f is unique up to homotopy)
É Then, cohomology classes on BG give characteristic classes,

and vice versa



Approach 4: classifying spaces

É Let G be a topological group. A classifying space for G, denoted
BG, is any space which can be realized as the quotient of a
contractible space EG by a free G-action
É Key facts about classifying spaces
É Homotopy classes of maps f : X→ BG are in natural bijection

with isomorphism classes of principal G-bundles P→ X via
f 7→ (f ∗EG→ X)

É BG always exists but is not unique! But any two choices are
homotopy equivalent

É BG is often infinite-dimensional



Approach 4: examples of classifying spaces

É S1 is a BZ, because R/Z∼= S1

É RP∞ is a BZ/2, because S∞ is contractible!
É Can take either S∞ := colimn Sn, or the unit sphere in an

infinite-dimensional Banach space; this produces
homotopy-equivalent but non-homeomorphic models for BZ/2

É Similarly, CP∞ is a BU1

É Classifying spaces of Lie groups tend to look like
infinite-dimensional Grassmannians



Approach 4: stabilization

É H∗(BGLn(R)) gives characteristic classes of principal
GLn(R)-bundles, hence real rank-n bundles via the associated
bundle construction. So how do we obtain characteristic
classes for all real bundles at once?
É The inclusion GLn(R)→ GLn+1(R) induces maps

BGLn(R)→ BGLn+1(R). Let BGL(R) denote the colimit of
these maps
É From the moduli POV, BGLn(R)→ BGLn+1(R) sends a vector

bundle V→ X to V ⊕ R→ X

É Thus H∗(BGL(R)) gives characteristic classes for all real vector
bundles at once
É All this works for complex vector bundles as well



Approach 4: stabilization

É We’ve been using GLn(R), but it’s more common to see On in
the literature
É There’s essentially no difference (you do have to choose a

metric to get a principal On-bundle of frames, but this is a
contractible choice so don’t worry about it)
É Likewise with GLn(C) and Un



Approach 4: defining Chern classes

É There is a theorem that H∗(BGL(C);Z)∼= Z[c1, c2, c3, . . . ] with
|ci|= 2i
É So we define the ith Chern class of a complex vector bundle

V→ X to be f ∗ci, where f : X→ BGL(C) is in the homotopy
class of maps classifying the stabilization of E



Approach 4: advantages and disadvantages

É It’s nice to know that we got ’em all (for any G, or for real or
complex vector bundles)
É BG is often useful for other reasons
É But, BG is mysterious, and often big
É We’re also black-boxing how H∗(BG) is actually computed



Foreshadowing the problem session

É Hands-on examples of vector bundles and principal bundles
É Seeing what we can compute with these different approaches
É A fifth perspective??


