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Today’s plan

É Chern classes and a few of their basic properties and
applications
É Pontrjagin classes and. . .
É The Euler class and. . .
É The splitting principle for principal G-bundles



This week’s plan

É Monday: four perspectives on characteristic classes
É Tuesday: Stiefel-Whitney classes (real vector bundles, mod 2

cohomology)
É Yesterday: Steenrod squares and Wu classes (more mod 2

cohomology)
É Today: Chern, Pontrjagin, and Euler classes (real and complex

vector bundles, Z cohomology)
É Tomorrow: Chern-Weil theory (de Rham cohomology)



Chern classes: it’s déjà vu all over again

É Chern classes ci(E) ∈ H2i(X;Z) are characteristic classes of
complex vector bundles E→ X
É ci(E) = 0 if i> rankC(E)
É Naturality, stability, Whitney sum formula as before
É ci(E) = (−1)ick(E) (note: E ∼= E∗)
É If M is a stably almost complex manifold,
〈ctop(M), [M]〉= χ(M)
É Reduction mod 2: ck 7→ w2k, and if E is complex, w2k+1(E) = 0
É c1 classifies complex line bundles, and every class in H2(X;Z)

is c1 of a line bundle



Chern classes and bordism

É Defining a bordism theory of complex manifolds (or even
almost complex manifolds) as before doesn’t work: an a.c.
manifold can’t be the boundary of an a.c. manifold
É So instead we use stably almost complex manifolds (put a

complex structure on TM⊕Rn )
É Milnor-Novikov computed ΩU

∗
∼= Z[x2, x4, . . . ], where |x2i|= 2i

É Two stably almost complex manifolds are bordant iff their
Chern numbers agree
É After tensoring with Q, ΩU

∗ is generated by complex projective
spaces; this is not true integrally



Digression: the chromatic program

É There is an identification of ΩU
∗ with something called

Lazard’s ring of formal group laws.
É Roughly implies that if E is a multiplicative generalized

cohomology theory with a map ΩU
∗ → E, the algebraic

geometry of formal group laws can be used to study E
É This turns out to be a significant organizing principle in stable

homotopy theory, and a useful one
É The field which studies this is called chromatic homotopy

theory



Obstructing (stably) almost complex structures

É There isn’t a single characteristic class obstructing complex or
almost complex structures
É These questions can be difficult in general
É But, stably almost complex⇔ has Chern classes
É So we know w2k+1(E) = 0 and w2k(E) is the reduction of an

integral class
É Looking at k= 0, we need orientability and spinc (in fact, a

stably almost complex structure determines an orientation and
a spinc structure)



Pontrjagin classes

É Recall that the complexification of a real vector bundle E→ X
is EC := E⊗R C, a complex vector bundle

É Define the ith Pontrjagin class pi(E) := (−1)ic2i(EC) ∈ H4i(X;Z)
(note: index multiplied by 4!)
É Note: not everyone uses the same sign convention; be careful!

É pi(TM) and the total Pontrjagin class defined as usual
É H∗(BOn;Z)∼= Z[p1, . . . , pn]



Pontrjagin classes don’t satisfy the Whitney sum formula!

É See title
É However, the difference p(E)p(E)− p(E⊕ F) is 2-torsion, so if

you work over Z[1/2] (or over Q, or R), the Whitney sum
formula holds
É Likewise if H∗(X;Z) lacks 2-torsion, e.g. for CPn



Pontrjagin numbers are oriented bordism invariants

É The answer is not as clean as for unoriented or complex
bordism: ΩSO

∗ contains 2-torsion, and its description is
somewhat complicated (see Thom, Wall)
É ΩSO

∗ ⊗Q
∼=Q[x4, x8, . . . ], and x4i = [CP2i]

É Two oriented n-manifolds are oriented bordant iff their
Pontrjagin and Stiefel-Whitney numbers agree
É The lowest-degree torsion is ΩSO

5
∼= Z/2, generated by the Wu

manifold SU3/SO3



Spin bordism

É Ultimately because Spinn→ SOn is a double cover, the
forgetful map ΩSpin

∗ → ΩSO
∗ is an isomorphism after tensoring

with Z[1/2] (or Q)

É In particular, ΩSpin
∗ ⊗Q∼= Z[ex4,ex8, . . . ], but we no longer can

take CP2i as representatives
É e.g. CP2 isn’t spin! ΩSpin

4
∼= Z is generated by the K3 surface

É In fact, ΩSpin
4
∼= Z→ ΩSO

4
∼= Z can be identified

with(·16): Z→ Z
É 2-torsion also differs: ΩSpin

1
∼= Z/2, for example

É Anderson-Brown-Peterson show that characteristic classes
don’t suffice for spin bordism unless one uses characteristic
classes in a generalized cohomology theory called real
K-theory



The Euler class

É The Euler class e(V) ∈ Hk(X : Z) is an unstable class for
oriented real vector bundles (here, k := rank V)
É Arises because H∗(BOn)→ H∗(BSOn) is not surjective
É Or, can define it as the Poincaré dual to the homology class of

the zero set of a generic section of E
É “generic” means “transverse to the zero section,” which exists

by standard difftop arguments



Properties of the Euler class

É Natural but not stable: e(V ⊕R) = 0
É Whitney sum formula: e(V1 ⊕ V2) = e(V1)e(V2)
É If V has a nonvanishing section, e(V) = 0
É Reversing orientation: e(−V) = −e(V)
É If M is a closed, oriented manifold, 〈e(TM), [M]〉= χ(M)

(hence the name)
É If k is odd, E is 2-torsion



Relations to other characteristic classes

É Reduction mod 2: e(V)mod 2= wk(V)
É If V is complex, ctop(V) = e(V)
É e(V)2 = e(VC), so if k is even, e(E)2 = pk/2(E)



The Gysin map

É Let π: E→M be a fiber bundle, where M is an n-dimensional
manifold, the fiber is k-dimensional, and M and E are oriented
(or we use Z/2 coefficients)
É For any j, we have maps

· · · // Hk+j(E) PD // Hn−j(E)
π∗ // Hn−j(M)

PD // Hj(M)

(where PD denotes Poincaré duality)
É The composition Hk+j(E)→ Hj(M) is called the Gysin map and

denoted π!
É many other fun names: surprise map, wrong-way map,

Umkehr map, shriek map, pushforward map — indeed, a
covariant map in cohomology??

É The Gysin map is not functorial (because Poincaré duality
isn’t)
É In de Rham cohomology, this corresponds to “integration

along the fiber”



Euler classes and the Gysin sequence

É Now specialize to E→M the unit sphere bundle of a rank-k
vector bundle V→M (need a metric on V to define that, but
not a problem)
É With orientation or coefficients hypotheses as above, there is a

long exact sequence called the Gysin sequence

· · · // Hm(E)
π! // Hm−k+1(M)

·e(V) // Hm+1(M) π∗ // Hm+1(E) // · · ·

É Behind the curtain: this is a special case of the Serre spectral
sequence



The splitting principle

É Idea: a way to describe characteristic classes of vector bundles
in terms of characteristic classes of line bundles
É We’ll discuss a general approach in principal G-bundles due to

Borel-Hirzebruch
É At the end, we’ll specialize to Chern, Pontrjagin, and

Stiefel-Whitney classes



Maximal tori

É Recall that a compact, connected, abelian Lie group is
isomorphic to Tn for some n
É A torus in a Lie group G is a compact, connected, abelian Lie

subgroup T ⊂ G
É A maximal torus is a torus not contained in a larger torus
É Theorem: maximal tori exist, and any two choices are

conjugate



The generalized splitting principle: setup

É Fix our Lie group G and a maximal torus T of rank n (i.e.
T ∼= Tn)
É Via the inclusion i: T ,→ G, we have models of BG as EG/G and

BT as EG/T, so Bi: BT→ BG is a fiber bundle with fiber G/T
É (Note: T is generally not normal in G)

É Let P→ X be a principal G-bundle classified by a map
fP : X→ BG, and q: Y → X be the pullback of Bi:

Y
g //

q
��

BT

Bi
��

X
fP // BG.



The generalized splitting principle

É Here’s the diagram again:

Y
g //

q
��

BT

Bi
��

X
fP // BG.

É Theorem, part 1: there is a canonical reduction of structure
group of q∗P→ Y to T
É Theorem, part 2: q∗ : H∗(X;Q)→ H∗(Y;Q) is injective



So?

É Suppose c is a characteristic class for principal G-bundles
É Via Bi, it also defines a characteristic class for principal

T-bundles
É Since q∗ is injective, that characteristic class for the principal

T-bundle we obtained over Y determines c(P)
É Since T ∼= Tn, that principal T-bundle decomposes (in a sense)

as a product of n principal T-bundles
É Therefore the characteristic class also factors as a product
∏n

i=1(1+ xi), where the xi are the c1s of the principal
T-bundle summands. The xi are called the roots of P



Very quick proof sketch

É For part 1 (reduction of structure group), this applies
universally to reduce (Bi)∗EG→ BT to ET→ BT; then pull
back and use commutativity of the diagram
É For part 2 (injectivity on cohomology): uses Borel’s

computation of cohomology of G/T and BG and the Serre
spectral sequence
É Key fact: H∗(BG;Q) is a polynomial ring with even-degree

generators, so the spectral sequence collapses
É In fact, you can replace Q with any ring A such that if H∗(G;Z)

has p-torsion, then p is a unit in A



Example: Chern classes

É The diagonal matrices are a maximal torus in Un of rank n
É Using associated bundles to pass between principal

Un-bundles and complex vector bundles, this tells us that a
complex vector bundle V→ X splits as a sum of line bundles
L1, . . . , Ln when pulled back to Y
É c1(Li) is called the ith Chern root, and ck(V) is the kth

symmetric polynomial in the Chern roots
É H∗(Un;Z) is free, so we can work over Z



Chern classes and the flag manifold

É Y has a more concrete description in this case
É Namely, the flag manifold for V→ X
É A flag of an inner product space W is a decomposition of W as

a sum of one-dimensional, orthogonal subspaces
É The flag manifold Y → X is a fiber bundle whose fiber at x ∈ X

is the space of flags of Vx
É (Ok, you need a Hermitian metric to define this, but the

isomorphism type of the fiber bundle does not depend on this
choice)



Example: Pontrjagin classes, part 1

É G= SO2n: one maximal torus is the diagonal matrices in
Un ⊂ SOn, which has rank n
É Upshot: if V is an oriented rank-2n vector bundle, q∗V splits

as a sum of complex line bundles L1, . . . , Ln, but the symmetric
polynomial gets squared:

pi(q
∗V) = σi(c1(L1), . . . , c1(Ln))

2.

É This is because the Pontrjagin classes of V are the Chern
classes of VC, and the Chern roots of VC come in pairs
±x1, . . . ,±xn

É The Euler class also splits:

e(q∗V) = σn(c1(L1), . . . , cn(Ln))



Example: Pontrjagin classes, part 2

É G= SO2n+1 has a similar story: one maximal torus is the
diagonal matrices in Un ⊂ SO2n+1 (so the last diagonal entry is
always 1)
É So an oriented rank-(2n+ 1) real vector bundle V, pulled back

to Y, splits as a direct sum of n complex line bundles and a
trivial real line bundle
É The Pontrjagin and Euler classes of V admit the same

description as in the case SO2n



Example (sort of): Stiefel-Whitney classes

É On isn’t connected, so we can’t use the theorem
É Nonetheless, enough of the structure persists with Z/2

coefficients and the subgroup On
1 ⊂ On to prove something via

similar methods
É One can prove q∗ is an injection on mod 2 cohomology and

q∗P admits a canonical reduction of structure group to a
principal On

1-bundle
É Upshot: a rank-n real vector bundle V, after pullback to Y,

splits as a direct sum of n real line bundles L1, . . . , Ln, and

wk(V) = σi(w1(L1), . . . , w1(Ln))


