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Today’s plan

» Chern classes and a few of their basic properties and
applications

» Pontrjagin classes and. ..
» The Euler class and...

» The splitting principle for principal G-bundles



This week’s plan

» Monday: four perspectives on characteristic classes

» Tuesday: Stiefel-Whitney classes (real vector bundles, mod 2
cohomology)

> Yesterday: Steenrod squares and Wu classes (more mod 2
cohomology)

» Today: Chern, Pontrjagin, and Euler classes (real and complex
vector bundles, Z cohomology)

» Tomorrow: Chern-Weil theory (de Rham cohomology)



Chern classes: it’s déja vu all over again
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Chern classes ¢;(E) € H%(X; Z) are characteristic classes of
complex vector bundles E — X

c;(E) =0 if i > rank(E)

Naturality, stability, Whitney sum formula as before

¢;(E) = (—1)icy(E) (note: E = E¥)

If M is a stably almost complex manifold,

{ctop(M), [M]) = x (M)

Reduction mod 2: ¢, — wy, and if E is complex, wo,1(E) =0

vvyyy
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¢, classifies complex line bundles, and every class in H(X; Z)
is ¢; of a line bundle



Chern classes and bordism

» Defining a bordism theory of complex manifolds (or even
almost complex manifolds) as before doesn’t work: an a.c.
manifold can’t be the boundary of an a.c. manifold

» So instead we use stably almost complex manifolds (put a
complex structure on TM & R" )

» Milnor-Novikov computed QS = Z[x9,Xy, ... ], where |xy;| = 21

» Two stably almost complex manifolds are bordant iff their
Chern numbers agree

> After tensoring with Q, QE is generated by complex projective
spaces; this is not true integrally



Digression: the chromatic program

» There is an identification of QS with something called
Lazard’s ring of formal group laws.

» Roughly implies that if E is a multiplicative generalized
cohomology theory with a map QE — E, the algebraic
geometry of formal group laws can be used to study E

» This turns out to be a significant organizing principle in stable
homotopy theory, and a useful one

» The field which studies this is called chromatic homotopy
theory



Obstructing (stably) almost complex structures

> There isn’t a single characteristic class obstructing complex or
almost complex structures

» These questions can be difficult in general
> But, stably almost complex < has Chern classes

» So we know wyy 1 (E) = 0 and wq(E) is the reduction of an
integral class

» Looking at k = 0, we need orientability and spin® (in fact, a
stably almost complex structure determines an orientation and
a spin® structure)



Pontrjagin classes

> Recall that the complexification of a real vector bundle E — X
is E¢ := E ® C, a complex vector bundle
> Define the i Pontrjagin class p;(E) := (—1)icy;(Ec) € HA(X; Z)
(note: index multiplied by 4!)
> Note: not everyone uses the same sign convention; be careful!
» p;(TM) and the total Pontrjagin class defined as usual

> H*(BO,;Z) = Z[p1,---,Pn)



Pontrjagin classes don’t satisfy the Whitney sum formula!

> See title

» However, the difference p(E)p(E) —p(E @ F) is 2-torsion, so if
you work over Z[1/2] (or over @, or R), the Whitney sum
formula holds

» Likewise if H*(X; Z) lacks 2-torsion, e.g. for CP"



Pontrjagin numbers are oriented bordism invariants

» The answer is not as clean as for unoriented or complex
bordism: Qio contains 2-torsion, and its description is
somewhat complicated (see Thom, Wall)

> 050 ®Q = Q[xy,xg, ... ], and xy = [CP*]

» Two oriented n-manifolds are oriented bordant iff their
Pontrjagin and Stiefel-Whitney numbers agree

> The lowest-degree torsion is Q3° = Z/2, generated by the Wu
manifold SU3/SO4



Spin bordism

» Ultimately because Spin,, — SO,, is a double cover, the

forgetful map Qipm - QEO is an isomorphism after tensoring

with Z[1/2] (or Q)

» In particular, Qipm ® Q = Z[X4,Xg, . .. ], but we no longer can
take CP? as representatives
> e.g. CP? isn’t spin! Qipm = Z is generated by the K3 surface
> In fact, Qipm = 7 — Q5° = Z can be identified
with(-16): Z > Z
Spin ~

> 2-torsion also differs: Q] Z/2, for example

» Anderson-Brown-Peterson show that characteristic classes
don’t suffice for spin bordism unless one uses characteristic
classes in a generalized cohomology theory called real
K-theory



The Euler class

» The Euler class e(V) € H(X : Z) is an unstable class for
oriented real vector bundles (here, k := rank V)
» Arises because H*(BO,) — H*(BSO,,) is not surjective

» Or, can define it as the Poincaré dual to the homology class of
the zero set of a generic section of E
> “generic” means “transverse to the zero section,” which exists
by standard difftop arguments



Properties of the Euler class

Natural but not stable: e(V®R) =0

Whitney sum formula: e(V; & V,) = e(V;)e(V5)
If V has a nonvanishing section, e(V) =0
Reversing orientation: e(—V) = —e(V)

If M is a closed, oriented manifold, (e(TM),[M]) = y (M)
(hence the name)

If k is odd, E is 2-torsion

vyvyvyyvYyy
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Relations to other characteristic classes

» Reduction mod 2: e(V) mod 2 = wy (V)
> If V is complex, ci,p(V) = e(V)
> e(V)? =e(V), so if k is even, e(E)? = pi/2(E)



The Gysin map

» Let m: E — M be a fiber bundle, where M is an n-dimensional
manifold, the fiber is k-dimensional, and M and E are oriented
(or we use Z/2 coefficients)

» For any j, we have maps
—— H"(E) 22~ H,_(E) — H,_;(M) 2~ H(M)

(where PD denotes Poincaré duality)
» The composition H"(E) — H/(M) is called the Gysin map and
denoted 7,
> many other fun names: surprise map, wrong-way map,
Umkehr map, shriek map, pushforward map — indeed, a
covariant map in cohomology??
» The Gysin map is not functorial (because Poincaré duality
isn’t)
» In de Rham cohomology, this corresponds to “integration
along the fiber”



Euler classes and the Gysin sequence

> Now specialize to E — M the unit sphere bundle of a rank-k
vector bundle V — M (need a metric on V to define that, but
not a problem)

» With orientation or coefficients hypotheses as above, there is a
long exact sequence called the Gysin sequence

. —>-Hm(E) LHm—IH—l(M) ﬂ-H”ﬂ'l(M) L*),Hm+1(E) _

> Behind the curtain: this is a special case of the Serre spectral
sequence



The splitting principle

» Idea: a way to describe characteristic classes of vector bundles
in terms of characteristic classes of line bundles

» We'll discuss a general approach in principal G-bundles due to
Borel-Hirzebruch

> At the end, we'll specialize to Chern, Pontrjagin, and
Stiefel-Whitney classes



Maximal tori

» Recall that a compact, connected, abelian Lie group is
isomorphic to T" for some n

» A torus in a Lie group G is a compact, connected, abelian Lie
subgroup T C G

» A maximal torus is a torus not contained in a larger torus

» Theorem: maximal tori exist, and any two choices are
conjugate



The generalized splitting principle: setup

» Fix our Lie group G and a maximal torus T of rank n (i.e.
T=ETY
» Via the inclusion i: T — G, we have models of BG as EG/G and
BT as EG/T, so Bi: BT — BG is a fiber bundle with fiber G/T
» (Note: T is generally not normal in G)
> Let P — X be a principal G-bundle classified by a map
fp: X — BG, and q: Y — X be the pullback of Bi:

y —2- BT

T

P

X —BG.



The generalized splitting principle

» Here’s the diagram again:

y —2- BT

T

P

X — BG.

» Theorem, part 1: there is a canonical reduction of structure
groupof P - Y to T

» Theorem, part 2: ¢*: H*(X; Q) — H*(Y; Q) is injective



So?

Suppose c is a characteristic class for principal G-bundles

Via Bi, it also defines a characteristic class for principal
T-bundles

Since g* is injective, that characteristic class for the principal
T-bundle we obtained over Y determines c(P)

Since T = T", that principal T-bundle decomposes (in a sense)
as a product of n principal T-bundles

Therefore the characteristic class also factors as a product

[ T:L,(1+x,), where the x; are the c;s of the principal
T-bundle summands. The x; are called the roots of P



Very quick proof sketch

» For part 1 (reduction of structure group), this applies
universally to reduce (Bi)*EG — BT to ET — BT; then pull
back and use commutativity of the diagram

» For part 2 (injectivity on cohomology): uses Borel’s
computation of cohomology of G/T and BG and the Serre
spectral sequence

> Key fact: H*(BG;Q) is a polynomial ring with even-degree
generators, so the spectral sequence collapses

> In fact, you can replace Q with any ring A such that if H,(G;Z)
has p-torsion, then p is a unit in A



Example: Chern classes

» The diagonal matrices are a maximal torus in U,, of rank n

» Using associated bundles to pass between principal
U,,-bundles and complex vector bundles, this tells us that a
complex vector bundle V — X splits as a sum of line bundles
Lq,...,L, when pulled back to Y

> ¢,(L;) is called the i Chern root, and ¢, (V) is the k™
symmetric polynomial in the Chern roots

» H*(U,;Z) is free, so we can work over Z



Chern classes and the flag manifold
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Y has a more concrete description in this case
Namely, the flag manifold for V — X

A flag of an inner product space W is a decomposition of W as
a sum of one-dimensional, orthogonal subspaces

The flag manifold Y — X is a fiber bundle whose fiber at x € X
is the space of flags of V,

» (OKk, you need a Hermitian metric to define this, but the
isomorphism type of the fiber bundle does not depend on this
choice)



Example: Pontrjagin classes, part 1

» G = SO,,: one maximal torus is the diagonal matrices in
U,, € SO,,, which has rank n

» Upshot: if V is an oriented rank-2n vector bundle, g*V splits
as a sum of complex line bundles L,,...,L,, but the symmetric
polynomial gets squared:

pi(@V) = oi(c1 (L), ..., c1 (L))

» This is because the Pontrjagin classes of V are the Chern
classes of V¢, and the Chern roots of V- come in pairs
+xq,...,EX,

> The Euler class also splits:

e(q*V) = On(cl(Ll): cees Cn(Ln))



Example: Pontrjagin classes, part 2

» G = S0, has a similar story: one maximal torus is the
diagonal matrices in U,, C SO,,,,; (so the last diagonal entry is
always 1)

» So an oriented rank-(2n + 1) real vector bundle V, pulled back
to Y, splits as a direct sum of n complex line bundles and a
trivial real line bundle

» The Pontrjagin and Euler classes of V admit the same
description as in the case SO,,



Example (sort of): Stiefel-Whitney classes

> O, isn’t connected, so we can’t use the theorem

> Nonetheless, enough of the structure persists with Z/2
coefficients and the subgroup O] C O, to prove something via
similar methods

> One can prove q* is an injection on mod 2 cohomology and
g*P admits a canonical reduction of structure group to a
principal O}-bundle

» Upshot: a rank-n real vector bundle V, after pullback to Y,
splits as a direct sum of n real line bundles L4, ...,L,, and

wi (V) = oi(wq(Ly),...,w1(Ly))



