Day 4: Chern, Pontrjagin, and Euler classes

Arun Debray

July 9, 2020

- Chern classes and a few of their basic properties and applications
- Pontrjagin classes and...
- ► The Euler class and...
- ► The splitting principle for principal *G*-bundles

- Monday: four perspectives on characteristic classes
- Tuesday: Stiefel-Whitney classes (real vector bundles, mod 2 cohomology)
- Yesterday: Steenrod squares and Wu classes (more mod 2 cohomology)
- Today: Chern, Pontrjagin, and Euler classes (real and complex vector bundles, Z cohomology)
- Tomorrow: Chern-Weil theory (de Rham cohomology)

Chern classes: it's déjà vu all over again

- ▶ Chern classes $c_i(E) \in H^{2i}(X; \mathbb{Z})$ are characteristic classes of complex vector bundles $E \to X$
- ► $c_i(E) = 0$ if $i > \operatorname{rank}_{\mathbb{C}}(E)$
- Naturality, stability, Whitney sum formula as before

•
$$c_i(\overline{E}) = (-1)^i c_k(E)$$
 (note: $\overline{E} \cong E^*$)

- If *M* is a stably almost complex manifold, $\langle c_{top}(M), [M] \rangle = \chi(M)$
- ▶ Reduction mod 2: $c_k \mapsto w_{2k}$, and if *E* is complex, $w_{2k+1}(E) = 0$
- c₁ classifies complex line bundles, and every class in H²(X; ℤ) is c₁ of a line bundle

Chern classes and bordism

- Defining a bordism theory of complex manifolds (or even almost complex manifolds) as before doesn't work: an a.c. manifold can't be the boundary of an a.c. manifold
- So instead we use stably almost complex manifolds (put a complex structure on $TM \oplus \mathbb{R}^n$)
- ► Milnor-Novikov computed $\Omega^{U}_{*} \cong \mathbb{Z}[x_2, x_4, ...]$, where $|x_{2i}| = 2i$
- Two stably almost complex manifolds are bordant iff their Chern numbers agree
- After tensoring with Q, Ω^U_{*} is generated by complex projective spaces; this is not true integrally

Digression: the chromatic program

- There is an identification of Ω^U_{*} with something called Lazard's ring of formal group laws.
- ► Roughly implies that if *E* is a multiplicative generalized cohomology theory with a map $\Omega^{U}_{*} \rightarrow E$, the algebraic geometry of formal group laws can be used to study *E*
- This turns out to be a significant organizing principle in stable homotopy theory, and a useful one
- The field which studies this is called *chromatic homotopy* theory

Obstructing (stably) almost complex structures

- There isn't a single characteristic class obstructing complex or almost complex structures
- These questions can be difficult in general
- But, stably almost complex \Leftrightarrow has Chern classes
- So we know $w_{2k+1}(E) = 0$ and $w_{2k}(E)$ is the reduction of an integral class
- Looking at k = 0, we need orientability and spin^c (in fact, a stably almost complex structure *determines* an orientation and a spin^c structure)

- ▶ Recall that the *complexification* of a real vector bundle $E \to X$ is $E_{\mathbb{C}} := E \otimes_{\mathbb{R}} \underline{\mathbb{C}}$, a complex vector bundle
- ▶ Define the *i*th *Pontrjagin class* $p_i(E) := (-1)^i c_{2i}(E_{\mathbb{C}}) \in H^{4i}(X; \mathbb{Z})$ (note: index multiplied by 4!)

Note: not everyone uses the same sign convention; be careful!

- ▶ $p_i(TM)$ and the total Pontrjagin class defined as usual
- $\blacktriangleright H^*(BO_n;\mathbb{Z}) \cong \mathbb{Z}[p_1,\ldots,p_n]$

Pontrjagin classes don't satisfy the Whitney sum formula!

- See title
- ► However, the difference $p(E)p(E) p(E \oplus F)$ is 2-torsion, so if you work over $\mathbb{Z}[1/2]$ (or over \mathbb{Q} , or \mathbb{R}), the Whitney sum formula holds
- Likewise if $H^*(X; \mathbb{Z})$ lacks 2-torsion, e.g. for \mathbb{CP}^n

Pontrjagin numbers are oriented bordism invariants

 The answer is not as clean as for unoriented or complex bordism: Ω^{SO}_{*} contains 2-torsion, and its description is somewhat complicated (see Thom, Wall)

•
$$\Omega^{SO}_* \otimes \mathbb{Q} \cong \mathbb{Q}[x_4, x_8, \dots], \text{ and } x_{4i} = [\mathbb{CP}^{2i}]$$

- Two oriented *n*-manifolds are oriented bordant iff their Pontrjagin and Stiefel-Whitney numbers agree
- The lowest-degree torsion is Ω₅^{SO} ≅ ℤ/2, generated by the Wu manifold SU₃/SO₃

Spin bordism

- Ultimately because Spin_n → SO_n is a double cover, the forgetful map Ω^{Spin}_{*} → Ω^{SO}_{*} is an isomorphism after tensoring with Z[1/2] (or Q)
- ► In particular, $\Omega^{\text{Spin}}_* \otimes \mathbb{Q} \cong \mathbb{Z}[\tilde{x}_4, \tilde{x}_8, ...]$, but we no longer can take \mathbb{CP}^{2i} as representatives
 - ▶ e.g. \mathbb{CP}^2 isn't spin! $\Omega_4^{\text{Spin}} \cong \mathbb{Z}$ is generated by the K3 surface
 - ▶ In fact, $\Omega_4^{\text{Spin}} \cong \mathbb{Z} \to \Omega_4^{\text{SO}} \cong \mathbb{Z}$ can be identified with(·16): $\mathbb{Z} \to \mathbb{Z}$
- ► 2-torsion also differs: $\Omega_1^{\text{Spin}} \cong \mathbb{Z}/2$, for example
- Anderson-Brown-Peterson show that characteristic classes don't suffice for spin bordism unless one uses characteristic classes in a generalized cohomology theory called *real K*-theory

- ► The Euler class $e(V) \in H^k(X : \mathbb{Z})$ is an unstable class for oriented real vector bundles (here, $k := \operatorname{rank} V$)
- ▶ Arises because $H^*(BO_n) \rightarrow H^*(BSO_n)$ is not surjective
- Or, can define it as the Poincaré dual to the homology class of the zero set of a generic section of *E*
 - "generic" means "transverse to the zero section," which exists by standard difftop arguments

- ▶ Natural but *not stable*: $e(V \oplus \mathbb{R}) = 0$
- Whitney sum formula: $e(V_1 \oplus V_2) = e(V_1)e(V_2)$
- If *V* has a nonvanishing section, e(V) = 0
- Reversing orientation: e(-V) = -e(V)
- If *M* is a closed, oriented manifold, (*e*(*TM*), [*M*]) = χ(*M*) (hence the name)
- ▶ If *k* is odd, *E* is 2-torsion

Relations to other characteristic classes

Reduction mod 2: $e(V) \mod 2 = w_k(V)$

• If *V* is complex,
$$c_{top}(V) = e(V)$$

•
$$e(V)^2 = e(V_{\mathbb{C}})$$
, so if *k* is even, $e(E)^2 = p_{k/2}(E)$

The Gysin map

- Let π: E → M be a fiber bundle, where M is an n-dimensional manifold, the fiber is k-dimensional, and M and E are oriented (or we use Z/2 coefficients)
- ▶ For any *j*, we have maps

$$\cdots \longrightarrow H^{k+j}(E) \xrightarrow{\text{PD}} H_{n-j}(E) \xrightarrow{\pi_*} H_{n-j}(M) \xrightarrow{\text{PD}} H^j(M)$$

(where PD denotes Poincaré duality)

- ► The composition $H^{k+j}(E) \to H^j(M)$ is called the *Gysin map* and denoted $\pi_!$
 - many other fun names: surprise map, wrong-way map, Umkehr map, shriek map, pushforward map — indeed, a covariant map in cohomology??
- The Gysin map is not functorial (because Poincaré duality isn't)
- In de Rham cohomology, this corresponds to "integration along the fiber"

Euler classes and the Gysin sequence

- Now specialize to $E \rightarrow M$ the unit sphere bundle of a rank-*k* vector bundle $V \rightarrow M$ (need a metric on *V* to define that, but not a problem)
- With orientation or coefficients hypotheses as above, there is a long exact sequence called the *Gysin sequence*

$$\cdots \longrightarrow H^{m}(E) \xrightarrow{\pi_{!}} H^{m-k+1}(M) \xrightarrow{\cdot e(V)} H^{m+1}(M) \xrightarrow{\pi^{*}} H^{m+1}(E) \xrightarrow{\pi^{*}}$$

Behind the curtain: this is a special case of the Serre spectral sequence

- Idea: a way to describe characteristic classes of vector bundles in terms of characteristic classes of line bundles
- We'll discuss a general approach in principal G-bundles due to Borel-Hirzebruch
- At the end, we'll specialize to Chern, Pontrjagin, and Stiefel-Whitney classes

- Recall that a compact, connected, abelian Lie group is isomorphic to Tⁿ for some n
- A *torus* in a Lie group *G* is a compact, connected, abelian Lie subgroup $T \subset G$
- A *maximal torus* is a torus not contained in a larger torus
- Theorem: maximal tori exist, and any two choices are conjugate

The generalized splitting principle: setup

- Fix our Lie group *G* and a maximal torus *T* of rank *n* (i.e. $T \cong \mathbb{T}^n$)
- Via the inclusion $i: T \hookrightarrow G$, we have models of *BG* as *EG/G* and *BT* as *EG/T*, so *Bi*: *BT* \rightarrow *BG* is a fiber bundle with fiber *G/T*

(Note: T is generally not normal in G)

Let $P \to X$ be a principal *G*-bundle classified by a map $f_P: X \to BG$, and $q: Y \to X$ be the pullback of *Bi*:

The generalized splitting principle

Here's the diagram again:

- ► Theorem, part 1: there is a canonical reduction of structure group of $q^*P \rightarrow Y$ to *T*
- ▶ Theorem, part 2: q^* : $H^*(X; \mathbb{Q}) \to H^*(Y; \mathbb{Q})$ is injective

- Suppose *c* is a characteristic class for principal *G*-bundles
- Via Bi, it also defines a characteristic class for principal *T*-bundles
- Since q* is injective, that characteristic class for the principal *T*-bundle we obtained over *Y* determines c(P)
- Since $T \cong \mathbb{T}^n$, that principal *T*-bundle decomposes (in a sense) as a product of *n* principal \mathbb{T} -bundles
- ► Therefore the characteristic class also factors as a product $\prod_{i=1}^{n} (1 + x_i)$, where the x_i are the c_1 s of the principal \mathbb{T} -bundle summands. The x_i are called the *roots* of *P*

- ► For part 1 (reduction of structure group), this applies universally to reduce $(Bi)^*EG \rightarrow BT$ to $ET \rightarrow BT$; then pull back and use commutativity of the diagram
- ► For part 2 (injectivity on cohomology): uses Borel's computation of cohomology of *G*/*T* and *BG* and the Serre spectral sequence
 - Key fact: H*(BG; Q) is a polynomial ring with even-degree generators, so the spectral sequence collapses
 - In fact, you can replace Q with any ring A such that if H_∗(G; Z) has *p*-torsion, then *p* is a unit in A

- The diagonal matrices are a maximal torus in U_n of rank n
- ▶ Using associated bundles to pass between principal U_n -bundles and complex vector bundles, this tells us that a complex vector bundle $V \rightarrow X$ splits as a sum of line bundles L_1, \ldots, L_n when pulled back to Y
- c₁(L_i) is called the ith Chern root, and c_k(V) is the kth symmetric polynomial in the Chern roots
- $H^*(U_n; \mathbb{Z})$ is free, so we can work over \mathbb{Z}

Chern classes and the flag manifold

- Y has a more concrete description in this case
- ▶ Namely, the *flag manifold* for $V \rightarrow X$
- A *flag* of an inner product space W is a decomposition of W as a sum of one-dimensional, orthogonal subspaces
- ► The flag manifold $Y \to X$ is a fiber bundle whose fiber at $x \in X$ is the space of flags of V_x
 - (Ok, you need a Hermitian metric to define this, but the isomorphism type of the fiber bundle does not depend on this choice)

Example: Pontrjagin classes, part 1

- $G = SO_{2n}$: one maximal torus is the diagonal matrices in $U_n \subset SO_n$, which has rank *n*
- Upshot: if V is an oriented rank-2n vector bundle, q*V splits as a sum of complex line bundles L₁,...,L_n, but the symmetric polynomial gets squared:

$$p_i(q^*V) = \sigma_i(c_1(L_1), \dots, c_1(L_n))^2.$$

- ► This is because the Pontrjagin classes of V are the Chern classes of V_C, and the Chern roots of V_C come in pairs ±x₁,...,±x_n
- ► The Euler class also splits:

$$e(q^*V) = \sigma_n(c_1(L_1), \ldots, c_n(L_n))$$

- ► $G = SO_{2n+1}$ has a similar story: one maximal torus is the diagonal matrices in $U_n \subset SO_{2n+1}$ (so the last diagonal entry is always 1)
- So an oriented rank-(2n + 1) real vector bundle V, pulled back to Y, splits as a direct sum of n complex line bundles and a trivial real line bundle
- The Pontrjagin and Euler classes of V admit the same description as in the case SO_{2n}

Example (sort of): Stiefel-Whitney classes

- O_n isn't connected, so we can't use the theorem
- Nonetheless, enough of the structure persists with Z/2 coefficients and the subgroup Oⁿ₁ ⊂ O_n to prove something via similar methods
- One can prove q* is an injection on mod 2 cohomology and q*P admits a canonical reduction of structure group to a principal O₁ⁿ-bundle
- ▶ Upshot: a rank-*n* real vector bundle *V*, after pullback to *Y*, splits as a direct sum of *n* real line bundles L_1, \ldots, L_n , and

$$w_k(V) = \sigma_i(w_1(L_1), \dots, w_1(L_n))$$