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Today’s plan

É Stiefel-Whitney classes: definition and a few basic properties
É An application: tangential structures (e.g. orientation, spin,

. . . )
É An application: unoriented bordism
É An application: nonembedding results



This week’s plan

É Yesterday: four perspectives on characteristic classes
É Today: Stiefel-Whitney classes (real vector bundles, mod 2

cohomology)
É Tomorrow: Steenrod squares and Wu classes (more mod 2

cohomology)
É Thursday: Chern, Pontrjagin, and Euler classes (real and

complex vector bundles, Z cohomology)
É Friday: Chern-Weil theory (de Rham cohomology)



A definition of Stiefel-Whitney classes

É Stiefel-Whitney classes are characteristic classes of real vector
bundles living in mod 2 cohomology
É Theorem: H∗(BO;Z/2)∼= Z/2[w1, w2, . . . ] with |wi|= i, so for

every real vector bundle V→ X, we obtain its ith

Stiefel-Whitney class wi(V) ∈ Hi(X;Z/2)
É Define w(V) := w0(V) +w1(V) +w2(V) + . . . (here w0(V) := 1)
É If M is a manifold, its Steifel-Whitney classes means the

Stiefel-Whitney classes of TM→M



Some basic properties of Stiefel-Whitney classes

É Naturality (of course)
É The Whitney sum formula w(V ⊕W) = w(V)w(W), or

equivalently,

wn(V ⊕W) =
∑

i+j=n

wi(V)wj(W) (1)

É If S→ RPn denotes the tautological line bundle, then w1(S) is
the nontrivial element of H1(RPn;Z/2)∼= Z/2
É Stability: w(V ⊕R) = w(V)
É If n> rank(V), then wn(V) = 0
É More generally, if V has ` everywhere linearly independent

sections, wn(V) = 0 for all n> rank V − `



Tangential structures

É Tangential structures provide a general framework for
studying orientations, spin structures, etc.
É Works for “topological” structures, not “geometric” ones (e.g.

metric, connection, complex structure, symplectic structure,
contact structure)



Reduction of structure groups

É We need a homomorphism f : G→ H of topological groups
É Given f , and a principal G-bundle P→ X, there is an

associated principal H-bundle P×G H→ X defined in the same
way as associated vector bundles
É Now, given a principal H-bundle Q→ X, a reduction of

structure group to G is data of
1. a principal G-bundle P→ X, and

2. an isomorphism Q
∼=→ P×G H of principal H-bundles



Orientations and the bundle of frames

É The principal GLn(R)-bundle of frames admits a “canonical”
reduction of structure group to the principal On-bundle of
orthonormal frames: the reduction of structure group is
asking, which bases are orthonormal?
É given by the data of a Euclidean metric on the bundle, but this

is a contractible choice, hence “canonical”
É An orientation is the data of declaring which half of the bases

of TxM are positively oriented, consistently over the entire
space
É The space of positively oriented orthonormal bases of an

oriented inner product space V is an SO(V)-torsor
É So an orientation tells us compatible SOn-torsors inside
BO(V)→ X

É That is: an orientation of a vector bundle is precisely a
reduction of structure group from On to SOn



Tangential structures

É Tangential structures take that idea and run with it
É Given a group Gn and a homomorphism ρn : Gn→ On, a

G-structure on a vector bundle is a reduction of structure
group across ρn
É This is data, and need not exist or be unique (like for

orientations)

É A G-structure on a manifold M is a G-structure on TM
É Examples: orientation, spin structure ρn : Spinn

2:1
� SOn ,→ On,

spinc structure, . . .
É Note: for Un/2 or Spn/4 this only gives almost complex, resp.

almost symplectic structures



Alternative ways to think about tangential structures

É Let U be an open cover of X with respect to which V is trivial,
so we obtain transition functions gαβ : Uα ∩Uβ → GLn(R) for
Uα, Uβ ∈ U

É A G-structure is a (homotopy class of) lifts of gαβ across
Gn→ GLn(R):

Gn

ρn

��
V gαβ

//

egαβ
<<

GLn(R)

(2)

The lifts still must satisfy the cocycle condition egαβegβγegγα = 1



Alternative ways to think about tangential structures

É The map ρn : Gn→ GLn(R) lifts to a map Bρn : BG→ BGLn(R),
and we could ask for a (homotopy class of a) lift of the
classifying map X→ BGLn(R) across Bρn

É All three of these perspectives are really the same thing
É One can stabilize and ask about a lift of the map X→ BGLn(R)

across a map Bρ : BG→ BGL(R), giving stable tangential
structures
É For many things (orientation, spin structure) this isn’t different
É For some (e.g. framing), though, it is!



Wait. . . weren’t we talking about characteristic classes?

É Often, a given kind of tangential structure exists on a vector
bundle V→ X iff some characteristic class of V vanishes
É Example: V is orientable iff w1(V) = 0. If V is orientable, its

orientations are an H0(X;Z/2)-torsor
É V admits a spin structure iff w1(V) = 0 and w2(V) = 0. If V is

spinnable, its spin structures are an H1(X;Z/2)-torsor



Bordism

É Two closed n-manifolds M and N are bordant if there is a
compact (n+ 1)-dimensional manifold X with an
identification ∂ X ∼=M⊕N
É E.g. the pair of pants is a bordism from S1 q S1 to S1

É Disjoint union turns the set of equivalence classes of
n-manifolds under bordism into an abelian group, denoted ΩO

n
and called the nth bordism group. The empty set is the identity
É Cartesian product turns ΩO

∗ :=
⊕

n≥0Ω
O
n into a graded

commutative ring
É Variants ΩSO

∗ (oriented bordism), spin bordism, . . .



Bordism groups

É A bordism invariant generally refers to a group
homomorphism ΩO

n → A or a ring homomorphism ΩO
∗ → A

É Example: one can prove that if [M] = 0 in ΩO
n (so, M bounds

an (n+ 1)-manifold), then χ(M) is even, so
χ(M)mod 2: ΩO

n → Z/2 is a bordism invariant



Stiefel-Whitney numbers

É Why we care: Stiefel-Whitney classes can be used to make
bordism invariants
É Let i1 + · · ·+ ik = n be a partition of n, and define the

Stiefel-Whitney number of a closed n-manifold M as

wi1···ik(M) := 〈wi1(M) · · ·wik(M), [M]〉, (3)

where [M] ∈ Hn(M;Z/2) is the fundamental class and 〈–, –〉 is
the cap product pairing
É These are all bordism invariants



Determination of the bordism ring

É Thom completely determined ΩO
∗ :

ΩO
∗
∼= Z/2[xi | i 6= 2j − 1] = Z/2[x2, x4, x5, x6, . . . ]

É Some but not all xi can be realized by RPi

É Two closed n-manifolds are bordant iff all of their
Stiefel-Whitney numbers agree
É In general, Stiefel-Whitney numbers are “too much”

information: some coincide. We’ll see some tomorrow



Stiefel-Whitney classes obstruct immersions

É If N ,→M is an immersion, there is a short exact sequence
0→ TN→ TM|N → ν→ 0, where ν is the normal bundle, and
this noncanonically splits
É This, together with information about the Stiefel-Whitney

classes of M, imposes constraints on the Stiefel-Whitney
classes of N



Example: RP9 does not immerse into R14

É In the exercises, you’ll show w(RPn) = (1+ x)n+1, where x
generates H1(RPn;Z/2). For n= 9, this is 1+ x2 + x8

É w(Rn) = 1, because TRn is a trivial bundle
É Therefore if there is such an immersion, (1+ x2 + x8)w(ν) = 1

— solving, w(ν) = 1+ x2 + x4 + x6

É But rank(ν) = 5, so w6 must vanish
É This is a simple test for nonimmersions, but usually provides

non-sharp bounds



A few more useful Stiefel-Whitney facts

É For all vector bundles V→ X, w1(V) = w1(Det V) (the
determinant is defined to be the top exterior power)
É Line bundles are classified up to isomorphism by w1, and

w1(L1 ⊗ L2) = w1(L1) +w1(L2)
É The top Stiefel-Whitney number of M, 〈wn(M), [M]〉, equals its

mod 2 Euler characteristic


