Day 2: Stiefel-Whitney classes

Arun Debray

July 7, 2020

- Stiefel-Whitney classes: definition and a few basic properties
- An application: tangential structures (e.g. orientation, spin, ...)
- An application: unoriented bordism
- An application: nonembedding results

- Yesterday: four perspectives on characteristic classes
- Today: Stiefel-Whitney classes (real vector bundles, mod 2 cohomology)
- Tomorrow: Steenrod squares and Wu classes (more mod 2 cohomology)
- Thursday: Chern, Pontrjagin, and Euler classes (real and complex vector bundles, Z cohomology)
- Friday: Chern-Weil theory (de Rham cohomology)

- Stiefel-Whitney classes are characteristic classes of real vector bundles living in mod 2 cohomology
- Theorem: H*(BO; Z/2) ≅ Z/2[w₁, w₂,...] with |w_i| = i, so for every real vector bundle V → X, we obtain its ith Stiefel-Whitney class w_i(V) ∈ Hⁱ(X; Z/2)
- Define $w(V) := w_0(V) + w_1(V) + w_2(V) + \dots$ (here $w_0(V) := 1$)
- ▶ If *M* is a manifold, its Steifel-Whitney classes means the Stiefel-Whitney classes of $TM \rightarrow M$

Some basic properties of Stiefel-Whitney classes

Naturality (of course)

► The Whitney sum formula $w(V \oplus W) = w(V)w(W)$, or equivalently,

$$w_n(V \oplus W) = \sum_{i+j=n} w_i(V) w_j(W) \tag{1}$$

- ▶ If $S \to \mathbb{RP}^n$ denotes the tautological line bundle, then $w_1(S)$ is the nontrivial element of $H^1(\mathbb{RP}^n; \mathbb{Z}/2) \cong \mathbb{Z}/2$
- Stability: $w(V \oplus \underline{\mathbb{R}}) = w(V)$
- If $n > \operatorname{rank}(V)$, then $w_n(V) = 0$
 - ► More generally, if *V* has ℓ everywhere linearly independent sections, $w_n(V) = 0$ for all $n > \operatorname{rank} V \ell$

- Tangential structures provide a general framework for studying orientations, spin structures, etc.
- Works for "topological" structures, not "geometric" ones (e.g. metric, connection, complex structure, symplectic structure, contact structure)

- We need a homomorphism $f: G \rightarrow H$ of topological groups
- ► Given *f*, and a principal *G*-bundle $P \rightarrow X$, there is an associated principal *H*-bundle $P \times_G H \rightarrow X$ defined in the same way as associated vector bundles
- Now, given a principal *H*-bundle $Q \rightarrow X$, a reduction of *structure group to G* is data of
 - 1. a principal *G*-bundle $P \rightarrow X$, and
 - 2. an isomorphism $Q \xrightarrow{\cong} P \times_G H$ of principal *H*-bundles

Orientations and the bundle of frames

- The principal $GL_n(\mathbb{R})$ -bundle of frames admits a "canonical" reduction of structure group to the principal O_n -bundle of orthonormal frames: the reduction of structure group is asking, which bases are orthonormal?
 - given by the data of a Euclidean metric on the bundle, but this is a contractible choice, hence "canonical"
- An orientation is the data of declaring which half of the bases of $T_x M$ are positively oriented, consistently over the entire space
 - The space of positively oriented orthonormal bases of an oriented inner product space V is an SO(V)-torsor
 - So an orientation tells us compatible SO_n -torsors inside $\mathscr{B}_O(V) \to X$
- That is: an orientation of a vector bundle is precisely a reduction of structure group from O_n to SO_n

Tangential structures

- Tangential structures take that idea and run with it
- ► Given a group G_n and a homomorphism $\rho_n : G_n \to O_n$, a *G-structure* on a vector bundle is a reduction of structure group across ρ_n
 - This is data, and need not exist or be unique (like for orientations)
- A G-structure on a manifold M is a G-structure on TM
- Examples: orientation, *spin structure* ρ_n : Spin_n $\xrightarrow{2:1}$ SO_n \hookrightarrow O_n, spin^c structure, ...
- Note: for U_{n/2} or Sp_{n/4} this only gives almost complex, resp. almost symplectic structures

Alternative ways to think about tangential structures

- ► Let \mathfrak{U} be an open cover of *X* with respect to which *V* is trivial, so we obtain transition functions $g_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \operatorname{GL}_n(\mathbb{R})$ for $U_{\alpha}, U_{\beta} \in \mathfrak{U}$
- A *G*-structure is a (homotopy class of) lifts of $g_{\alpha\beta}$ across $G_n \to \operatorname{GL}_n(\mathbb{R})$:

(2)

The lifts still must satisfy the cocycle condition $\tilde{g}_{\alpha\beta}\tilde{g}_{\beta\gamma}\tilde{g}_{\gamma\alpha} = 1$

Alternative ways to think about tangential structures

- ► The map $\rho_n : G_n \to \operatorname{GL}_n(\mathbb{R})$ lifts to a map $B\rho_n : BG \to B\operatorname{GL}_n(\mathbb{R})$, and we could ask for a (homotopy class of a) lift of the classifying map $X \to B\operatorname{GL}_n(\mathbb{R})$ across $B\rho_n$
- All three of these perspectives are really the same thing
- One can stabilize and ask about a lift of the map $X \to BGL_n(\mathbb{R})$ across a map $B\rho : BG \to BGL(\mathbb{R})$, giving stable tangential structures
 - For many things (orientation, spin structure) this isn't different
 - For some (e.g. framing), though, it is!

Wait... weren't we talking about characteristic classes?

- ▶ Often, a given kind of tangential structure exists on a vector bundle $V \rightarrow X$ iff some characteristic class of V vanishes
- Example: *V* is orientable iff $w_1(V) = 0$. If *V* is orientable, its orientations are an $H^0(X; \mathbb{Z}/2)$ -torsor
- ▶ *V* admits a spin structure iff $w_1(V) = 0$ and $w_2(V) = 0$. If *V* is spinnable, its spin structures are an $H^1(X; \mathbb{Z}/2)$ -torsor

Bordism

- ► Two closed *n*-manifolds *M* and *N* are *bordant* if there is a compact (n + 1)-dimensional manifold *X* with an identification $\partial X \cong M \oplus N$
- E.g. the pair of pants is a bordism from $S^1 \amalg S^1$ to S^1
- Disjoint union turns the set of equivalence classes of *n*-manifolds under bordism into an abelian group, denoted Ω^O_n and called the nth bordism group. The empty set is the identity
- ► Cartesian product turns $\Omega^{O}_{*} := \bigoplus_{n \ge 0} \Omega^{O}_{n}$ into a graded commutative ring
- Variants Ω_*^{SO} (oriented bordism), spin bordism, ...

- A *bordism invariant* generally refers to a group homomorphism $\Omega_n^0 \to A$ or a ring homomorphism $\Omega_*^0 \to A$
- Example: one can prove that if [M] = 0 in Ω_n^O (so, *M* bounds an (n + 1)-manifold), then $\chi(M)$ is even, so $\chi(M) \mod 2: \Omega_n^O \to \mathbb{Z}/2$ is a bordism invariant

Stiefel-Whitney numbers

- Why we care: Stiefel-Whitney classes can be used to make bordism invariants
- Let $i_1 + \dots + i_k = n$ be a partition of n, and define the *Stiefel-Whitney number* of a closed n-manifold M as

$$w_{i_1\cdots i_k}(M) := \langle w_{i_1}(M)\cdots w_{i_k}(M), [M] \rangle, \tag{3}$$

where $[M] \in H_n(M; \mathbb{Z}/2)$ is the fundamental class and $\langle -, - \rangle$ is the cap product pairing

These are all bordism invariants

Determination of the bordism ring

• Thom completely determined Ω_*^{O} :

$$\Omega^{O}_{*} \cong \mathbb{Z}/2[x_{i} \mid i \neq 2^{j} - 1] = \mathbb{Z}/2[x_{2}, x_{4}, x_{5}, x_{6}, \dots]$$

- Some but not all x_i can be realized by \mathbb{RP}^i
- Two closed *n*-manifolds are bordant iff all of their Stiefel-Whitney numbers agree
- In general, Stiefel-Whitney numbers are "too much" information: some coincide. We'll see some tomorrow

Stiefel-Whitney classes obstruct immersions

- ▶ If $N \hookrightarrow M$ is an immersion, there is a short exact sequence $0 \to TN \to TM|_N \to v \to 0$, where *v* is the normal bundle, and this noncanonically splits
- ► This, together with information about the Stiefel-Whitney classes of *M*, imposes constraints on the Stiefel-Whitney classes of *N*

Example: \mathbb{RP}^9 does not immerse into \mathbb{R}^{14}

- ► In the exercises, you'll show $w(\mathbb{RP}^n) = (1 + x)^{n+1}$, where *x* generates $H^1(\mathbb{RP}^n; \mathbb{Z}/2)$. For n = 9, this is $1 + x^2 + x^8$
- $w(\mathbb{R}^n) = 1$, because $T\mathbb{R}^n$ is a trivial bundle
- ► Therefore if there is such an immersion, $(1 + x^2 + x^8)w(v) = 1$ — solving, $w(v) = 1 + x^2 + x^4 + x^6$
- But rank(v) = 5, so w_6 must vanish
- This is a simple test for nonimmersions, but usually provides non-sharp bounds

A few more useful Stiefel-Whitney facts

- ► For all vector bundles $V \rightarrow X$, $w_1(V) = w_1(\text{Det }V)$ (the determinant is defined to be the top exterior power)
- ► Line bundles are classified up to isomorphism by w_1 , and $w_1(L_1 \otimes L_2) = w_1(L_1) + w_1(L_2)$
- ► The top Stiefel-Whitney number of M, $\langle w_n(M), [M] \rangle$, equals its mod 2 Euler characteristic