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Today’s plan

> Steenrod squares are stable cohomology operations (also,
what are stable cohomology operations?)

» Using Steenrod squares to define Wu classes

» Using Wu classes to do cool stuff



This week’s plan

» Monday: four perspectives on characteristic classes

> Yesterday: Stiefel-Whitney classes (real vector bundles, mod 2
cohomology)

> Today: Steenrod squares and Wu classes (more mod 2
cohomology)

» Tomorrow: Chern, Pontrjagin, and Euler classes (real and
complex vector bundles, Z cohomology)

» Friday: Chern-Weil theory (de Rham cohomology)



Cohomology operations

» Goal: use additional structure on H*(—;Z/2) to deduce
properties of characteristic classes

» These come in the form of cohomology operations, namely
natural transformations HP(—;A) — H9(—;B)

> Example: x — x2

» Example: the Pontrjagin square @ : H*(X;Z/2) — H*(X; Z/4)
(idea: if you know x mod 2, you know x?> mod 4)



Stable cohomology operations

» Apparently the algebraic structure of all unstable cohomology
operations is complicated and messy

» Simplifies considerably by stabilizing

> A cohomology operation is stable if it commutes with the
suspension isomorphism H*(X) — H*"1(£X)

» All of the examples on the previous slide were unstable!



Examples of stable cohomology operations

» Given a short exact sequence of abelian groups
0 —-A — B— C— 0, there is a long exact sequence in
cohomology, and all maps in the long exact sequence are
stable cohomology operations

> The connecting map f: H*(X; C) — H**1(X;A), called the
Bockstein map, is most interesting

» Other examples tend to be harder to define. Some general
results:

> Over Q, stable cohomology operations are trivial (i.e. only
scalar multiplication)

» All stable cohomology operations from Z to Z are torsion:
reduction mod n, some operation in Z/n cohomology, then
Bockstein H*(X; Z/n) — H*"'(X; Z)

» With Z/n coefficients, the story is more interesting



The (mod 2) Steenrod algebra

» The set of stable cohomology operations
H*(X;Z/2) — H***(X;Z/2) forms a graded Z/2-algebra under
composition, denoted .f and called the Steenrod algebra

> Generated by Steenrod squares
Sq": H*(X;Z/2) —» H*"™(X;Z/2), n > 0, satisfying some
axioms and relations
» For n > 1, definition is a bit technical



Axiomatic definition of Steenrod squares

» (implicit: group homomorphism, naturality, stability)

> Sq° =id and Sq! is the Bockstein for
0-Z/2—-7Z/4—-7Z/2—-0

> If |x| = n, Sq*(x) = x?
If [x| <n, Sq"(x) =0
» The Cartan formula:

Sq"(y) = Y, Sq()ST(),

i+j=n

A\

or, if Sq(x) := Sq°(x) + Sq'(x) + - - -, then Sq(xy) = Sq(x)Sq(y)
» Theorem: these properties uniquely characterize the Steenrod
squares and their action on mod 2 cohomology of spaces



Adem relations

> .o is not free (in fact generated by Sq?" for all n):

li/2]) ,.
o —k—1

)Sqi+j—ksqk
k=0

» Summary: for any space X, H*(X;Z/2) is an ./-module (not
an .¢f -algebra), and pullback is always an .f-module
homomorphism



Examples of Steenrod squares acting on cohomology

> HY(RP;Z/2) = 7Z/2[x]/(™), with |x| = 1
» The axioms imply that for any degree-1 class, Sq(x) = x +x?
> The Cartan formula then tells us the rest: Sq(x¥) = (x +x?)k

» Similar reasoning applies for CP", HP", and n = o0



Steenrod squares + Poincaré duality = Wu classes

> One consequence of Poincaré duality is that H*(X; Z/2) and
H"(X;Z/2) are canonically dual Z/2-vector spaces for any
closed n-manifold X
» That is, a functional H* *(X;Z/2) — Z/2 is identified with an
element of H*(X;Z/2)
> Let’s apply that to x — (Sq¥(x),[M])
> Sqk takes us to H"(X;Z/2)
» Then evaluate on the fundamental class
> This determines an element v, € HX(X;Z/2) called the k™ Wu
class of X



The Wu formula

» Wu Wenjun proved that Sq(v) =w
> Herev:=vy+v; +... as usual, and as usual, vy =1

» There is also the Wu formula:

i

. ktj—i—1
5q'(wy) = Z ( ! j )Wi—jWk+j

j=0

> Can interpret as telling you .«/-module structure on
H*(BO,;;Z/2), or as universal relations between
Stiefel-Whitney classes
> Brown-Peterson proved all universal relations between
Stiefel-Whitney classes arise this way



The Wu formula: quick corollaries

> Stiefel-Whitney classes of manifolds are homotopy invariants
» Homotopy equivalent closed manifolds are unoriented
bordant
> “unoriented” is important: counterexamples in, e.g. pin*
bordism
> Can define Stiefel-Whitney classes for closed topological
manifolds



The Wu formula imposes constraints on Stiefel-Whitney
classes

» Example: if M is a closed manifold of dimension at most 3,
then W% =wy
> Hence M orientable = M spin
> In general wf = w, means M admits a pin~ structure

» Proof: w; = Sq%; +Sqlvg =v;

A\

wy = Sq*vy +Sq'v; + Sq°vy =v3 +v,
» But v, = 0, because Sq?: H" 2(X;Z/2) — H"(X; Z/2) vanishes
whenn <3

2

> Hence wy =w]



The Wu formula and the intersection pairing on
4-manifolds

» Theorem: if M is a simply connected closed 4-manifold, M is
spin iff its intersection pairing H2(M) ® H?(M) — Z is even
> Since M is simply connected, H*(M;Z/2) = 0, so the kernel of
mod 2 reduction H2(M; Z) — H?(M; Z/2) is precisely
2H?(M; Z)
» Why? Use the long exact sequence in cohomology associated
to0>Z—>Z—-7Z/2—0
> Upshot: we can check in H*(M; Z/2), because if x € H*(M; Z)
dies mod 2, it’s twice something, so its intersection pairing
with anything is twice something



The Wu formula and the intersection pairing on
4-manifolds

» Now we want to prove for all a € H2(M; Z/2), {a®,[M]) =0
> Well, a® = Sq%a = v,a = wya
> Here we use orientability: in general, v, =w, + w%

» Since cup-product-then-evaluate is a perfect pairing
H2(M;Z/2) ® H*(M;Z/2) — Z./2, wy = 0 iff (woa, [M])
for all a € H*(M;Z/2)

» Note: some hypothesis on 7; is necessary: otherwise the
Enriques surface, with 7, = Z/2, is a counterexample

0

> Note: nothing about this needed smoothness! In particular,
applies to the Eg-manifold, a topological spin 4-manifold with
intersection form the Eg lattice



Spin® structures

> The Lie group Spin;, := Spin,, X413 Uy
> The map Spin, — SO, extends to Spin;, so we can consider
spin® structures on oriented manifolds

» It turns out that M (assumed oriented) admits a spin®
structure iff wo(M) is the reduction of a class ¢; € H*(M;Z)

» e.g. CP? is not spin, but it is spin® (as are all almost complex
manifolds)



Spin® structures

> Let 8: HY(X;Z/2) — H**1(X; Z) denote the Bockstein for
00Z—>7Z—>7Z/2—0
» Then, M admits a spin® structure iff fw, =0

» The classes W, := fw, are sometimes called “integral
Stiefel-Whitney classes”

> Note: compatibility of the above short exact sequence with
0—>7Z/2— 7Z/4 — Z/2 — 0 means that 3 composed with
reduction mod 2 is Sq*

> This is sometimes called the “Bock-to-Sq' lemma”



Foreshadowing the exercises

» Computing some Steenrod squares

» Using Steenrod squares to compute some Stiefel-Whitney
classes

» Applying the Wu formula

» Cech cohomology and spin® structures



