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Today’s plan

É Steenrod squares are stable cohomology operations (also,
what are stable cohomology operations?)
É Using Steenrod squares to define Wu classes
É Using Wu classes to do cool stuff



This week’s plan

É Monday: four perspectives on characteristic classes
É Yesterday: Stiefel-Whitney classes (real vector bundles, mod 2

cohomology)
É Today: Steenrod squares and Wu classes (more mod 2

cohomology)
É Tomorrow: Chern, Pontrjagin, and Euler classes (real and

complex vector bundles, Z cohomology)
É Friday: Chern-Weil theory (de Rham cohomology)



Cohomology operations

É Goal: use additional structure on H∗(–;Z/2) to deduce
properties of characteristic classes
É These come in the form of cohomology operations, namely

natural transformations Hp(–; A)→ Hq(–; B)
É Example: x 7→ x2

É Example: the Pontrjagin square P : H2(X;Z/2)→ H4(X;Z/4)
(idea: if you know x mod 2, you know x2 mod 4)



Stable cohomology operations

É Apparently the algebraic structure of all unstable cohomology
operations is complicated and messy
É Simplifies considerably by stabilizing
É A cohomology operation is stable if it commutes with the

suspension isomorphism Hk(X)→ Hk+1(ΣX)
É All of the examples on the previous slide were unstable!



Examples of stable cohomology operations

É Given a short exact sequence of abelian groups
0→ A→ B→ C→ 0, there is a long exact sequence in
cohomology, and all maps in the long exact sequence are
stable cohomology operations
É The connecting map β : Hk(X; C)→ Hk+1(X; A), called the

Bockstein map, is most interesting
É Other examples tend to be harder to define. Some general

results:
É Over Q, stable cohomology operations are trivial (i.e. only

scalar multiplication)
É All stable cohomology operations from Z to Z are torsion:

reduction mod n, some operation in Z/n cohomology, then
Bockstein Hk(X;Z/n)→ Hk+1(X;Z)

É With Z/n coefficients, the story is more interesting



The (mod 2) Steenrod algebra

É The set of stable cohomology operations
H∗(X;Z/2)→ H∗+k(X;Z/2) forms a graded Z/2-algebra under
composition, denotedA and called the Steenrod algebra
É Generated by Steenrod squares

Sqn : H∗(X;Z/2)→ H∗+n(X;Z/2), n≥ 0, satisfying some
axioms and relations
É For n> 1, definition is a bit technical



Axiomatic definition of Steenrod squares

É (implicit: group homomorphism, naturality, stability)
É Sq0 = id and Sq1 is the Bockstein for

0→ Z/2→ Z/4→ Z/2→ 0
É If |x|= n, Sqn(x) = x2

É If |x|< n, Sqn(x) = 0
É The Cartan formula:

Sqn(xy) =
∑

i+j=n

Sqi(x)Sqj(y),

or, if Sq(x) := Sq0(x) + Sq1(x) + · · · , then Sq(xy) = Sq(x)Sq(y)
É Theorem: these properties uniquely characterize the Steenrod

squares and their action on mod 2 cohomology of spaces



Ádem relations

É A is not free (in fact generated by Sq2n
for all n):

SqiSqj =
bi/2c
∑

k=0

�

j− k− 1
i− 2k

�

Sqi+j−kSqk

É Summary: for any space X, H∗(X;Z/2) is anA -module (not
anA -algebra), and pullback is always anA -module
homomorphism



Examples of Steenrod squares acting on cohomology

É H∗(RPn;Z/2)∼= Z/2[x]/(xn+1), with |x|= 1
É The axioms imply that for any degree-1 class, Sq(x) = x+ x2

É The Cartan formula then tells us the rest: Sq(xk) = (x+ x2)k

É Similar reasoning applies for CPn, HPn, and n=∞



Steenrod squares + Poincaré duality = Wu classes

É One consequence of Poincaré duality is that Hk(X;Z/2) and
Hn−k(X;Z/2) are canonically dual Z/2-vector spaces for any
closed n-manifold X
É That is, a functional Hn−k(X;Z/2)→ Z/2 is identified with an

element of Hk(X;Z/2)
É Let’s apply that to x 7→ 〈Sqk(x), [M]〉
É Sqk takes us to Hn(X;Z/2)
É Then evaluate on the fundamental class

É This determines an element vk ∈ Hk(X;Z/2) called the kth Wu
class of X



The Wu formula

É Wu Wenjun proved that Sq(v) = w
É Here v := v0 + v1 + . . . as usual, and as usual, v0 = 1

É There is also the Wu formula:

Sqi(wk) =
i
∑

j=0

�

k+ j− i− 1
j

�

wi−jwk+j

É Can interpret as telling youA -module structure on
H∗(BOn;Z/2), or as universal relations between
Stiefel-Whitney classes
É Brown-Peterson proved all universal relations between

Stiefel-Whitney classes arise this way



The Wu formula: quick corollaries

É Stiefel-Whitney classes of manifolds are homotopy invariants
É Homotopy equivalent closed manifolds are unoriented

bordant
É “unoriented” is important: counterexamples in, e.g. pin+

bordism

É Can define Stiefel-Whitney classes for closed topological
manifolds



The Wu formula imposes constraints on Stiefel-Whitney
classes

É Example: if M is a closed manifold of dimension at most 3,
then w2

1 = w2
É Hence M orientable⇒ M spin
É In general w2

1 = w2 means M admits a pin− structure

É Proof: w1 = Sq0v1 + Sq1v0 = v1

É w2 = Sq2v0 + Sq1v1 + Sq0v2 = v2
1 + v2

É But v2 = 0, because Sq2 : Hn−2(X;Z/2)→ Hn(X;Z/2) vanishes
when n≤ 3
É Hence w2 = w2

1



The Wu formula and the intersection pairing on
4-manifolds

É Theorem: if M is a simply connected closed 4-manifold, M is
spin iff its intersection pairing H2(M)⊗H2(M)→ Z is even
É Since M is simply connected, H1(M;Z/2) = 0, so the kernel of

mod 2 reduction H2(M;Z)→ H2(M;Z/2) is precisely
2H2(M;Z)
É Why? Use the long exact sequence in cohomology associated

to 0→ Z→ Z→ Z/2→ 0
É Upshot: we can check in H∗(M;Z/2), because if x ∈ H2(M;Z)

dies mod 2, it’s twice something, so its intersection pairing
with anything is twice something



The Wu formula and the intersection pairing on
4-manifolds

É Now we want to prove for all a ∈ H2(M;Z/2), 〈a2, [M]〉= 0
É Well, a2 = Sq2a= v2a= w2a
É Here we use orientability: in general, v2 = w2 +w2

1

É Since cup-product-then-evaluate is a perfect pairing
H2(M;Z/2)⊗H2(M;Z/2)→ Z/2, w2 = 0 iff 〈w2a, [M]〉= 0
for all a ∈ H2(M;Z/2)
É Note: some hypothesis on π1 is necessary: otherwise the

Enriques surface, with π1
∼= Z/2, is a counterexample

É Note: nothing about this needed smoothness! In particular,
applies to the E8-manifold, a topological spin 4-manifold with
intersection form the E8 lattice



Spinc structures

É The Lie group Spinc
n := Spinn ×{±1} U1

É The map Spinn→ SOn extends to Spinc
n, so we can consider

spinc structures on oriented manifolds
É It turns out that M (assumed oriented) admits a spinc

structure iff w2(M) is the reduction of a class c1 ∈ H2(M;Z)
É e.g. CP2 is not spin, but it is spinc (as are all almost complex

manifolds)



Spinc structures

É Let β : Hk(X;Z/2)→ Hk+1(X;Z) denote the Bockstein for
0→ Z→ Z→ Z/2→ 0
É Then, M admits a spinc structure iff βw2 = 0
É The classes Wn+1 := βwn are sometimes called “integral

Stiefel-Whitney classes”
É Note: compatibility of the above short exact sequence with

0→ Z/2→ Z/4→ Z/2→ 0 means that β composed with
reduction mod 2 is Sq1

É This is sometimes called the “Bock-to-Sq1 lemma”



Foreshadowing the exercises

É Computing some Steenrod squares
É Using Steenrod squares to compute some Stiefel-Whitney

classes
É Applying the Wu formula
É Čech cohomology and spinc structures


