Day 3: Stable cohomology operations and Wu classes

Arun Debray

July 8, 2020

- Steenrod squares are stable cohomology operations (also, what are stable cohomology operations?)
- Using Steenrod squares to define Wu classes
- Using Wu classes to do cool stuff

- Monday: four perspectives on characteristic classes
- Yesterday: Stiefel-Whitney classes (real vector bundles, mod 2 cohomology)
- Today: Steenrod squares and Wu classes (more mod 2 cohomology)
- Tomorrow: Chern, Pontrjagin, and Euler classes (real and complex vector bundles, Z cohomology)
- Friday: Chern-Weil theory (de Rham cohomology)

- ► Goal: use additional structure on H*(-; Z/2) to deduce properties of characteristic classes
- ► These come in the form of *cohomology operations*, namely natural transformations $H^p(-;A) \rightarrow H^q(-;B)$
- Example: $x \mapsto x^2$
- ► Example: the *Pontrjagin square* \mathscr{P} : $H^2(X; \mathbb{Z}/2) \to H^4(X; \mathbb{Z}/4)$ (idea: if you know *x* mod 2, you know $x^2 \mod 4$)

- Apparently the algebraic structure of all unstable cohomology operations is complicated and messy
- Simplifies considerably by stabilizing
- A cohomology operation is *stable* if it commutes with the suspension isomorphism $H^k(X) \rightarrow H^{k+1}(\Sigma X)$
- All of the examples on the previous slide were unstable!

Examples of stable cohomology operations

- Given a short exact sequence of abelian groups 0 → A → B → C → 0, there is a long exact sequence in cohomology, and all maps in the long exact sequence are stable cohomology operations
- ► The connecting map β : $H^k(X; C) \rightarrow H^{k+1}(X; A)$, called the *Bockstein map*, is most interesting
- Other examples tend to be harder to define. Some general results:
 - Over Q, stable cohomology operations are trivial (i.e. only scalar multiplication)
 - All stable cohomology operations from \mathbb{Z} to \mathbb{Z} are torsion: reduction mod *n*, some operation in \mathbb{Z}/n cohomology, then Bockstein $H^k(X; \mathbb{Z}/n) \to H^{k+1}(X; \mathbb{Z})$
 - With \mathbb{Z}/n coefficients, the story is more interesting

- The set of stable cohomology operations H^{*}(X; Z/2) → H^{*+k}(X; Z/2) forms a graded Z/2-algebra under composition, denoted A and called the *Steenrod algebra*
- Generated by Steenrod squares Sqⁿ: H^{*}(X; Z/2) → H^{*+n}(X; Z/2), n ≥ 0, satisfying some axioms and relations

▶ For *n* > 1, definition is a bit technical

Axiomatic definition of Steenrod squares

(implicit: group homomorphism, naturality, stability)

► Sq⁰ = id and Sq¹ is the Bockstein for
0 →
$$\mathbb{Z}/2 \rightarrow \mathbb{Z}/4 \rightarrow \mathbb{Z}/2 \rightarrow 0$$

• If |x| = n, Sqⁿ(x) = x^2

▶ If
$$|x| < n$$
, Sqⁿ(x) = 0

The Cartan formula:

$$\operatorname{Sq}^{n}(xy) = \sum_{i+j=n} \operatorname{Sq}^{i}(x)\operatorname{Sq}^{j}(y),$$

or, if $Sq(x) := Sq^0(x) + Sq^1(x) + \cdots$, then Sq(xy) = Sq(x)Sq(y)

Theorem: these properties uniquely characterize the Steenrod squares and their action on mod 2 cohomology of spaces • \mathscr{A} is not free (in fact generated by Sq^{2ⁿ} for all *n*):

$$\mathbf{Sq}^{i}\mathbf{Sq}^{j} = \sum_{k=0}^{\lfloor i/2 \rfloor} {j-k-1 \choose i-2k} \mathbf{Sq}^{i+j-k} \mathbf{Sq}^{k}$$

Summary: for any space X, H*(X; Z/2) is an A-module (not an A-algebra), and pullback is always an A-module homomorphism

- $H^*(\mathbb{RP}^n; \mathbb{Z}/2) \cong \mathbb{Z}/2[x]/(x^{n+1})$, with |x| = 1
- ► The axioms imply that for any degree-1 class, $Sq(x) = x + x^2$
- The Cartan formula then tells us the rest: $Sq(x^k) = (x + x^2)^k$
- Similar reasoning applies for \mathbb{CP}^n , \mathbb{HP}^n , and $n = \infty$

- ► One consequence of Poincaré duality is that H^k(X; Z/2) and H^{n-k}(X; Z/2) are canonically dual Z/2-vector spaces for any closed *n*-manifold X
- ▶ That is, a functional $H^{n-k}(X; \mathbb{Z}/2) \to \mathbb{Z}/2$ is identified with an element of $H^k(X; \mathbb{Z}/2)$
- Let's apply that to $x \mapsto \langle Sq^k(x), [M] \rangle$
 - Sq^k takes us to $H^n(X; \mathbb{Z}/2)$
 - Then evaluate on the fundamental class
- ► This determines an element $v_k \in H^k(X; \mathbb{Z}/2)$ called the k^{th} Wu class of X

The Wu formula

• Wu Wenjun proved that Sq(v) = w

• Here $v := v_0 + v_1 + \dots$ as usual, and as usual, $v_0 = 1$

► There is also the *Wu formula*:

$$\operatorname{Sq}^{i}(w_{k}) = \sum_{j=0}^{i} \binom{k+j-i-1}{j} w_{i-j} w_{k+j}$$

- Can interpret as telling you A-module structure on H*(BO_n; Z/2), or as universal relations between Stiefel-Whitney classes
 - Brown-Peterson proved all universal relations between Stiefel-Whitney classes arise this way

The Wu formula: quick corollaries

- Stiefel-Whitney classes of manifolds are homotopy invariants
- Homotopy equivalent closed manifolds are unoriented bordant
 - "unoriented" is important: counterexamples in, e.g. pin⁺ bordism
- Can define Stiefel-Whitney classes for closed topological manifolds

The Wu formula imposes constraints on Stiefel-Whitney classes

- Example: if *M* is a closed manifold of dimension at most 3, then $w_1^2 = w_2$
 - Hence *M* orientable \Rightarrow *M* spin
 - ▶ In general $w_1^2 = w_2$ means *M* admits a pin⁻ structure

• Proof:
$$w_1 = Sq^0v_1 + Sq^1v_0 = v_1$$

•
$$w_2 = Sq^2v_0 + Sq^1v_1 + Sq^0v_2 = v_1^2 + v_2$$

▶ But $v_2 = 0$, because Sq²: $H^{n-2}(X; \mathbb{Z}/2) \rightarrow H^n(X; \mathbb{Z}/2)$ vanishes when $n \leq 3$

• Hence
$$w_2 = w_1^2$$

The Wu formula and the intersection pairing on 4-manifolds

- ► Theorem: if *M* is a simply connected closed 4-manifold, *M* is spin iff its intersection pairing $H^2(M) \otimes H^2(M) \rightarrow \mathbb{Z}$ is even
- Since *M* is simply connected, H¹(M; Z/2) = 0, so the kernel of mod 2 reduction H²(M; Z) → H²(M; Z/2) is precisely 2H²(M; Z)
 - Why? Use the long exact sequence in cohomology associated to 0 → Z → Z → Z/2 → 0
 - ▶ Upshot: we can check in $H^*(M; \mathbb{Z}/2)$, because if $x \in H^2(M; \mathbb{Z})$ dies mod 2, it's twice something, so its intersection pairing with anything is twice something

The Wu formula and the intersection pairing on 4-manifolds

Now we want to prove for all $a \in H^2(M; \mathbb{Z}/2)$, $\langle a^2, [M] \rangle = 0$

• Well,
$$a^2 = Sq^2a = v_2a = w_2a$$

• Here we use orientability: in general, $v_2 = w_2 + w_1^2$

- Since cup-product-then-evaluate is a perfect pairing $H^2(M; \mathbb{Z}/2) \otimes H^2(M; \mathbb{Z}/2) \rightarrow \mathbb{Z}/2, w_2 = 0$ iff $\langle w_2 a, [M] \rangle = 0$ for all $a \in H^2(M; \mathbb{Z}/2)$
- Note: some hypothesis on π₁ is necessary: otherwise the *Enriques surface*, with π₁ ≅ ℤ/2, is a counterexample
- Note: nothing about this needed smoothness! In particular, applies to the E₈-manifold, a topological spin 4-manifold with intersection form the E₈ lattice

- ► The Lie group $\text{Spin}_n^c := \text{Spin}_n \times_{\{\pm 1\}} \text{U}_1$
- ► The map $\text{Spin}_n \rightarrow \text{SO}_n$ extends to Spin_n^c , so we can consider spin^{*c*} structures on oriented manifolds
- ▶ It turns out that *M* (assumed oriented) admits a spin^{*c*} structure iff $w_2(M)$ is the reduction of a class $c_1 \in H^2(M; \mathbb{Z})$
- ▶ e.g. CP² is not spin, but it is spin^c (as are all almost complex manifolds)

- Let β : $H^k(X; \mathbb{Z}/2) \to H^{k+1}(X; \mathbb{Z})$ denote the Bockstein for $0 \to \mathbb{Z} \to \mathbb{Z}/2 \to 0$
- Then, *M* admits a spin^{*c*} structure iff $\beta w_2 = 0$
 - The classes W_{n+1} := βw_n are sometimes called "integral Stiefel-Whitney classes"
- Note: compatibility of the above short exact sequence with 0 → Z/2 → Z/4 → Z/2 → 0 means that β composed with reduction mod 2 is Sq¹

This is sometimes called the "Bock-to-Sq¹ lemma"

Foreshadowing the exercises

- Computing some Steenrod squares
- Using Steenrod squares to compute some Stiefel-Whitney classes
- Applying the Wu formula
- Čech cohomology and spin^c structures