Matroid Theory

Day two: Matroid operations

Austin Alderete
July 6th, 2021
University of Texas at Austin

Previous questions

Given a graphic matroid $M \cong M(G)$, construct a matrix for which it is also the vector matroid:

- Take $D(G)$ be any orientation of G.
- Let $A_{D(G)}$ be its incidence matrix $a_{i j} \in\{1,-1,0\}$.
- $M \cong M(G) \cong M\left[A_{D(G)}\right]$ (use circuit viewpoint).

Previous questions

What is the relationship between matroids and flag varieties?

REP.MATROIDS \longleftrightarrow torus orbits in Grassmanians

- $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{n}$ acts on \mathbb{C}^{n}.
- This induces an action on $\mathrm{Gr}_{r, n}$.
- Given $V \in \mathrm{Gr}_{r, n}$, consider the orbit $\mathbb{T} \cdot V$ and take the closure.
- $\bar{T} \cdot V \rightarrow$ matroid polytope via the moment map.

Previous questions

What is the relationship between matroids and flag varieties?

FLAG MATROIDS \longleftrightarrow torus orbits in flag varieties

- A collection \mathcal{F} of flags is a flag matroid if and only if
- Every $M_{i}=\left\{F^{i} \mid F \in \mathcal{F}\right\}$ is a matroid.
- For every pair $\left(M_{i}, M_{j}\right)$, one is a quotient of the other.
- Every flag $B_{1} \subseteq \ldots \subseteq B_{s}$ with B_{i} a basis of M_{i} is in \mathcal{F}.
- The relation is obtained by considering flag matroid polytopes and lattice polytopes representing a toric variety.
... attempted to reduce Graph Theory to Linear Algebra. It showed that many graph-theoretical results could be generalized to algebraic theorems... I was discussing a theory of matrices in which elementary operations could be applied to rows but not columns.
W.T. Tutte

This is matroid theory.

Table of contents

1. The duality of man matroids
2. Minors, extensions, and quotients
3. Algebraic structures on all matroids

The duality of man matroids

Definition of dual

Matroids come with a notion of duality.

Definition (Dual of a matroid)

Let $M=(E, \mathcal{B})$ be a matroid. The dual of M is

$$
M^{*}:=\left(E, \mathcal{B}^{*}\right)
$$

where

$$
\mathcal{B}^{*}:=\{E-B: B \in \mathcal{B}\}
$$

- $\left(M^{*}\right)^{*}=M$.
- $\operatorname{rank}(M)=|E|-\operatorname{rank}\left(M^{*}\right)$.
- Corank: $r^{*}(X):=r(E-X)+|X|-r(M)$ OR $r^{*}(X)=r(M)-r(X)$ \leftarrow these are not equivalent.

Examples of dual

- $\left(U_{n}^{r}\right)^{*}=U_{n}^{n-r}$.
- If G is planar, $M^{*}(G) \cong M\left(G^{*}\right)$, where G^{*} is the geometric dual.
- If $M \cong M\left[I_{r}, \mid D\right]$, then $M^{*} \cong M\left[-D^{T} \mid I_{n-r}\right]$.

A brief detour on graphic matroids

We present a preview of Kuratowski's characterization of planar graphs.

Proof (Neither $M^{*}\left(K_{5}\right)$ nor $M^{*}\left(K_{3,3}\right)$ is graphic):

First consider $M=M^{*}\left(K_{5}\right)$. Suppose that there exists a connected graph G such that $M \cong M(G)$. $M\left(K_{5}\right)$ has 10 elements and is rank 4, so M must have 10 elements and rank 6 . For a tree T in a graph,

$$
|\operatorname{Vert}(T)|=|\operatorname{Edges}(T)|+1
$$

Taking a spanning tree B of G, i.e. a basis of M, we have

$$
|V(G)|=|B|+1=\operatorname{rank}(M)+1=7 .
$$

As M has 10 elements, G has 10 edges. So the average degree of a vertex is $2|\operatorname{Edges}(G)| /|\operatorname{Vert}(G)|=20 / 7<3$ and there exists a vertex in G of degree at most 2 , which implies M^{*} contains a loop or parallel element. But K_{5} contains no such cycles, a contradiction.

A brief detour on graphic matroids

Some useful results on graphic matroids:

- A graph G is planar if and only if $M^{*}(G)$ is graphic.
- If G is connected planar, $M\left(G^{*}\right) \cong M^{*}(G)$.
- Neither $M^{*}\left(K_{5}\right)$ nor $M^{*}\left(K_{3,3}\right)$ is graphic.
- The class of matroids M for which both M and M^{*} are graphic is minor-closed.
- A regular (i.e. representable over every field) matroid is graphic if and only if it has no minor isomorphic to $M^{*}\left(K_{5}\right)$ or $M^{*}\left(K_{3,3}\right)$.

A brief detour on representability

Previously, we saw that U_{4}^{2} is not graphic. We will now produce a matroid which is not representable.

The Vamos matroid:

Figure 1: Geometric representation of the Vamos matroid V_{8}.
V_{8} has eight elements, rank 4, all sets of three or fewer elements are independent, and has five 4-element circuits depicted as faces.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $\operatorname{dim} W([8])=4$ as $\operatorname{rank}\left(V_{8}\right)=4$.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $\operatorname{dim} W([8])=4$ as $\operatorname{rank}\left(V_{8}\right)=4$.
- $\operatorname{dim}[W(5,6) \cap W(1,2,3,4)]=$ $\operatorname{dim} W(5,6)+\operatorname{dim} W(1,2,3,4)-\operatorname{dim}[W(5,6)+W(1,2,3,4)]=1$ by the usual formula for intersection.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $\operatorname{dim} W([8])=4$ as $\operatorname{rank}\left(V_{8}\right)=4$.
- $\operatorname{dim}[W(5,6) \cap W(1,2,3,4)]=$ $\operatorname{dim} W(5,6)+\operatorname{dim} W(1,2,3,4)-\operatorname{dim}[W(5,6)+W(1,2,3,4)]=1$ by the usual formula for intersection.
- $\operatorname{dim}[W(1,4,5,6) \cap W(1,2,3,4)]=\operatorname{dim} W(1,4,5,6)+$ $\operatorname{dim} W(1,2,3,4)-\operatorname{dim}[W(1,4,5,6)+W(1,2,3,4)]=2$.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $\operatorname{dim} W([8])=4$ as $\operatorname{rank}\left(V_{8}\right)=4$.
- $\operatorname{dim}[W(5,6) \cap W(1,2,3,4)]=$ $\operatorname{dim} W(5,6)+\operatorname{dim} W(1,2,3,4)-\operatorname{dim}[W(5,6)+W(1,2,3,4)]=1$ by the usual formula for intersection.
- $\operatorname{dim}[W(1,4,5,6) \cap W(1,2,3,4)]=\operatorname{dim} W(1,4,5,6)+$ $\operatorname{dim} W(1,2,3,4)-\operatorname{dim}[W(1,4,5,6)+W(1,2,3,4)]=2$.
- $\operatorname{dim} W(1,4)=2$ and $W(1,4) \subseteq W(1,4,5,6) \cap W(1,2,3,4)$.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $\operatorname{dim} W([8])=4$ as $\operatorname{rank}\left(V_{8}\right)=4$.
- $\operatorname{dim}[W(5,6) \cap W(1,2,3,4)]=$ $\operatorname{dim} W(5,6)+\operatorname{dim} W(1,2,3,4)-\operatorname{dim}[W(5,6)+W(1,2,3,4)]=1$ by the usual formula for intersection.
- $\operatorname{dim}[W(1,4,5,6) \cap W(1,2,3,4)]=\operatorname{dim} W(1,4,5,6)+$ $\operatorname{dim} W(1,2,3,4)-\operatorname{dim}[W(1,4,5,6)+W(1,2,3,4)]=2$.
- $\operatorname{dim} W(1,4)=2$ and $W(1,4) \subseteq W(1,4,5,6) \cap W(1,2,3,4)$.
- $W(1,4)=W(1,4,5,6) \cap W(1,2,3,4) \supseteq W(5,6) \cap W(1,2,3,4)$.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $W(1,4)=W(1,4,5,6) \cap W(1,2,3,4) \supseteq W(5,6) \cap W(1,2,3,4)=$ $\langle v\rangle$.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $W(1,4)=W(1,4,5,6) \cap W(1,2,3,4) \supseteq W(5,6) \cap W(1,2,3,4)=$ $\langle v\rangle$.
- Similarly, $W(2,3) \supseteq W(5,6) \cap W(1,2,3,4)=\langle v\rangle$.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $W(1,4)=W(1,4,5,6) \cap W(1,2,3,4) \supseteq W(5,6) \cap W(1,2,3,4)=$ $\langle v\rangle$.
- Similarly, $W(2,3) \supseteq W(5,6) \cap W(1,2,3,4)=\langle v\rangle$.
- $\operatorname{dim}[W(1,4) \cap W(2,3)]=$ $\operatorname{dim} W(1,4)+\operatorname{dim} W(2,3)-\operatorname{dim}[W(1,4)+W(2,3)]=1$.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $W(1,4)=W(1,4,5,6) \cap W(1,2,3,4) \supseteq W(5,6) \cap W(1,2,3,4)=$ $\langle v\rangle$.
- Similarly, $W(2,3) \supseteq W(5,6) \cap W(1,2,3,4)=\langle v\rangle$.
- $\operatorname{dim}[W(1,4) \cap W(2,3)]=$ $\operatorname{dim} W(1,4)+\operatorname{dim} W(2,3)-\operatorname{dim}[W(1,4)+W(2,3)]=1$.
- Therefore, $\langle v\rangle=W(1,4) \cap W(2,3)=W(5,6) \cap W(1,2,3,4)$.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- $W(1,4)=W(1,4,5,6) \cap W(1,2,3,4) \supseteq W(5,6) \cap W(1,2,3,4)=$ $\langle v\rangle$.
- Similarly, $W(2,3) \supseteq W(5,6) \cap W(1,2,3,4)=\langle v\rangle$.
- $\operatorname{dim}[W(1,4) \cap W(2,3)]=$ $\operatorname{dim} W(1,4)+\operatorname{dim} W(2,3)-\operatorname{dim}[W(1,4)+W(2,3)]=1$.
- Therefore, $\langle v\rangle=W(1,4) \cap W(2,3)=W(5,6) \cap W(1,2,3,4)$.
- By symmetry, we can replace $\{5,6\}$ with $\{7,8\}$ in the above.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- In total:

$$
\begin{gathered}
\langle v\rangle=W(1,4) \cap W(2,3)=W(5,6) \cap W(1,2,3,4) \\
=W(7,8) \cap W(1,2,3,4) .
\end{gathered}
$$

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- In total:

$$
\begin{gathered}
\langle v\rangle=W(1,4) \cap W(2,3)=W(5,6) \cap W(1,2,3,4) \\
=W(7,8) \cap W(1,2,3,4) .
\end{gathered}
$$

- So, $\langle v\rangle \subseteq W(5,6) \cap W(7,8)$.

A brief detour on representability

Proof (V_{8} is not representable):

Assume that V_{8} is representable over \mathbb{F} by a matrix A with columns labeled [8]. We write $W(i, j)$ to mean the span of the columns labeled by i, j.

- In total:

$$
\begin{gathered}
\langle v\rangle=W(1,4) \cap W(2,3)=W(5,6) \cap W(1,2,3,4) \\
=W(7,8) \cap W(1,2,3,4) .
\end{gathered}
$$

- So, $\langle v\rangle \subseteq W(5,6) \cap W(7,8)$.
- But then,

$$
\begin{gathered}
1 \leq \operatorname{dim}[W(5,6) \cap W(7,8)] \\
=\operatorname{dim} W(5,6)+W(7,8)-\operatorname{dim}[W(5,6)+W(7,8)]=2+2-4 .
\end{gathered}
$$

A brief detour on representability

The Vamos matroid is the smallest non-representable matroid. It is self-dual.

Minors, extensions, and quotients

Deletion

Definition (Matroid deletion)

Let $M=(E, \mathcal{I})$ be a matroid given by independent sets and let $X \subseteq E$. The deletion of X from M is denoted $M \backslash X$ and is given by the ground set $E-X$ and independent sets

$$
\mathcal{I} \mid(E-X):=\{I \subseteq E-X: I \in \mathcal{I}\} .
$$

This is sometimes called the restriction of M to $E-X$.

Contraction

Definition (Matroid contraction)

Let $M=(E, \mathcal{I})$ be a matroid given by independent sets and let $X \subseteq E$. The contraction of X from M is defined as

$$
M / X:=\left(M^{*} \backslash X\right)^{*} .
$$

- Take the dual.
- Delete.
- Take the dual again.

Examples of deletion and contraction

- Uniform matroids:
- $U_{n}^{r} \backslash X \cong\left\{\begin{array}{lc}U_{n-|X|}^{n-|X|} & \text { if } n \geq|X| \geq n-r, \\ U_{n-|X|}^{r} & \text { if }|X|<n-r .\end{array}\right.$
- $U_{n}^{r} / X \cong \begin{cases}U_{n-\mid X}^{0} & \text { if } n \geq|X| \geq r, \\ U_{n-|X|}^{r-|X|} & \text { if }|X|<r .\end{cases}$
- Graphic matroids:
- Graph theoretic deletion and contraction on any underlying graph.
- Regular matroids:
- Deletion is removing columns
- Contraction: (1) pick a single column label to contract, (2) adjust the matrix so that the column contains only a single non-zero entry, (3) delete the row and column.

Matroid minors

Definition (Matroid minor)

A matroid N is called a minor of M if it is obtained from M via a sequence of contractions and deletions.

- Any minor can be written in the form $M \backslash X / Y$ for disjoint X, Y.
- N is a minor of M if and only if N^{*} is a minor of M^{*}.
- Many desirable classes of matroids are minor (and dual) closed.
- Any minor can be written as a sequence of single element contractions and deletions.
- Deletion and contraction are commutative operations.
- (Scum Theorem): The formation of a minor can be thought of as a two-step process- contraction to obtain the rank and deletion to remove excess elements. In the loop-free case, one can always contract by a flat.

Single-element extension

Definition (Single-element extension)

A matroid M is called a single-element extension of N if N is a minor of M obtained by deleting a single element.

There are three boring extensions:

- Add a loop, this does not increase the rank.
- Add a coloop (i.e. an element present in every basis), this increases the rank.
- Add a parallel element.

Modular cuts

The more interesting extensions are known as modular cuts:

- Begin with a matroid $M=(E, \mathcal{F})$ given by its flats.
- Create a new set $\mathcal{M} \subseteq \mathcal{F}$ satisfying
(Conferred) If $F \in \mathcal{M}$ and $F \subseteq F^{\prime}$, then $F^{\prime} \in \mathcal{M}$.
(Modular) If $F_{1}, F_{2} \in \mathcal{M}$ satisfy

$$
r\left(F_{1}\right)+r\left(F_{2}\right)=r\left(F_{1} \cup F_{2}\right)+r\left(F_{1} \cap F_{2}\right)
$$

then $F_{1} \cap F_{2} \in \mathcal{M}$.

- Then $\{F \cup e: F \in \mathcal{M}\} \cup\{F: F \notin \mathcal{M}\}$ is the set of flats of a single-element extension of M.

SINGLE ELEMENT EXT. \longleftrightarrow MODULAR CUTS

Matroid quotients

Definition (Matroid quotient)

A matroid Q is a quotient of M if there exists a matroid N on ground set E_{N} and some $X \subseteq E_{N}$ such that

$$
M=N \backslash X
$$

and

$$
Q=N / X
$$

Matroid quotients

If M_{1}, M_{2} are matroids with rank functions r_{1}, r_{2} on common ground set E, then following are all equivalent:

- M_{2} is a quotient of M_{1}.
- Every flat of M_{2} is a flat of M_{1}.
- If $X \subseteq Y \subseteq E$, then $r_{1}(Y)-r_{1}(X) \geq r_{2}(Y)-r_{2}(X)$.
- Every circuit of M_{1} is a union of circuits of M_{2}
- If $X \subseteq E$, then $\mathrm{cl}_{1}(X) \subseteq \operatorname{cl}_{2}(X)$.

Elementary quotients

The previous concepts come together in the notion of an elementary quotients.

Let $M+\mathcal{M} e$ be the extension of M by e with respect to a modular cut \mathcal{M}. Then

$$
(M+\mathcal{M} e) / e
$$

is the elementary quotient of M with respect to \mathcal{M}.
All quotients can be formed by taking a sequence of elementary quotients.

Algebraic structures on all matroids

Matroid union and intersection

Definition (Matroid union)

Given a set of matroids $M_{1}=\left(E_{1}, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E_{2}, \mathcal{I}_{2}\right)$, their union is the matroid $M_{1} \vee M_{2}$ on the ground set $E_{1} \cup E_{2}$ and set of independent sets given by

$$
\mathcal{I}=\left\{I_{1} \cup I_{2}: I_{i} \in \mathcal{I}_{i}\right\}
$$

- This does give rise to a matroid and the ground sets need not be disjoint.
- Note that M, N are quotients of $M \vee N$.
- When their ground sets are disjoint, we write $M_{1} \oplus M_{2}$ and call it the direct sum.

Matroid union and intersection

Definition (Matroid union)

Given a set of matroids $M_{1}=\left(E_{1}, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E_{2}, \mathcal{I}_{2}\right)$, their union is the matroid $M_{1} \vee M_{2}$ on the ground set $E_{1} \cup E_{2}$ and set of independent sets given by

$$
\mathcal{I}=\left\{I_{1} \cup I_{2}: I_{i} \in \mathcal{I}_{i}\right\}
$$

Definition (Matroid intersection)

Let M, N be matroids on a ground set E. The intersection of M and N is defined as

$$
M \wedge N:=\left(M^{*} \vee N^{*}\right)^{*} .
$$

- $M \wedge N$ is a quotient of both M and N.
- There is another definition of matroid intersection, but it does not always yield a matroid.
- Contraction distributes over intersection.

Notation

For the remainder of this talk:

- M is a matroid on [$n]$.
- The rank of M is $r>1$.
- M is loopfree.
- $\mathfrak{C}_{r, n}$ is the set of all proper chains of length r on [n], i.e.

$$
\emptyset \subset F_{1} \subset \ldots \subset F_{r}=[n] .
$$

- $V_{r, n}$ is the free \mathbb{Z}-module whose coordinates are indexed by elements of $\mathfrak{C}_{r, n}$.
- $\mathbb{M}_{r, n}^{\text {free }}$ is the free \mathbb{Z}-module with generators the set of all loopfree matroids of rank r on $[n]$.

Indicator vector of chains of flats

For each (r, n) pair, there is a homomorphism

$$
\Phi_{r, n}: \mathbb{M}_{r, n}^{f r e e} \rightarrow V_{r, n}
$$

which takes our matroid M and maps it to a vector v_{M} where, for each chain indexing v_{M},

$$
\left(v_{M}\right)_{C}:=\left\{\begin{array}{lc}
1, & C \text { is a chain of flats in } M \\
0, & \text { otherwise }
\end{array}\right.
$$

$\mathcal{L}(M(G))$ for a triangle graph, $r(M)=2$

$$
v_{M}=(1,1,1,0,0,0)
$$

Chains:
$1: \emptyset \subseteq\{1\} \subseteq[3]$
$2: \emptyset \subseteq\{2\} \subseteq[3]$
$3: \emptyset \subseteq\{3\} \subseteq[3]$
4: $\emptyset \subseteq\{2,3\} \subseteq[3]$
5: $\emptyset \subseteq\{1,3\} \subseteq[3]$
$6: \emptyset \subseteq\{1,2\} \subseteq[3]$

The intersection ring of matroids

The intersection ring of matroids on $[n]$ is the \mathbb{Z}-module

$$
\mathbb{M}_{n}:=\oplus_{r=1}^{n} \mathbb{M}_{r, n}
$$

where $\mathbb{M}_{r, n}=\mathbb{M}_{r, n}^{\text {free }} / \operatorname{ker}\left(\Phi_{r, n}\right)$.
It is a true ring with product

$$
M \cdot N:=\left\{\begin{array}{cc}
M \wedge N, & \text { if } M \wedge N \text { is loopfree } \\
0, & \text { otherwise }
\end{array}\right.
$$

This corresponds to the tropical intersection product.

Matroid homology

There are two sets of natural \mathbb{Z}-module homomorphisms, one from deletion and one from contraction:

$$
\begin{gathered}
d_{i}(M):=\left\{\begin{array}{cc}
M \backslash i, & \text { if } i \text { is not a coloop of } M \\
0, & \text { otherwise }
\end{array}\right. \\
c_{i}(M):=\left\{\begin{array}{cc}
M / i, & \text { if } \operatorname{cl}_{M}(\{i\})=\{i\} \\
0, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

In the tropical case, these correspond to coordinate projection and intersection products with a hyperplane at $x_{i}=\infty$.

Matroid homology

Let $\mathbb{M}=\oplus_{n} \mathbb{M}_{n}$. Then there are two natural boundary maps:

$$
\begin{array}{ll}
\partial_{d}: \mathbb{M} \rightarrow \mathbb{M} & , \quad M \mapsto \sum(-1)^{i} d_{i}(M) \\
\partial_{c}: \mathbb{M} \rightarrow \mathbb{M} & , \quad M \mapsto \sum(-1)^{i} c_{i}(M) .
\end{array}
$$

These are in fact differentials and give rise to homology groups on minor-closed classes.

Open questions

- Kontsevich homology
- Zero-conjecture
- $k e r \Phi_{r, n}$
- Matroid polytope of matroids
- Other minor-closed classes

Hopf algebra of matroids

Definition

The Hopf algebra of matroids $\mathbb{M}^{\text {Hopf }}$ is the free \mathbb{Z}-module generated by matroids modulo isomorphisms with product and coproduct

$$
\cdot: \mathbb{M}^{\text {Hopf }} \otimes \mathbb{M}^{\text {Hopf }} \rightarrow \mathbb{M}^{\text {Hopf }} \quad, \quad M \cdot N:=M \oplus N
$$

$\Delta: \mathbb{M}^{\text {Hopf }} \rightarrow \mathbb{M}^{\text {Hopf }} \otimes \mathbb{M}^{\text {Hopf }} \quad, \quad \Delta(M):=\sum_{S \subseteq E}(M /(E-S)) \otimes(M / S)$
The antipode of the Hopf algebra of matroids is given by

$$
S(M)=\sum_{P_{N} \text { face of } P_{M}}(-1)^{c(N)} N
$$

where P_{M} is the matroid polytope and $c(N)$ is the number of connected components of N.

NB! A connected component of a matroid M is an equivalence class of the relation \sim given by $e \sim f$ if $e=f$ or $\{e, f\} \subseteq C$ a circuit of M.

Sources

1. J. Oxley, Matroid Theory, Oxford Mathematics.
2. F. Ardila, The geometry of matroids.
3. G. Farr and J. Oxley, The contributions of W.T. Tutte to matroid theory
4. S. Hampe, The Intersection Ring of Matroids.
5. J. Geelen, B. Gerads, and G. Whittle, Structure in Minor-Closed Classes of Matroids
6. A. Cameron et al., Flag Matroids: Algebra and Geometry
7. M. Noji and K. Ogiwara, The smooth torus orbit closures in the Grassmanian
8. C. Heunen, V. Patta, The Category of Matroids

Questions?

