
Matroid Theory

Day two: Matroid operations

Austin Alderete

July 6th, 2021

University of Texas at Austin



Previous questions

Given a graphic matroid M ∼= M(G ), construct a matrix for which it is

also the vector matroid:

• Take D(G ) be any orientation of G .

• Let AD(G) be its incidence matrix aij ∈ {1,−1, 0}.
• M ∼= M(G ) ∼= M[AD(G)] (use circuit viewpoint).
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Previous questions

What is the relationship between matroids and flag varieties?

REP.MATROIDS←→ torus orbits in Grassmanians

• T = (C∗)n acts on Cn.

• This induces an action on Grr ,n.

• Given V ∈ Grr ,n, consider the orbit T · V and take the closure.

• T · V → matroid polytope via the moment map.
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Previous questions

What is the relationship between matroids and flag varieties?

FLAG MATROIDS←→ torus orbits in flag varieties

• A collection F of flags is a flag matroid if and only if

• Every Mi = {F i |F ∈ F} is a matroid.

• For every pair (Mi ,Mj), one is a quotient of the other.

• Every flag B1 ⊆ ... ⊆ Bs with Bi a basis of Mi is in F .

• The relation is obtained by considering flag matroid polytopes and

lattice polytopes representing a toric variety.
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... attempted to reduce Graph Theory to Linear Algebra. It showed

that many graph-theoretical results could be generalized to algebraic

theorems... I was discussing a theory of matrices in which elementary

operations could be applied to rows but not columns.

W.T. Tutte

This is matroid theory.

Dan Younger, on the above
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The duality of man matroids



Definition of dual

Matroids come with a notion of duality.

Definition (Dual of a matroid)

Let M = (E ,B) be a matroid. The dual of M is

M∗ := (E ,B∗)

where

B∗ := {E − B : B ∈ B}

• (M∗)∗ = M.

• rank(M) = |E | − rank(M∗).

• Corank: r∗(X ) := r(E −X ) + |X | − r(M) OR r∗(X ) = r(M)− r(X )

← these are not equivalent.
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Examples of dual

• (U r
n)∗ = Un−r

n .

• If G is planar, M∗(G ) ∼= M(G∗), where G∗ is the geometric dual.

• If M ∼= M[Ir , |D], then M∗ ∼= M[−DT |In−r ].
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A brief detour on graphic matroids

We present a preview of Kuratowski’s characterization of planar graphs.

Proof (Neither M∗(K5) nor M∗(K3,3) is graphic):

First consider M = M∗(K5). Suppose that there exists a connected

graph G such that M ∼= M(G ). M(K5) has 10 elements and is rank 4,

so M must have 10 elements and rank 6. For a tree T in a graph,

|Vert(T )| = |Edges(T )|+ 1.

Taking a spanning tree B of G , i.e. a basis of M, we have

|V (G )| = |B|+ 1 = rank(M) + 1 = 7.

As M has 10 elements, G has 10 edges. So the average degree of a

vertex is 2|Edges(G )|/|Vert(G )| = 20/7 < 3 and there exists a vertex

in G of degree at most 2, which implies M∗ contains a loop or parallel

element. But K5 contains no such cycles, a contradiction.

8



A brief detour on graphic matroids

Some useful results on graphic matroids:

• A graph G is planar if and only if M∗(G ) is graphic.

• If G is connected planar, M(G∗) ∼= M∗(G ).

• Neither M∗(K5) nor M∗(K3,3) is graphic.

• The class of matroids M for which both M and M∗ are graphic is

minor-closed.

• A regular (i.e. representable over every field) matroid is graphic if

and only if it has no minor isomorphic to M∗(K5) or M∗(K3,3).
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A brief detour on representability

Previously, we saw that U2
4 is not graphic. We will now produce a

matroid which is not representable.

The Vamos matroid :

Figure 1: Geometric representation of the Vamos matroid V8.

V8 has eight elements, rank 4, all sets of three or fewer elements are

independent, and has five 4-element circuits depicted as faces.
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A brief detour on representability

Proof (V8 is not representable):

Assume that V8 is representable over F by a matrix A with columns

labeled [8]. We write W (i , j) to mean the span of the columns labeled

by i , j .

• dimW ([8]) = 4 as rank(V8)=4.

• dim[W (5, 6) ∩W (1, 2, 3, 4)] =

dimW (5, 6) + dimW (1, 2, 3, 4)− dim [W (5, 6) + W (1, 2, 3, 4)] = 1

by the usual formula for intersection.

• dim[W (1, 4, 5, 6) ∩W (1, 2, 3, 4)] = dimW (1, 4, 5, 6) +

dimW (1, 2, 3, 4)− dim[W (1, 4, 5, 6) + W (1, 2, 3, 4)] = 2.

• dimW (1, 4) = 2 and W (1, 4) ⊆W (1, 4, 5, 6) ∩W (1, 2, 3, 4).

• W (1, 4) = W (1, 4, 5, 6) ∩W (1, 2, 3, 4) ⊇W (5, 6) ∩W (1, 2, 3, 4).
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A brief detour on representability

Proof (V8 is not representable):

Assume that V8 is representable over F by a matrix A with columns

labeled [8]. We write W (i , j) to mean the span of the columns labeled

by i , j .

• W (1, 4) = W (1, 4, 5, 6) ∩W (1, 2, 3, 4) ⊇W (5, 6) ∩W (1, 2, 3, 4) =

〈v〉.

• Similarly, W (2, 3) ⊇W (5, 6) ∩W (1, 2, 3, 4) = 〈v〉.
• dim[W (1, 4) ∩W (2, 3)] =

dimW (1, 4) + dimW (2, 3)− dim[W (1, 4) + W (2, 3)] = 1.

• Therefore, 〈v〉 = W (1, 4) ∩W (2, 3) = W (5, 6) ∩W (1, 2, 3, 4).

• By symmetry, we can replace {5, 6} with {7, 8} in the above.
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A brief detour on representability

Proof (V8 is not representable):

Assume that V8 is representable over F by a matrix A with columns

labeled [8]. We write W (i , j) to mean the span of the columns labeled

by i , j .

• In total:

〈v〉 = W (1, 4) ∩W (2, 3) = W (5, 6) ∩W (1, 2, 3, 4)

= W (7, 8) ∩W (1, 2, 3, 4).

• So, 〈v〉 ⊆W (5, 6) ∩W (7, 8).

• But then,

1 ≤ dim[W (5, 6) ∩W (7, 8)]

= dimW (5, 6) + W (7, 8)− dim[W (5, 6) + W (7, 8)] = 2 + 2− 4.
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A brief detour on representability

The Vamos matroid is the smallest non-representable matroid. It is

self-dual.
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Minors, extensions, and

quotients



Deletion

Definition (Matroid deletion)

Let M = (E , I) be a matroid given by independent sets and let X ⊆ E .

The deletion of X from M is denoted M\X and is given by the ground

set E − X and independent sets

I|(E − X ) := {I ⊆ E − X : I ∈ I}.

This is sometimes called the restriction of M to E − X .
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Contraction

Definition (Matroid contraction)

Let M = (E , I) be a matroid given by independent sets and let X ⊆ E .

The contraction of X from M is defined as

M/X := (M∗\X )∗.

• Take the dual.

• Delete.

• Take the dual again.
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Examples of deletion and contraction

• Uniform matroids:

• U r
n\X ∼=

{
U

n−|X |
n−|X | if n ≥ |X | ≥ n − r ,

U r
n−|X | if |X | < n − r .

• U r
n/X ∼=

{
U0

n−|X | if n ≥ |X | ≥ r ,

U
r−|X |
n−|X | if |X | < r .

• Graphic matroids:

• Graph theoretic deletion and contraction on any underlying graph.

• Regular matroids:

• Deletion is removing columns

• Contraction: (1) pick a single column label to contract, (2) adjust

the matrix so that the column contains only a single non-zero entry,

(3) delete the row and column.
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Matroid minors

Definition (Matroid minor)

A matroid N is called a minor of M if it is obtained from M via a

sequence of contractions and deletions.

• Any minor can be written in the form M\X/Y for disjoint X ,Y .

• N is a minor of M if and only if N∗ is a minor of M∗.

• Many desirable classes of matroids are minor (and dual) closed.

• Any minor can be written as a sequence of single element

contractions and deletions.

• Deletion and contraction are commutative operations.

• (Scum Theorem): The formation of a minor can be thought of as a

two-step process- contraction to obtain the rank and deletion to

remove excess elements. In the loop-free case, one can always

contract by a flat.
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Single-element extension

Definition (Single-element extension)

A matroid M is called a single-element extension of N if N is a minor of

M obtained by deleting a single element.

There are three boring extensions:

• Add a loop, this does not increase the rank.

• Add a coloop (i.e. an element present in every basis), this increases

the rank.

• Add a parallel element.
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Modular cuts

The more interesting extensions are known as modular cuts:

• Begin with a matroid M = (E ,F) given by its flats.

• Create a new set M⊆ F satisfying

(Conferred) If F ∈M and F ⊆ F ′, then F ′ ∈M.

(Modular) If F1,F2 ∈M satisfy

r(F1) + r(F2) = r(F1 ∪ F2) + r(F1 ∩ F2)

then F1 ∩ F2 ∈M.

• Then {F ∪ e : F ∈M} ∪ {F : F 6∈ M} is the set of flats of a

single-element extension of M.

SINGLE ELEMENT EXT.←→ MODULAR CUTS
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Matroid quotients

Definition (Matroid quotient)

A matroid Q is a quotient of M if there exists a matroid N on ground

set EN and some X ⊆ EN such that

M = N\X

and

Q = N/X
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Matroid quotients

If M1,M2 are matroids with rank functions r1, r2 on common ground set

E , then following are all equivalent:

• M2 is a quotient of M1.

• Every flat of M2 is a flat of M1.

• If X ⊆ Y ⊆ E , then r1(Y )− r1(X ) ≥ r2(Y )− r2(X ).

• Every circuit of M1 is a union of circuits of M2

• If X ⊆ E , then cl1(X ) ⊆ cl2(X ).
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Elementary quotients

The previous concepts come together in the notion of an elementary

quotients.

Let M +Me be the extension of M by e with respect to a modular cut

M. Then

(M +Me)/e

is the elementary quotient of M with respect to M.

All quotients can be formed by taking a sequence of elementary quotients.
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Algebraic structures on all

matroids



Matroid union and intersection

Definition (Matroid union)

Given a set of matroids M1 = (E1, I1) and M2 = (E2, I2), their union is

the matroid M1 ∨M2 on the ground set E1 ∪ E2 and set of independent

sets given by

I = {I1 ∪ I2 : Ii ∈ Ii}

• This does give rise to a matroid and the ground sets need not be

disjoint.

• Note that M,N are quotients of M ∨ N.

• When their ground sets are disjoint, we write M1 ⊕M2 and call it

the direct sum.
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Matroid union and intersection

Definition (Matroid union)

Given a set of matroids M1 = (E1, I1) and M2 = (E2, I2), their union is

the matroid M1 ∨M2 on the ground set E1 ∪ E2 and set of independent

sets given by

I = {I1 ∪ I2 : Ii ∈ Ii}

Definition (Matroid intersection)

Let M,N be matroids on a ground set E . The intersection of M and N

is defined as

M ∧ N := (M∗ ∨ N∗)∗.

• M ∧ N is a quotient of both M and N.

• There is another definition of matroid intersection, but it does not

always yield a matroid.

• Contraction distributes over intersection.
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Notation

For the remainder of this talk:

• M is a matroid on [n].

• The rank of M is r > 1.

• M is loopfree.

• Cr ,n is the set of all proper chains of length r on [n], i.e.

∅ ⊂ F1 ⊂ ... ⊂ Fr = [n].

• Vr ,n is the free Z-module whose coordinates are indexed by elements

of Cr ,n.

• Mfree
r ,n is the free Z-module with generators the set of all loopfree

matroids of rank r on [n].
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Indicator vector of chains of flats

For each (r , n) pair, there is a homomorphism

Φr ,n : Mfree
r ,n → Vr ,n

which takes our matroid M and maps it to a vector vM where, for each

chain indexing vM ,

(vM)C :=

{
1, C is a chain of flats in M

0, otherwise

[3]

{1} {2}{3}

∅
L(M(G )) for a triangle graph, r(M) = 2

vM = (1, 1, 1, 0, 0, 0)

Chains:

1: ∅ ⊆ {1} ⊆ [3]

2: ∅ ⊆ {2} ⊆ [3]

3: ∅ ⊆ {3} ⊆ [3]

4: ∅ ⊆ {2, 3} ⊆ [3]

5: ∅ ⊆ {1, 3} ⊆ [3]

6: ∅ ⊆ {1, 2} ⊆ [3]
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The intersection ring of matroids

The intersection ring of matroids on [n] is the Z-module

Mn := ⊕n
r=1Mr ,n

where Mr ,n = Mfree
r ,n /ker(Φr ,n).

It is a true ring with product

M · N :=

{
M ∧ N, if M ∧ N is loopfree

0, otherwise

This corresponds to the tropical intersection product.
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Matroid homology

There are two sets of natural Z-module homomorphisms, one from

deletion and one from contraction:

di (M) :=

{
M\i , if i is not a coloop of M

0, otherwise

ci (M) :=

{
M/i , if clM({i}) = {i}

0, otherwise

In the tropical case, these correspond to coordinate projection and

intersection products with a hyperplane at xi =∞.
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Matroid homology

Let M = ⊕nMn. Then there are two natural boundary maps:

∂d : M→M , M 7→
∑

(−1)idi (M)

∂c : M→M , M 7→
∑

(−1)ici (M).

These are in fact differentials and give rise to homology groups on

minor-closed classes.
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Open questions

• Kontsevich homology

• Zero-conjecture

• ker Φr ,n

• Matroid polytope of matroids

• Other minor-closed classes
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Hopf algebra of matroids

Definition

The Hopf algebra of matroids MHopf is the free Z-module generated by

matroids modulo isomorphisms with product and coproduct

· : MHopf ⊗MHopf →MHopf , M · N := M ⊕ N

∆ : MHopf →MHopf ⊗MHopf , ∆(M) :=
∑
S⊆E

(M/(E − S))⊗ (M/S)

The antipode of the Hopf algebra of matroids is given by

S(M) =
∑

PN face of PM

(−1)c(N)N

where PM is the matroid polytope and c(N) is the number of

connected components of N.

NB! A connected component of a matroid M is an equivalence class of

the relation ∼ given by e ∼ f if e = f or {e, f } ⊆ C a circuit of M.
32



Sources

1. J. Oxley, Matroid Theory, Oxford Mathematics.

2. F. Ardila, The geometry of matroids.

3. G. Farr and J. Oxley, The contributions of W.T. Tutte to matroid

theory

4. S. Hampe, The Intersection Ring of Matroids.

5. J. Geelen, B. Gerads, and G. Whittle, Structure in Minor-Closed

Classes of Matroids

6. A. Cameron et al., Flag Matroids: Algebra and Geometry

7. M. Noji and K. Ogiwara, The smooth torus orbit closures in the

Grassmanian

8. C. Heunen, V. Patta, The Category of Matroids

33



Questions?
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