· · · ·	Scoberg Witten Background
Lue gp	<u>S.</u>
Recal	$1 \text{ for } N_2 3, \pi_1(SD(3)) = 7 Z_2.$
Del.	Spin(n) = intersal cover of SO(n)
• • •	$Spm^{c}(n) = Spm(n) \times_{\mathbb{Z}_{2}} / U(i) = Spm(n) \times U(i) / ((-1, -1))$
• • •	
• • •	non-id el in Spin that maps to id in Socni
Some	Important maps;
	$S_{p(n}(n) = S_{p(n)} \times_{2k} U(1)$
• • •	$\int z^{2} det (z \mapsto z^{2})$
• • •	50(n) 50(n) U(1)
Fra	$(0-3)$ $(0)^{1/2}$
<u> </u>	$(1) \sim (1) \sim (1) \sim (1)$
• • •	$\operatorname{Spm}(s) = \operatorname{Su}(c) = \operatorname{Sp}(v)$
• • •	So(3) _ not obvious
• • •	$Spm^{c}(3) = SU(2) \times \frac{1}{2/2} U(1) \cong U(2)$
• • •	det (literally)
	50C3) U(1)
• • •	(n=4)
• • •	$Spin(4)^{2}$ Su(2) × Su(2)
• • •	$S_{1,1}(z) = S_{1,1}(z) \approx S_{1,1}(z)$
• • •	$\mathcal{O}(\mathcal{O}(\mathcal{O}) \sim \mathbb{Z}/2 \mathcal{O}(\mathcal{O}(\mathcal{O}))$

$Spm^{c}(4) = (Su(2) \times Su(2)) \times \frac{1}{242} U(1)$	•••													
$\approx U(2) \times U(2) = U(2) \times U(2) / ((e^{i\theta} 1, e^{-i\theta} 1))$	• •													
\cong {(A,B) \in U(z) \times U(z) det A = det B]	•••													
These all derive from clifford algebras.														
Let V be a us over k, char 72, with a norm 1.1. rin k c koverver	••••													
Def. The Clifford algebra $CL(V) = T^*V/vov \sim v ^2.1$	•••													
	• •													
Because this relation associates elements in V ^{ek} with something in k, this doesn't have a 72-graded algebra structure, but it does have a 72-grade algebra structure:	А.													
$C_{\ell}(v) = C\ell^{\circ}(v) \otimes C\ell^{e}(v)$														
These are related to spin gps by:	•••													
Spm (a) < CL(R)×	••••													
$Spm^{c}(n) < CL(\mathbb{C}^{n})^{\times}$	• •													
Clarm: there exist vector spaces \$, \$, ord fundamental representations	• •													
$Spin(n) \rightarrow Aut(\mathfrak{P}_n), Spm^{c}(n) \rightarrow Aut(\mathfrak{P}_n^{c})$	•••													
Obong with maps	•••													
$e: \mathbb{R}^{2} \rightarrow E_{nd}(\$_{n}), p: \mathbb{C}^{2} \rightarrow E_{nd}(\$_{n}^{2})$	••••													
These are called the Clifford multiplication maps	••••													
	••••													
	••••													

Ég	(n=3)
• •	83 = It as a quaterninic u.s. our itself.
•••	Spin(3) a H acts as Sp(1) A H.
• •	S3 = C2 (some inderlying space but different multiplication!)
• •	Spm (3) ~ C2 os u(2) ~ C2
	The real Clifford multiplication is
• •	$p:\mathbb{R}^{3} \longrightarrow E_{n}d(\mathbb{H}) = M_{1\times 1}(\mathbb{H})$ $e_{1} \longrightarrow i$
• •	$e_2 + e_3 + e_4$
• •	The complex Clifford multiplication is
	$e: C^3 \longrightarrow End_{C}(C^2) = M_{2x2}(C)$
• •	$e_1 \longmapsto \begin{pmatrix} i & b \\ 0 & -i \end{pmatrix} = \varepsilon_1$
• •	$e_{1} \vdash \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \mathcal{O}_{1}$
	$e_3 \leftrightarrow \begin{pmatrix} \circ i \\ i \circ \end{pmatrix} = \sigma_3$
• •	
	(n = 4)
• •	Sy=H@H ~> Spm(4)= Sp(1) × Sp(1) NHOH
•••	$f_{u} = C^{2} \oplus C^{2} \longrightarrow Spm(4) \cong U(2) \times_{U(1)} U(2) \wedge C^{2} \oplus C^{2}$.
• •	Real Unlkord mult:
•••	$e: \mathbb{R}^{n} \rightarrow E_{nd}(\mathbb{H} \otimes \mathbb{H}) = M_{2\times 2}(\mathbb{H})$
• •	$e_{0} \vdash (i \circ)$ $e_{1} \vdash (i \circ)$ $e_{2} \mapsto (i \circ)$ $e_{2} \mapsto (i \circ)$
••••	$\cdot \cdot $

•	•	•	Ċ	oer(ماه	د (ار را	Kor	9	nu	UT:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•			۱				•		•		• .				•		•			•		•	•					•	•		
•	•	•	•	•	e	· 6	54 L		Ē	νġ (ີເ	•	22))) .=	Ŵ	۱۳۲	(C)			•	•		•	•			•	•	•		•	
•			•			•				((5 . :	1. /	•			•					•	•		•	•							•	•
•	•	•	•	•	•	. 6	Ξ _D	١.	_ }	(:	L. 1	> .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•		•	•	•	•	•	1	0	-6	; † \	•	•	₩.	≥ .Co	nji	مدرد	te	.4	(σ)	spo	se	•	•	•	•	•	•	•		•
•	٠	•	•	•	•	. e	ŀi	۱ <u>-</u>	- <u>`</u>		6	0	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	٠	٠	•	٠	٠	٠	٠	٠		•	•	٠	٠	٠	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	٠	•	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
٠	٠	•	٠	•	•	٠	٠	•	٠	٠	•	•	•	٠	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	•	٠	•	•	٠	٠	•	٠	٠	•	•	•	٠	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	٠	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•
•	٠	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	٠	•	•	٠	٠	•	٠	٠	•	•	•	٠	٠	٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	٠	•	٠	•	٠	•	•	•	•	٠	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	٠	٠	•	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•
												÷																		÷			
•	•		•	•	•	•	•		•	•				•	•	•				•	•		•			•	•					•	
													•									•		•	•								
			•			•										•					•	•											
•			•			•	•		•	•			•	•	•	•					•	•		•				•	•	•			
	•		•			•										•					•												
•		•	•										•			•					•			•	•			•	•	•			
•	•	•	•		•	•						•	•			•			•		•	•		•	•			•	•	•	•		
•	•	•	٠	٠	•	٠	•	٠	•	•			•	•	•	٠			٠	٠	•			•	•	•	•	•	•	•	٠	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	٠	٠	•	٠	•	٠	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•
٠	•	•	٠	٠	•	٠	٠	٠	٠	٠	•	•	•	٠	٠	٠	•	•	٠	•	٠	•	•	•	•	•	•	•	•	•	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•