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Following Bauer and Furuta,1 we will review and attempt to motivate the 1 Bauer and Furuta, A stable cohomo-

topy refinement of Seiberg-Witten in-
variants: I .

monopole map, and sketch the construction of an element in a stable ho-

motopy group of spheres associated to a compact perturbation of a linear

Fredholm map between separable Hilbert spaces.

Recap

All gauge theory talks to date have
been given by Ian who is more comfort-

able with gauge theory than the rest of

us put together, so I began with a recap
of what our inputs and outputs are.

Seiberg-Witten Invariants

The input data for Seiberg-Witten theory is a (for our purposes) closed

4-manifold M with Riemannian metric g, and a spinc structure s which

determines spinor bundlesW±⊗RL. With these data, we seek pairs (dA, ψ)

of connections dA on the line bundle L2 (L itself may or may not actually

exist as a line bundle) and sections ψ ∈ Γ(W+ ⊗ L) that satisfy

D+
Aψ = 0 F+

A = σ(ψ)

where D+
A is the Dirac operator, F+

A is the self-dual part of the curvature,

We ignore the perturbed equation
F+
A = σ(ψ)+ϕ for ϕ a self-dual 2-form

as it (interestingly) does not seem to
make an appearance in Bauer-Furuta

theory.

and σ :W+⊗L→
∧2

+ TM is some quadratic map. In the simply-connected

case (the only case many of this seminar’s attendees have studied in detail),

the moduli space ML of such solutions to the Seiberg-Witten equations is

an oriented compact smooth manifold (provided ϕ ̸= 0) sitting inside of

CP∞. We can then obtain numerical invariants by integrating PD([CP1])k Perhaps the first nontrivial invariant

we might want to extract from this is
dimML; however, this gives us noth-

ing new as the formal or virtual dimen-

sion of the moduli space is determined
by classical algebraic data (e.g. c1(L2),

χ(M), σ(M)) via the Atiyah-Singer in-
dex theorem.

or (equivalently) c1(τ)
k against the homology class of ML where τ is the

tautological line bundle over CP∞ (provided the moduli space is even di-

mensional; otherwise the Seiberg-Witten invariant is set to 0). The moduli

space itself is not an invariant of the input data, but its cobordism class

is (ignoring wall-crossing when b+2 = 1), so the numerical invariant is well-

defined.

One thing to notice in all this is that we start with a cobordism class

of smooth, compact, oriented manifolds, and all we manage to extract is a

single number (which is 0 half the time for trivial reasons — there is nothing

to integrate [ML] against), so we are throwing away lots of information.

Picard Tori
The Picard group I’m familiar with
classifies (complex) line bundles or di-

visors, I’m not exactly sure how this

compares.
One wrinkle in our discussion last time was the introduction of the Pi-

card torus, Pic0(M) = H1(M ;R)/H1(M ;Z), which is trivial in the simply-



2 abhishek shivkumar

connected case; the Picard torus plays a role in non-simply-connected Seiberg-

Witten theory in the classification of unitary connections on L2.

2 Moore, Lectures on Seiberg-Witten

invariants, Theorem on Classification
of Connections

Theorem 1.1: Classification of Connections2

If H1(M ;Z) is free abelian (which is automatic for compact oriented

manifolds M), L a complex line bundle over M , then there is a

bijection between the set of unitary connections modulo S1-gauge

equivalence and C × Pic0(M) where C is the set of closed 2-forms

representing c1(L) given by

[A] 7→
(

1

2π
FA, (e

iθ1(A), · · · , eiθb1(M)(A))

)
The θi capture the holonomy of the connection. Explicitly, pick

curves γ1, · · · , γb1 representing generators for H1(M), all based at

some fixed m ∈ M ; then, parallel translation around the γi defines

automorphisms τi : Lm → Lm. Since our connection is unitary, the

τi are unitary, i.e., rotation by some angle θi.

The curvature of a connection on L rep-
resents c1(L) (up to scale) by Chern-

Weil theory.

Note that the holonomy isomorphisms

τi (and hence the θi) are gauge invari-
ant since u :M → S1 acts on a connec-

tion dA by

dA 7→ u ◦ dA ◦ u−1 = dA + ud(u−1)

Integrating dA and udAu
−1 around γi

we get conjugate endomorphisms from
Lm to itself, but the trace is conjuga-

tion invariant (and the trace of a 1× 1

matrix just reads off the sole entry) so
θi (and therefore) τi are gauge invari-

ant.

In general (for higher-dimensional bun-
dles and gauge groups) the holonomy τi
itself will not be gauge invariant, but its
trace always will be by the above argu-

ment; this quantity is called the Wilson

loop operator. The Wilson loop opera-
tors for 3D Chern-Simons theory along

knots and links in S3 give the Jones

polynomial.

The punchline is that C classifies connections modulo gauge in the simply-

connected case, and the Picard torus is required when we have nontrivial

π1 to keep track of the extra holonomy data. Without rehashing the entire

construction of the Seiberg-Witten moduli space, since one of the input

data for the equations is connections on L2 modulo gauge, this replaces

CP∞ in the above discussion by a CP∞-bundle over Pic0(M).

The other relevant fact to us about connections is that the space of con-

nections on M is an affine space (or torsor) over Ω1(M).

The Monopole Map

A seemingly trivial reframing of these input data is to repackage the equa-

tions into a map, called the monopole map: set

Ã = {A0 + ker d} × (Γ(W+ ⊗ L)⊕ Ω1(M))

C̃ = {A0 + ker d} × (Γ(W− ⊗ L)⊕ Ω2
+(M)⊕H1(M ;R)⊕ Ω0(M)/R)

where A0 is a base spinc connection to trivialize the Ω1(M)-torsor of con-

nections. This ridiculous map is exactly like what

all object-oriented programming looks
like to me.

In the small amount of the literature
I’ve looked through (e.g, what is cited
in the references), there are nontrivial

variations in the definition of µ, includ-
ing additional input terms (such as a
smooth function on M).

Define µ̃ : Ã → C̃ by

(A,ψ, a) 7→ (A,D+
A+iaψ, F

+
A+ia − σ(ψ), aharm, d

∗a)

µ̃ is a map of Map(M,S1) = G-spaces, with the obvious G-actions on each

side (including no action at all when none is obvious). aharm is the harmonic
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part of a, where, by Hodge theory, a = aharm + df + d∗ω for some 0 and

2-forms f and ω. The idea of this map appears to be to just cram all the

relevant inputs and outputs into a single map, and then, by conservation

of information, µ̃ should contain all the same information as our original

setup. In particular, after modding out by gauge, we expect to be able to

recover ML from µ̃−1({A0 + ker d}, 0, 0, 0, 0).

An Aside on Asinine Gauge Slicing
I wasted a good amount of time trying
to understand the choices made in the

definition of this map.The inputs {A0 + ker d} and Ω1(M) together give a redundant description

of a single connection 1-form A0 + iα + ia where dα = 0; there are a few

reasons for this:

• The action of G0 (the based gauge group, whose elements send a base-

point m ∈ M to 1 ∈ S1) fixes {A0 + ker d} setwise and is is free, so we

can take a quotient in the next section. In fact, the action of G0 on all

of Ω1(M) regarded as connections is also free, so our real motivation for

restricting to {A0 + ker d} is in the next line. Note that G = G0 × S1.

• The addition of a closed 1-form to a base connection does not change

the curvature, so by Theorem 1.1, {A0 + ker d}/G0
∼= Pic0(M)

• Although A0 + iα is not a generic unitary connection, any connection

1-form can be written as A0 + iα + ia, but this decomposition can be

redundant (i.e. we can write the same 1-form in multiple ways)

• To avoid this redundancy, in the next section we will set aharm = 0,

which, together with the Coulomb gauge condition d∗a = 0 will guar-

antee that A0 + iα + ia is a unique decomposition for each relevant

connection:

Lemma 2.1

Hodge theory gives us an orthogonal decomposition

Ω1(M) = dΩ0(M)⊕ d∗Ω2(M)⊕H1(M) = im d⊕ im d∗ ⊕H1(M)

where H1(M) consists of harmonic 1-forms.

Thus, aharm = 0 implies that a = df + d∗ω for a function f and 2-form

ω; the Coulomb gauge condition d∗a = 0 then implies that ∆f = 0.

The harmonic functions on a connected manifold M are all constants

so df = 0 and a = d∗ω. Thus, a accounts for the im d∗ component of

Ω1(M). Our full connection is A0+ iα+ ia with dα = 0, thus α ∈ ker d, One thing I never quite figured out is
why we want d∗a = 0 in Ω0(M)/R
rather than just in Ω0(M).

and ker d = (im d∗)⊥ = H1(M) ⊕ im d using the fact that d and d∗ are

adjoint, so α and a together will uniquely specify a generic connection.

The action of G0 on Ω1(M) is set to the trivial action, and all of this allows

us to quotient by G0 and get the “right” answer (i.e. we will be able to

recover the moduli space of monopoles).
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TL;DR

We introduce redundancy and then eliminate it in a nontrivial way

in order for µ = µ̃/G0 to have some nice properties.

A Better World was Possible

There is an alternative gauge slicing for the monopole map due to Khan-

dawit3 where the map looks much more reasonable: 3 Khandhawit, A new gauge slice for

the relative Bauer–Furuta invariants.

µ̃ : Ω1(X)⊕Γ(W+⊗L) → iΩ2
+(X)⊕Γ(W−⊗L) µ̃(A0+ia, ψ) = (

1

2
F+
A−σ(ψ), D+

Aψ)

I don’t really know what the 1
2 or the iΩ2

+(X) are all about but this map is

essentially just the Seiberg-Witten equations, and can also be used to define

the Bauer-Furuta invariants; the trade-off for the inputs and outputs being

cleaner is that quotienting by the gauge group is a little fiddlier. I didn’t

switch to this paper for a source because we will be reading the sequel4 to 4 Bauer, A stable cohomotopy refine-

ment of Seiberg-Witten invariants: II .Bauer-Furuta5 next, and that paper will use the monopole map as written
5 Bauer and Furuta, A stable cohomo-

topy refinement of Seiberg-Witten in-

variants: I .

here.

Salient Properties of µ
Equivariance with respect to the global

phase is immediate after you think

through what the action really does on
each component; global phases act triv-

ially on connections and forms and just

rotate the spinor.

Set A = Ã/G0 and C = C̃/G0, and let µ : A → C be the induced map, which

is well-defined since µ̃ is G0-equivariant. There is a residual S1-action on A
and C given by a global phase; importantly, µ is equivariant with respect

to this action. Thus, µ−1({A0 +ker d}, 0, 0, 0, 0)/S1 is precisely the moduli

space ML of Seiberg-Witten monopoles. Since {A0+ker d}/G0 = Pic0(M)

appears as a factor of both A and C (and µ is the identity map on this

factor), µ is manifestly a map of (trivial) Hilbert bundles over Pic0(M).

There are essentially two important properties of µ regarded as a map of

Hilbert bundles: Technically, we have to do some fiber-
wise Sobolev completions of A and

C for the same reasons Sobolev com-
pletions come up in regular Seiberg-
Witten theory (something something
elliptic bootstrap), but the functional
analysts have apparently figured all of

that out, and we will therefore ignore

it entirely.

1. µ is a “compact perturbation” of a linear Fredholm map, i.e., µ = l +

c where l is linear Fredholm and c is a nonlinear compact operator.

Specifically (and ignoring the A 7→ A part of µ),

c(ψ, a) = (0, F+
A , 0, 0) + (ia · ψ,−σ(ψ), 0, 0)

where ia · ψ is Clifford multiplication, and

l(ψ, a) = (D+
Aψ, d

+(ia), aharm, d
∗a)

where d+ω is the self-dual part of dω. In particular, the nonlinear com-

ponent of µ is essentially quadratic. Implicit in this decomposition are some
mildly nontrivial claims about how D+

A

and F+
A transform under perturbations

of A.

2. The preimages of bounded sets are bounded — this is essentially equiv-

alent both morally and mechanically to compactness of the moduli space

in ordinary Seiberg-Witten theory. The punchline is that theWeitzenböck

formula for D+
A gives us bounds on all the relevant input data.
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Towards the Stable Cohomotopy Class

Functional Analysis
The usual definition of Fredholm in-

cludes the criterion that the range of T

is closed; Wikipedia tells me that this
condition is actually redundant.

Definition 3.1: Fredholm Maps

Let T : E1 → E2 be a continuous linear map of Hilbert spaces, then

T is Fredholm if kerT and cokerT are finite-dimensional, in which

case we define the index of T as ind(T ) := dimkerT − dim cokerT .

The map we are interested in, however, is not linear Fredholm, but a com-

pact perturbation thereof written l + c, between separable Hilbert spaces,

and such that c is compact (these are confusingly also called Fredholm maps

in Bauer-Furuta). The key result we will use about such maps is due to

Schwarz: Compactness for such a map c means

that bounded sets get mapped to pre-

compact sets, but we won’t interact
with this definition in any meaningful

way.

Theorem 3.2: Schwarz

Compact homotopy classes of continuous Fredholm (in the above

sense) maps relative to l are in bijection with the ind(l)th stable

homotopy group of spheres πst
ind(l).

We need to define compact homotopy relative to l; say µ = l+ c : A → C is

a Fredholm map between separable Hilbert spaces. Fix some disc D ⊆ A,

and restrict µ to ∂D. Then a compact homotopy of µ relative to l is of the

form µt = l + ct : ∂D × I → C \ 0 (i.e. only the compact part is changing)

such that µt is non-vanishing on ∂D and for all time t. There was some confusion about the re-

quirement that µt is non-vanishing; in
particular, what are we supposed to do

if our original map µ0 = l + c vanishes

on ∂D? In particular if c = 0, and l has
nontrivial kernel, we would seem to be

in trouble. I’m not really sure what the

answer is.

The construction for associating such classes of maps to elements in the

ind(l)-stem is as follows:

• approximate the compact part c on ∂D uniformly by maps cn with finite

dimensional range im(l)⊥ ⊆ Vn ⊆ C (one can always do this according

to the functional analysts) where im(l)⊥ is finite-dimensional since l is

Fredholm

• Let µn = l + cn restricted to l−1(Vn) ∩ ∂D; this is the intersection

of a finite-dimensional vector space and the sphere S∞, hence a finite-

dimensional sphere. Dimension counting finds that dim(l−1(Vn)∩∂D) =

ind(l) + dimVn − 1

• Since µn is non-vanishing, our map to a sphere is defined as µn

∥µn∥ , and

the target sphere is (dimVn − 1)-dimensional, thus gives us an element

of πdimVn+ind(l)−1(S
dimVn−1)

• One (but not us) can show that the limit of these maps is a well-defined

element in the ind(l)-stem, and that compact homotopy classes of µ give
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the same stable homotopy class. Moreover, the class we get in πst
ind(l) is

invariant under compact homotopy relative to l.

6 Berger, Nonlinearity and functional

analysis: lectures on nonlinear prob-

lems in mathematical analysis, Chap-
ter 5.3

Remark 3.3: Leray-Schauder Degree6

For l = id, this construction associates to any compact operator

an element of the 0-stem, πst
0 = Z, so, an integer. This integer is

called the Leray-Schauder degree, and can be used together with the

Leray-Schauder fixed point theorem to prove existence of solutions

to PDEs.
The above citation also gives a good

discussion of the general construction

sketched above for ind(l) ̸= 0.Hilbert Bundles

The monopole map is not merely a compact perturbation of a linear Fred-

holm map, but rather, a bundle’s worth of such maps over Pic0(M), so

we need to lift the above construction to bundles of Hilbert spaces. Re-

iterating our bad terminology from the above discussion, we will define

Fredholm maps over Y to be continuous maps of Hilbert bundles over a

compact base Y of the form f : l+ c where l is linear Fredholm and where

c is fiber-preserving, compact, and whose preimages of bounded sets are

bounded.

Theorem 3.4: Kuiper

Any Hilbert bundle with infinite dimensional fiber is trivial.

A priori, I suppose there could be prob-

lems with simultaneously trivializing
both A and C; however, they seem

to be constructed as manifestly triv-

ial Hilbert bundles, so I’m not even re-
ally sure why we have to invoke Kuiper

here. I think we probably don’t have to,

and it only shows up in Bauer-Furuta
when they are being more general than

they have to, and explaining how to as-
sociate cohomotopy classes to maps of

Hilbert bundles in general.

Thus, looking at the monopole map, we may trivialize the codomain as

C = Pic0(M) × (Γ(W− ⊗ L) ⊕ Ω2
+(M) ⊕ H1(M ;R) ⊕ Ω0(M)/R; call the

fiber of this trivialized bundle C. We could also trivialize the domain, but,

instead, we look at the map

µ̂ : Th(A) → C+

where C+ is the Hilbert sphere (one point compactification), and Th(A) is

the Thom space of A. This is well-defined by our boundedness criteria. Recall that the Thom space of a bundle

is defined as

Th(E) = D(E)/(S(E) ∪ Eb)

where Eb is the full fiber above the
basepoint b; this makes Th(E) into a
based space. The Thom space of a triv-
ial bundle is just the smash product
with a sphere of appropriate dimension,

or, equivalently, the iterated (reduced)
suspension. Therefore, we can think

of the Thom space as being a kind of
“twisted” suspension.

One reason for doing so is that the target C+ has “forgotten” the input

information from Pic0(M) which is part of the data of a connection, and

we need to remember that information somewhere (if we trivialized A and

C simultaneously and just considered the map between compactified fibers,

we would lose all holonomy data). We want to extend the association of µ

to a stable homotopy class above, to µ̂. However, now, since only the target

is a sphere, we will get a (stable) cohomotopy class. This construction (and

its S1-equivariant refinement) will be taken up next week.
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