THE PSEUDO-ISOTOPY THEOREM FOR SIMPLY CONNECTED DIFFERENTIABLE MANIFOLDS *)

Jean Cerf

1. Statement of the theorem

Let V be a compact differentiable manifold. The group of pseudo-isotopies of V is the subgroup of Diff (V \times I) consisting of diffeomorphisms which keep V \times {0} pointwise fixed. This group acts in a natural way on Diff V (V = V \times 1). Two diffeomorphisms of V which are equivalent under that action are said to be pseudo-isotopic.

Theorem 1. If V is simply connected and dimension $V \ge 5$, then the group of pseudo-isotopies of V is connected (for the C^{∞} -topology).

Corollary 1 (Same hypothesis on V). On Diff V, the two relations isotopy and pseudo-isotopy coı̈ncide.

Corollary 2.
$$\pi_0(\text{Diff D}^n) = 0$$
 for $n \ge 6$, $\pi_0(\text{Diff S}^n) % \Gamma_{n+1}$ for $n \ge 5$.

2. Functional form of theorem 1

Let \mathcal{F} be the space of C^{∞} functions $V \times I \longrightarrow I$ which are equal to zero on $V \times \{0\}$ and to 1 on $V \times \{1\}$. Let \mathcal{E} be the subspace of \mathcal{F} consisting of functions which have no critical point. The group of pseudo-isotopies of V acts in a natural way on \mathcal{F} ; it is easy to prove (using a Riemannian metric on $V \times I$) that \mathcal{E} coincides with the orbit of the natural projection $p\colon V \times I \longrightarrow I$ under that action, and that the map: g + g.p admits a global section over \mathcal{E} . The group of pseudo-isotopies of V (whose subgroup keeping p invariant is the group of isotopies of V, which is acyclic) has therefore the same homotopy type as \mathcal{E} . In particular, theorem 1 is equivalent to the following:

Theorem 1'. If V is simply connected and dimension $V \geq 5$, then \mathcal{E} is connected.

The general idea of the proof of theorem 1' is the following.

E is a union of connected components of the 0-stratum χ^0 of the natural stratification of χ^0 (see 3. below). Any two points in χ^0 can be joined by a path in χ^0 χ^0 . One has to prove that such a path can be deformed (with fixed end points) into a path in χ^0 . The proof splits naturally into 3 parts:

^{*)} Outline of [1].

- the local study of the natural stratification of $\widetilde{\mathcal{F}}$ (up to codimension 2);
- the semi-local lemmas;
- the global part of the proof which makes use of Smale's filtration of $\,\widetilde{\,\,\,\,}\!_{}^{\,\,}$ and of an algebraic lemma.
- 3. <u>Local description of the stratification of</u> \mathcal{F} (in small codimensions)

 Denote by W the manifold $V \times I$ and by G the group Diff $W \times$ Diff I; the group G acts in \mathcal{F} according to the formula:

 (1) $G \times \mathcal{F} \ni ((g, g'), f) \longmapsto g' \circ f \circ g^{-1}$

<u>Definition 1</u> (Mather). The <u>codimension</u> of $f \in \mathcal{F}$ is the real codimension of the image of the linear tangent map to the map $p_f \colon G \longrightarrow \mathcal{F}$ obtained by fixing f in formula (1).

Denote by Fi the subspace of F defined by

 $f \in \mathcal{F}^j \iff \text{codimension } f = j.$

The sequence \mathcal{F}^0 , \mathcal{F}^j , ..., \mathcal{F}^j , ..., \mathcal{F}^m defines the natural stratification of \mathcal{F}^i . [A stratification of a topological space E is a family E^0 , E^1 , ..., E^j , ..., E^m of subspaces such that

$$E^{j} \cap E^{j'} = \emptyset \text{ for } j \neq j';$$

$$\bigcup_{0 \leq j} E^{j} = E$$

$$0 \leq j$$

$$\bigcup_{0 \leq j \leq k} E^{j} \text{ is open for every } k \geq 0].$$

A <u>locally trivial</u> stratification of E is a stratification such that, for every $x \in E$, there exists a stratified space X with a punctual stratum $\{0\}$, a topological space Y with trivial stratification and a chosen point y, and a morphism (of stratified spaces) $\phi \colon X \times Y \longrightarrow E$ such that:

$$\phi(0, y) = x;$$

the image U of ϕ is a open subset of E;

 ϕ defines an isomorphism between X × Y and U.

Concerning the natural stratification of F, one can prove the following properties:

- a) It is locally trivial (cf. Sergeraert, [2]);
- b) for every j, F has codimension j in F;
- (2) codimension $f = \Sigma$ (codimensions of the critical points of f)
 - + Σ (codimensions of the critical values of f)

the codimension of a critical point c is defined as the real codimension of the

ideal generated by the germs of the first partial derivatives in the ring of germs of C^{∞} -functions W \longrightarrow R with value zero at c.

The codimension of a critical value α is defined as being:

(number of critical points in $f^{-1}(\alpha)$) - 1].

The classification of the critical points of codimension 0, 1 or 2 is the following:

codimension	canonical form	name
0	$-x_1^2 - \dots - x_i^2 + x_{i+1}^2 + \dots + x_n^2$	Morse point
1	$-x_1^2 - \dots - x_i^2 + x_{i+1}^2 + \dots + x_{n-1}^2 + x_n^3$	birth point
2	$-x_1^2 - \dots - x_i^2 + x_{i+1}^2 + \dots + x_{n-1}^2 - x_n^4$	swallow's tail point

(The integer i is called the index of the critical point).

The classification of the functions of codimension 0, 1 or 2 follows immediately, using formula (2):

codimension	type	transversal model of the stratification	Name
0	(0; 0)	(one point)	excellent function
1	(1; 0)		birth function
1	(0; 1)		crossing function
2	(2; 0)	\leftarrow	swallow's tail function
2	(1+1; 0)		two births
2	(1; 1)		birth + crossing
2	(1; 1)	\leftarrow	birth at a critical level
2	(0; 2)	\times	triple valued function
2	(0; 1+1)		two crossings

4. The semi-local lemmas

These lemmas give some homotopic information about the union of "cocells" (a cocell is a connected component of a stratum) whose closure contains a given cocell (of codimension 1 or 2). In terms of "graphics", one can say that the lemmas concern the possibility of deforming a path in \mathcal{T} in order to obtain some given deformation of its graphic.

[Let $(f_t)_{t \in I}$ be a path in \mathcal{F} ; the corresponding graphic Γ is the subset of $I \times I$ defined by

 $(t, \alpha) \in \Gamma \iff \alpha$ is a critical value of f_t].

All deformations of paths we will consider have to be understood with both end points fixed.

Classification of crossings. Suppose a path (f_t) has graphic (i' and i are the indices of the corresponding critical points).

Then:

- 1) if i' < i, it is possible to deform (f_t) on such a way that the graphic becomes _____i
- 2) if i' = i, there is an obstruction with values in \mathbb{Z}_+ to do the preceeding. Other lemmas:

	It is possible to deform a path with that graphic	into a path with this graphic
Uniqueness of births	> <	
Uniqueness of deaths		nothing
Triangle		
Beak		
Swallow's tail		

For the precise conditions for these lemmas, see [1].

5. Global part of the proof. [The dimension of V will be denoted by n-1] Smale has defined a decreasing filtration of $\mathcal F$ which stops at $\mathcal E$. In particular, an important intermediary space between $\mathcal E$ and $\mathcal F$ is the space $\mathcal F_i$ (0 \leq i \leq n-1; in fact, the interesting cases occur when i is close to $\frac{n}{2}$)

 $f \in \widecheck{\mathcal{F}}_{i,q;\alpha} \iff f \text{ has the singularities of a function of } \widecheck{\mathcal{F}}_{i,q}, \text{ and in addition a}$ birth point (with index i) at an intermediate level.

$$\mathcal{F}_{i} = \bigvee_{q \geq 0} (\mathcal{F}_{i,q} \cup \mathcal{F}_{i,q;\alpha})$$

Notice that $\widetilde{Y}_{i,0} = \mathcal{E}$.

It is easy, using the semi-local lemmas, to prove the following results:

Proposition 1. If $2 \le i \le n-3$, then \mathcal{F}_i is connected.

<u>Proposition 2.</u> Let us denote by $\phi_{i,q}$ (resp. ϕ_{i}) the nerve of $\gamma_{i,q}$ (resp. γ_{i}). There exists a sequence of natural injections

The nerve of a stratification $E^0 \cup E^1 \cup \dots$ is the ordered simplicial complex defined on $\pi_0(E^0) \cup \pi_0(E^1) \cup \ldots$ by the relation $A \subset \overline{B}$.

The telescopic limit of a sequence of maps is the inductive limit of the sequence defined by the corresponding mapping cylinders].

The idea is now to associate to every $f \in \mathfrak{F}_{i,q}$ an algebraic invariant ("invariant" means that this element depends only on the image of f in $\phi_{i,0}$, and to organize all these invariants in order to obtain a simplicial complex $\mathcal{A}_{_{\mathbf{Q}}}^{^{-}}$ and a morphism $\bar{\psi}_{0}: \phi_{1,0} \longrightarrow \mathcal{A}_{0}$, in such a way that there exists a commutative diagram:

$$\begin{array}{c} \emptyset_{\underset{\downarrow}{\mathbf{i}},0} \hookrightarrow \cdots \hookrightarrow \emptyset_{\underset{\downarrow}{\mathbf{i}},\underset{q}{\mathbf{q}}} \hookrightarrow \emptyset_{\underset{\downarrow}{\mathbf{i}},\underset{q+1}{\mathbf{q}+1}} \hookrightarrow \cdots \\ \downarrow^{\omega_0} \qquad \qquad \downarrow^{\overline{\omega}_q} \qquad \downarrow^{\overline{\omega}_{q+1}} \hookrightarrow \cdots \\ \mathcal{A}_0 \hookrightarrow \cdots \hookrightarrow \mathcal{A}_q \hookrightarrow \mathcal{A}_{\underset{q+1}{\mathbf{q}+1}} \hookrightarrow \cdots \end{array}$$

Moreover, one proves (using essentially the classification of crossings) that each $\omega_{\rm c}$ is a covering map. Suppose now that we know a family of generators of $\pi_1(\mathcal{A}_0)$, and that each of these generators can be lifted into a loop in $\Phi_{i,a}$; then we conclude that $\phi_{i,q}$ is a product-covering of \mathcal{A}_{q} . If this is true for every q, then ϕ_{i} is a product covering of the telescopic limit $\mathcal A$ of the $\mathcal A_a$. By Proposition 1, \emptyset_i is connected; therefore ϕ_i is isomorphic to \mathcal{A}_i and ϕ_i is isomorphic to \mathcal{A}_q for every q. In particular, $\phi_{i,0}$ is isomorphic to \mathcal{A}_0 , which consists of a single point; this proves theorem 1'.

Sketch of the definitions of \mathcal{A}_q and $\overline{\omega}_q$ Let us denote by M an intermediary manifold of f (that is a level manifold of f which separates the critical points of index i+1 from those of index i) and by W and W the closure of the two parts in which M cuts W. It is known by Morse theory that

("dual" means that ϕ_0 and ϕ_0' take the natural pairing of \mathbb{Z}^q with itself to the pairing of $H_{i+1}(W^+, M)$ and $H_{n-i}(W^-, M)$ given by Poincaré duality). To every basis ϕ of $H_{i+1}(W^{i}, M)$ one associates the matrix $g = \phi_0^{-1}$ o ϕ (and to every ϕ ', one associates $g' = \phi_0^{'-1}$ o ϕ '); the matrix $^tg.g'$ is called the <u>intersection matrix</u> of ϕ and ϕ .

<u>Definition</u>. A basis $\phi: \mathbb{Z}^q \longrightarrow H_{i+1}(W^+, M)$ is said to be adapted to f if there exists a decreasing order e_1, \ldots, e_q of the critical set of $f \mid W^+$, and a family of disjoint descending manifolds D_1, \dots, D_q relative to c_1, \dots, c_q , such that (for every j = 1, ..., q) $\phi(\epsilon_i)$ is equal to the image of the fundamental class of D_{j} $\left[\varepsilon_{1}, \ldots, \varepsilon_{q} \text{ is the natural basis of } \mathbb{Z}^{q}\right].$ A matrix $g \in GL(q, \mathbb{Z})$ is said to be adapted to $f \mid W^{+}$ if ϕ_{0} og is an adapted basis of $H_{1+1}(W^{+}, M)$.

a) Suppose f is "excellent" (in other words, f has codimension zero). Then $\phi(\epsilon_q)$ is well defined up to sign; $\phi(\epsilon_{q-1})$ is well defined up to sign and the addition of any integer multiple of $\phi(\epsilon_q)$; etc. Eventually: given any matrix g adapted to $f \mid W^{\dagger}$, the family of all adapted matrices is g.T_q [T_q designates the subgroup of GL(q, Z) consisting of lower triangular matrices]. Therefore if g is adapted to $f \mid W^{\dagger}$ and g' to $f \mid W^{\dagger}$, then the image of the intersection matrix t g.g' in the double-coset space t CL(q, Z) / T_q is independent of the particular choice of g and g'; that image is the algebraic invariant of f.

- b) Suppose all critical values of the same index of f are equal. Then T_q has to be replaced by the symmetric group S_q .
- c) In the general case, let J be the subset of $\{1, \ldots, q-1\}$ defined by the condition: $j \in J \iff f(c_j) = f(c_{j+1})$; then the set of matrices which are adapted to $f \mid W^+$ is gS_JT_J , where $S_J \subset S_q$ is the subgroup generated by the transpositions s_j , $j \in J$, and $T_J \subset T_q$ is the subgroup consisting of the matrices (a_{kl}) whose off-diagonal a_{kl} are zero for $(k-1, 1) \in J \times J$.

The algebraic lemma

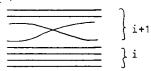
Let us denote by t_j the elementary matrix (a_{kl}) such that $a_{j+1,j} = 1$. For $g \in GL(q, \mathbb{Z})$, \ddot{g} will denote the image of g in $T_q \setminus GL(q, \mathbb{Z}) / T_q$. The group $\pi_1(\mathcal{A}_q; \ddot{e})$ is generated by the following loops:

$$\begin{aligned} \gamma_{\mathbf{j},\lambda} &= \left[\ddot{\mathbf{e}}, \ \mathbf{t}_{\mathbf{j}}^{\lambda} \ \mathbf{s}_{\mathbf{j}}, \ \mathbf{s}_{\mathbf{j}}^{\lambda} \ \mathbf{t}_{\mathbf{j}}^{\lambda} \ \mathbf{s}_{\mathbf{j}}\right] & & & & & & & & \\ 1 &\leq \mathbf{j} \leq \mathbf{q} - 1; & & & & & & \\ \zeta_{\mathbf{j}} &= \left[\ddot{\mathbf{e}}, \ \ddot{\mathbf{s}}_{\mathbf{j}}, \ \mathbf{s}_{\mathbf{j}}^{\lambda} \ \dot{\mathbf{t}}_{\mathbf{j}}^{\lambda} \ \mathbf{s}_{\mathbf{j}}\right] & & & & & & & \\ \delta_{\mathbf{j}} &= \left[\ddot{\mathbf{e}}, \ \mathbf{t}_{\mathbf{j}}^{\lambda} \ \mathbf{s}_{\mathbf{j}}\right] & & & & & & \\ 1 &\leq \mathbf{j} \leq \mathbf{q} - 1; & & & & \\ & & & & & & & \\ \end{bmatrix}$$

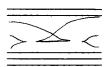
[s_j denotes the transposition which permutes j with j+1].

Lifting of the generators

Consider for example the generator δ_{q-1} . The graphic of a path α in $\mathcal{F}_{i,q}$ which represents δ_{q-1} is the following:



By Smale's cancellation lemma, α can be deformed into a path α ' with graphic



Using the swallow's tail lemma and the uniqueness of births, one can deform α' into a path with "trivial" graphic; this proves that the end points of α can be joined by a path in the space $\mathfrak{F}^0_{i,q}$ (subspace of $\mathfrak{F}_{i,q}$ consisting of functions of codimension zero). In other words, the image of α in $\phi_{i,q}$ is a loop. The proofs of the same property for the generators $\gamma_{i,\lambda}$ and ζ_i are analogous.

REFERENCES

- [1] J. Cerf La Stratification naturelle des espaces de fonctions différentiables réelles et le theorème de la pseudo-isotopie, to appear in the Publications Scientifiques de l' I.H.E.S., vol. 39.
- [2] F. Sergeraert Comptes Rendus Acad. Sc. Paris. Série A, t. 271, pp. 453-56.

Département de Mathématique Faculté des Sciences ORSAY