Abhishek Shivkumar

Contact Information	Office: PMA 9.128 https://web.ma.utexas.edu/users/abhishek/	ashivkum@utexas.edu (609) 845-8034	
Education	University of Texas, Austin	Fall 2022 - Present	
	 Ph.D. in Mathematics (in progress) Provost's Graduate Excellence Fellow Relevant Coursework: Gauge Theory and Four-Manifold Topology Elliptic Curves Geometric Topics in Field Theory Literature Seminar in Geometry 	(similar to the Kan Seminar)	
	University of California, Berkeley	Fall 2017 - Spring 2021	
	Bachelor of Arts in Mathematics High Honors in Mathematics and General Distinction in Scholarship Honors Thesis: Quantum Cohomology and Counting Curves advised by Professor Martin Olsson		
	Graduate Coursework: 202A: Analysis, Topology, and Measure Theo 205: Complex Analysis 249: Algebraic Combinatorics 215A: Algebraic Topology 250AB: Algebra	(Full Voor Somernee)	
	250AB: Algebraic Geometry	(Full Year Sequence) (Full Year Sequence)	
	254AB: Number Theory	(Full Year Sequence)	
Research Experiences	NSF Funded Summer Research	Summer 2020	
	 Studied the Hitchin fibration on parabolic Higgs bundles via the geometry of the moduli space of multiple flags 		
	• Produced novel combinatorial descriptions of this fibration via elementary geometric methods in low-dimensional cases		
	University of Michigan REU accepted but unable to attend due to COVID-19	Summer 2020	
	• Received and accepted an offer to conduct individual research on dimer processes and asymptotic/thermodynamic properties of certain combinatorial families		
	UCLA REU: Research in Industrial Projects for Students Summer 2019 at the Institute for Pure and Applied Mathematics, University of California, Los An- aeles		
	• Applied dynamical systems theory to provide a framework to reconstruct chaotic		
	data from a limited set of observablesBuilt a fully parallelized parameter inference framework using optimal transport theory and gradient descent		
	Lawrence Berkeley National Laboratory	Sept. 2017 - Jan. 2019	

• Worked on the upcoming DUNE experiment, initially by using the CERN ROOT toolkit to parse simulation data and optimize beamline design

	 Authored a technical note on sources of error in hadron product system for the DUNE particle beam Designed and implemented a neural network for classifying pratechnical note and gave a talk to the DUNE working group my findings in this area 	ction and the focusing roton decay, authored at LBNL to present
Directed Study	Independent Study - advised by Professor David Nadler	Fall 2019
	 Studied recent connections between random matrix theory and combinatorics, especially as related to asymptotic and thermodynamic properties of dimer models; primarily I studied the tilings of Aztec diamonds, and the connections thereof to quantum groups Prepared short talks periodically to prove these results in a seminar-style setting with other students 	
	Math Department Directed Reading Program	Spring 2018
	 Studied general relativity independently via several textbooks Met regularly with a graduate student mentor to discuss and clarify the material Prepared a short talk to explain basic general relativity to a general audience 	
Awards and Honors	 UT Austin Provost's Graduate Excellence Fellow Graduated with High Honors in Mathematics Graduated with General Distinction in Scholarship Putnam Exam - 87th percentile, placed in top 500 Putnam Exam - 83rd percentile Edward Frank Kraft Award 	2022-Present 2021 2021 2019 2017 2017
Service and Outreach	Directed Reading Program Mentor Worked one-on-one with students on guided independent st own choice as part of the UT Austin Directed Reading Progr knot theory and analytic number theory.	Fall 2022-Present udy projects of their ram. Topics included
SKILLS		
Typesetting	I have been live-typesetting all class notes (as well as all of my assignments) in IAT_EX for several years, and I generally publish my notes online. I maintain an open source note-taking template and have participated in collaborative projects to typeset and modernize classic texts in mathematics.	
Programming	Highly experienced with PYTHON, JULIA, and the CERN ROOT library. Some experience with MACAULAY2, SINGULAR, and other similar computer algebra systems. Extensive experience with the analysis and efficient manipulation of large data sets.	