
Vector Bundles, Clutching functions, and Grassmannians Jacob Gaiter

1 Vector Bundles

Intuitively, vector bundles are families of vector spaces parametrized by a particular

base space. This leads to the natural de�nition:

Definition 1.1. (Quasi-vector bundles) Let k be R or C. A k-quasi-vector bundle
over X a topological space is the data π : E→ X a surjection such that each of the

�bers Ex := π
−1(x) carries a k-vector space structure for all x ∈ X.

Now as is, the �bers of π need not be related to one another. They could jump

in dimension and in general be rather ill-behaved. In order to have a more tractable

de�nition, we might require that such a map be locally trivial.

Definition 1.2. (Vector bundles) A k-quasi-vector bundle is a k-vector bundle if

for each x ∈ X there exists an open neighborhood U of x and a homeomorphism

ϕ : π−1(U) → U× Ex which makes the following diagram commutative.

π−1(U) U× Ex

U

π

ϕ

p1

and ϕEy : Ey → {y} × Ex is a linear isomorphism. These maps ϕ are called a local

trivialization of E over U.

Remark. The fact that we require local triviality now means that the �bers of

vector bundles over connected components (if the space is locally path connected)

is now constant, i.e. if [x] = [y] ∈ π0(X) then dimEx = dimEy.

Example 1. If V is a �nite dimensional vector space then for X a topological space

p1 : X × V → X is a vector bundle. This is called the trivial vector bundle since it

is the constant (trivia) family with value V over every point.

Example 2. Consider the Z action on R×R given by a(x, y) = (x+a, (−1)ay). The

quotient space (R × R)/Z has a natural vector bundle structure over R/Z coming

from the trivial structure on R×R.The space π : (R×R)/Z → R/Z is the familiar

M�obius bundle. Because Z acts linearly, freely, and properly discontinuously q :

R × R → (R × R)/Z is a covering map and for p ∈ R there is a small enough

neighborhood say (p− ε, p+ ε)×R which projects homeomorphically onto q((p−

ε, p + ε) × R). Let ~q : R → R/Z by the quotient map. We then have a local

trivialization π−1(~q(p− ε, p+ ε)) → (p− ε, p+ ε)× R.
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One natural way to get a vector bundle from another one is the pullback bundle.

Let f : X→ Y be a continuous map and π : E→ Y a vector bundle. We can form the

pullback bundle of E by f, f∗π : f∗E→ X by de�ning f∗Ex := Ef(x). To see that this is

locally trivial, suppose ϕα : π−1(Uα) → Uα×Rn is a collection of local trivializations
of E which cover f(X). Since f is continuous f−1(Uα) is an open cover of X. We

can then create maps ψα : f∗π−1(f−1(Uα)) → f−1(Uα)×Rn by u 7→ (ϕα(u), f
∗π(u)).

The pullback bundle �ts into the following pullback diagram

f∗E E

X Y

f∗π π

f

As is often the case, we may probe objects by looking at maps to and from them. In

thinking of vector bundles as families of vector spaces, this implies that the correct

notion of morphism between vector bundles is a continuously varying family of

morphisms.

Definition 1.3. Let π : E → X and π ′ : E ′ → X be vector bundles over X. A

morphism of vector bundles F : (π, E, X) → (π ′, E ′, X) is a map F : E → E ′ which

makes the following diagram commute:

E E ′

X

F

π π ′

i.e. F induces a map Fx : Ex → E ′x for all x ∈ X, and Fx is linear for all x.

2 Clutching Functions

One way we might like to specify a morphism of vector bundles is by specifying

one locally on open sets. The following result establishes the "shea�ness" of vector

bundles and their morphisms.

Theorem 2.1. Let (π, E, X) and (π ′, E ′, X) be vector bundles over X. Take the

following data:

i) An open cover {Uα}α∈A of X

ii) A collection of morphisms Fα : E
∣∣
Uα

→ E ′
∣∣
Uα

such that for each α,β ∈ A
Fα
∣∣
Uα∩Uβ

= Fβ
∣∣
Uα∩Uβ
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There exists a unique morphism of vector bundles F : E→ E ′ such that F
∣∣
Uα

=

Fα.

Proof. (Sketch) The map is uniquely de�ned, since its value must agree with the

Fα on every �ber Ex. It su�ces to show that such a map is continuous. Since it is

continuous when restricting to the open covers π−1(Uα), π
′ ′−1(Uα) the map de�ned

in the natural way is continuous.

This way of producing morphisms is called clutching of morphisms, since we

specify morphisms on an open cover and then \clutch" them together. We can

produce a vector bundle in an analogous way by specifying a family of vector bundles

over an open cover.

Theorem 2.2. Let {Uα}α∈A be an open cover of X and (πα, Eα, Uα) be a collection

of vector bundles over the Uα. De�ne Uαβ = Ualpha ∩Uβ and Uαβγ = Uα ∩Uβ ∩
Uγ. Let gβα : Eα|Uαβ → Eβ|Uαβ be a family of isomorphisms which satisfy the

cocycle condition:

gγα|Uαβγ = gγβ|Uαβγ ◦ gβα|Uαβγ .

There exists a unique bundle (π, E, X) over X and isomorphisms gi : Eα → E|Uα

making the following diagram commutes.

Eα|Uαβ Eβ|Uαβ

E|Uαβ

gβα

gα|Uαβ gβ|Uαβ

Proof. (Sketch) The important point is that we can construct the total space of

the bundle as a quotient of
⊔
α∈A Eα under the equivalence relation eα ∼ eβ if

gβα(eα) = eβ. Because each Eα is equipped with a projection and the gβα's are

bundle maps, the map ~π :
⊔
α Eα → X induces a map π : (

⊔
α Eα)/ ∼→ X the

bundle projection. The desired local isomorphisms are induced by the inclusion

maps Eα → ⊔
Eα.

We can use this theorem to specify bundles over locally contractible spaces by

specifying a contractible open cover and the data of "transition functions" on the

intersections of this open cover. First, we must prove that any vector bundle over

a contractible space is trivial which follows from the following lemma:

Lemma 2.3. Let E → Y be a vector bundle over Y and f, g : X → Y homotopic

maps. The pullback bundles f∗E and g∗E are isomorphic.
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Proof. cf. Dan Freed's K-theory notes.

Now if U is contractible, we have Id : U → U homotopic to ∗ : U → U u 7→ ∗.
Given a vector bundle E → U, we have E ∼= Id∗E ∼= ∗∗E = U × E|∗ meaning that

E is trivial. This means that given an open cover of a space X by contractible

neighborhoods, a given vector bundle restricts to trivial vector bundles on each

neighborhood. Since vector bundles over the elements of the cover are trivial,

we can describe the data of the transition functions via functions gαβ : Uα ∩Uβ →
GLn(k). Using the fact that the homotopic transition functions describe isomorphic

bundles, we can conclude that the homotopy type of the gαβ's really determines

the isomorphism type of E.

Example 3. Because Sn is covered by two hemispherical balls B±, given E → Sn

a vector bundle, we may trivialize E over the contractible cover {B±} and yield

a transition function B+ ∩ B− → GLn(k). We can see that B+ ∩ B− deformation

retracts to the equatorial copy of Sn−1. Since the contractible cover only has two

elements, any function B+ ∩ B− yields a cocycle and determines a vector bundle.

This means that vector bundles over Sn are classi�ed by homotopy classes of maps

Sn−1 → GLn(k).

Example 4. One way to build the tangent bundle of a smooth manifold is through

the clutching construction. Let Mn be a smooth manifold with atlas given by

ϕα : Uα → Vα. Over each Uα we have the trivial vector bundle Uα ×Rn. Since the
charts in the atlas are compatible, we may form clutching functions over each chart

by gαβ(x, v) := (x, d(ϕβ ◦ ϕα)−1(ϕα)). The gαβ satisfy the cocycle condition and

hence give a well de�ned vector bundle E → M. The proof that TM is a smooth

manifold shows that TM is actually isomorphic to E.

Remark. The proceeding construction of the tangent bundle is a mathematical

rephrasing of the oft heard physics phrase \a vector is something that transforms

like a vector". The clutching functions tell us that if we are locally working on two

open sets Uα and Uβ, then in order to go from an expression over Uα (say a section

σ : Uα → Eα) to an expression over Uαβ expressed with respect to Eβ we need only

apply gαβ. Unravelling the de�ntions of gαβ for the tangent bundle, one �nds that

in the overlapp of two charts, with coordinates xi and yj one has ∂
∂yj

= ∂xi

∂yj
∂
∂xi
, the

familiar expression from di�erential geometry.

Applying a group homomorphism h : GL(V) → GL(V ′) allows us to again pro-

duce new vector bundles from old ones. Over the trivializing neighborhoods, com-

posing h ◦ gαβ gives a new cocycle and hence a new vector bundle. For example,
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the map GLn(V) → GLn(V
∗) by the adjoint, yields the dual bundle to the original

cocycle (the bundle of linear functions Ex → k).

Remark. One can do many natural operations on vector bundles. Given a functor

ϕ : Vectk → Vectk such that the map ϕU,V : Hom(U,V) → Hom(ϕ(U), ϕ(V)) is

continuous, we can produce a family of functors ϕX : Vectk(X) → Vectk(X) which

applies ϕ �berwise in X. This leads to the notions of Whitney sum and tensor

product of vector bundles. The tensor product ⊗ : Vectk(X)×Vectk(X) → Vectk(X)

makes Vectk(X) into a monoidal category, this structure along with direct sums will

be crucial to de�ning the K-groups.

3 Grassmannians

One approach which allows one to classify vector bundles through homotopy is via

Grassmannians.

Let Projn(V) denote the space of projections P : V → V with rank(P) = n. One

can verify that a continuous map g : X → Projn(V) yields a projection P on the

trivial bundle X × V, and its image de�nes a vector bundle Ef → X. We can see

that for g : Y → X we have Ef◦g ∼= f∗Eg. If X = Y = Projn(V) and g = 1 the bundle

En(V) = Eg is the tautological bundle over Projn(V). Concretely, this is the bundle

over Projn(V) with �ber given by En(V)P := Im(P).

The isomorphism class of Ef only depends the homotopy type of f and hence

f 7→ Ef gives a correspondence

[X,Projn(V)] → π0(Vectk(X))

Block matrices give us a maps ιN,N ′ : Projn(K
N) → Projn(K

N ′) and taking a

direct limit gives a map

lim[X,Projn(K
N)] → π0(Vectk(X))

Theorem 3.1. For \nice enough" spaces the map lim[X,Projn(K
N)] → π0(Vectk(X))

is bijective.

In preceding discussion, we used the correspondence between projections and

their image. This correspondence is surjective, but not bijective. To any n di-

mensional subspace W ⊂ V there are at least as many projections V → V with

image V as there are metrics on V (taking the orthogonal compliment and the rel-

evant projection). If we equip V with a metric, then there is a natural bijection
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between orthogonal projections and n-dimensional hyperspaces in V. Denote the

space Grn(V) := {p ∈ Projn(V)|p is orthogonal} with the subspace topology, this is

called the Grassmannian of n-planes in V .

Theorem 3.2. The space of projections Projn(V) deformation retracts onto

Grn(V).

Proof. Use the square root to de�ne the homotopy F(p, t) =
√
1+ tJ∗Jp

√
1+ tJ∗J

−1
,

where J = 2p− 1 for p ∈ Projn(V).

De�ne the limit BO(n) := limGrn(RN) and BU(n) := limGrn(CN). The defor-
mation retract means that the previous isomorphisms give

[X,BO(n)] ∼= π0(VectR(X)), [X,BU(n)] ∼= π0(VectC(X))

The spaces BO(n) and BU(n) a classifying spaces since they classify euclidean and

hermitian bundles (i.e. they represent the functor X 7→ π0(Vectk(X)).)
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