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K-Theory Learning Seminar Fall 2023

Week 11: The Chern Character, the Thom Isomorphism(s) et al.

Abhishek Shivkumar

Review

This talk is mostly just setting up Ja-

cob for next week when he’ll explain
the K-theoretic formulation and proof

of the Atiyah-Singer index theorem.
Since this is part of a series of talks, we will briefly review what Justin

talked about last time, and how it relates to what Jacob will talk about

next time.

Definition 1.1: Fredholm Operators

A Fredholm operator is a bounded operator between Banach spaces

with finite dimensional kernel and cokernel. The index of such an

operator T is

index(T ) = dimkerT − dim cokerT

The intuition is that Fredholm operators T are the operators for which

solutions to the equation Tx = y can be defined by a finite amount of

data. The index is basically the infinite-dimensional stand in for the rank-

nullity theorem. The ΨDOs (which are basically any operators that look

like a differential operator after a Fourier and inverse Fourier transform)

were our principal examples of Fredholm operators. Crucially, the index is

homotopy invariant.

The relevance of the Fredholm operators (to our topological K-theory sem-

inar) begins with the following theorem:

Theorem 1.2: Atiyah-Jänich

Given X compact Hausdorff, F the set of Fredholm operators from

some infinite dimensional separable Hilbert space H to itself, then

the index map

index : [X,F ] → K0(X)

is an isomorphism.

The fact that the choice of Hilbert

space does not matter stems from the
fact that all separable (containing a

countable dense subset) infinite dimen-
sional Hilbert spaces are isometrically

isomorphic.

Thus, the space of Fredholm operators is a classifying space for K-theory,

similar to the K(G,n) for cohomology.
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K-Theory with Compact Support

In this section, we follow Landweber1 pretty closely. 1 G. D. Landweber. K-theory and
elliptic operators. arXiv preprint

math/0504555, 2005
Recall that, nine weeks ago, we insisted on a compact base space when

defining our K-groups. The technical reason for doing so at the time was

the following lemma:

Lemma 2.1

For every finite rank vector bundle E over X compact Hausdorff,

there exists another bundle E′ such that E ⊕ E′ ∼= εm.
Recall that εm denotes the rank m triv-

ial vector bundle, and that Urysohn’s
lemma states that a topological space

is normal iff disjoint closed subsets can

be separated by continuous functions.

The proof of this lemma used, in an essential way, the compactness of X,

in particular, applying Urysohn’s lemma (since compact Hausdorff spaces

are normal), to constructively build such an “inverse” vector bundle E′.

We also used compactness explicitly for the existence of a finite trivializing

cover. In fact, this lemma is false in the non-compact case:

Counterexample 2.2

The canonical bundle over RP∞ is not a summand of any trivial

vector bundle.

See Hatcher2 for details. 2 A. Hatcher. Vector Bundles and K-

Theory. 2017. URL https://pi.math.

cornell.edu/~hatcher/VBKT/VB.pdfThe above lemma was essential in defining the reduced K group K̃(X), and

without it, it is not possible to represent the formal inverses we recklessly

added to our monoid by honest vector bundles. One potential resolution

is to define the K-theory of a non-compact space in terms of its one-point

compactification:

Definition 2.3: K0(X)

For X Hausdorff, locally compact, set

K0(X) := K̃0(X+)

where X+ is the one-point compactification of X. If we restrict to

proper maps, this is a functor from the category of locally compact

Hausdorff spaces (and proper maps) to the category of commutative

rings.

On its face, this is somewhat ad-hoc. To motivate this, note that in defining

the K-group, we are modding out by relations of the form [B] = [A] + [C]

for every short exact sequence

0 → A → B → C → 0

https://pi.math.cornell.edu/~hatcher/VBKT/VB.pdf
https://pi.math.cornell.edu/~hatcher/VBKT/VB.pdf
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Now, if we lose compactness of the base, we no longer know that every vector

bundle is a summand of a trivial vector bundle ⇝ short exact sequences

no longer suffice. It is then maybe reasonable to consider instead chain

complexes of vector bundles

0 → E0 α0−→ E1 α1−→ · · · αn−1−−−→ En → 0

where αkαk−1 = 0. Two complexes E• and F • are homotopic if there exists

a complex G• over X× [0, 1] such that G•|X×{0} = E• and G•|X×{1} = F •.

The support of a complex is the set of points x ∈ X where the complex

fails to be exact. Then, we claim:

Theorem 2.4

Let C(X) denote the set of homotopy classes (via compactly sup-

ported homotopies) of complexes over X with compact support, and

C∅(X) ⊆ C(X) the set of complexes with empty support (i.e, exact

sequences), then

K(X) ∼= C(X)/C∅(X)

A reference for this formulation of K-theory is the appendix of Segal’s

thesis3. This results holds in the compact and non-compact case (i.e, it 3 G. Segal. Equivariant K-theory. PhD

thesis, University of Oxford, 1966agrees with our “definition” above). One can show that we don’t need

arbitrary length complexes, in fact, complexes of the form 0 → E → F → 0

of vector bundles which are isomorphic outside of a compact set suffice.

Our application for this formulation of K-theory is that the total spaces

of our vector bundles (which are necessarily non-compact) are no longer

second class citizens, and we can consider their K-groups as well. Given

complex vector bundles E,F over X, and a (real or complex, but both will

be important) vector bundle π : V → X, we obtain vector bundles π∗E and

π∗F over V . We say that a homomorphism α : π∗E → π∗F is homogeneous

of degree m > 0 if for all v ∈ V , λ > 0,

αλv = λmαv : (π∗E)v = Eπ(v) → (π∗F )v = Fπ(v)

Picking a metric on V , α is clearly determined completely by its restriction

to the sphere bundle S(V ).

Suppose X is compact, and E• is a complex over V

0 → π∗E0 α0−→ π∗E1 α1−→ · · · αn−1−−−→ π∗En → 0

where α2 = 0 and α is homogeneous of degree m. If E• is exact on S(V ),

then its support is clearly the zero section of V → X, which in particular, is

isomorphic to X and is therefore compact, so E• is compact and represents

an element of K(V ). One can show that K(V ) can be defined solely in

terms of such homogeneous complexes for each m > 0. See Landweber4 for 4 G. D. Landweber. K-theory and
elliptic operators. arXiv preprint
math/0504555, 2005

a detailed proof.
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The Thom Isomorphism(s)

K-Theory

Let π : V → X be a complex rank n vector bundle over a compact space

X. Then we have the following degree one homogeneous complex ∧∗V of

vector bundles over V (not X!) called the exterior complex :

0 → π∗(∧0V )
α−→ π∗(∧1V )

α−→ · · · α−→ π∗(∧nV ) → 0

where α : (v, w) 7→ (v, v ∧ w) for all v ∈ V , w ∈ (π∗(∧kV ))v = ∧kVπ(v)

where π∗ pulls back vector bundles over X to vector bundles over the total

space V .

Since α2 = 0, this complex defines an element λV ∈ K(V ) = K̃(V +). As

we will discuss below, the one-point compactification of a vector bundle

over a compact base goes by another name: the Thom space of the bundle,

which for a trivial bundle corresponds to iterated reduced suspension of the

base.

Theorem 3.1: Thom Isomorphism Theorem

If V is a complex vector bundle over a compact space X, and K(V )

is a K(X)-module via the map π∗ : K(X) → K(V ) then the map

φ : K(X) → K(V ) given by multiplication by λV is an isomorphism.

By multiplication by λV , we are referring to the tensor product of chain

complexes since V is necessarily non-compact.

Example 3.2

For X a point, V = Cn, we have the Thom isomorphism

φ : K(•) ∼−→ K(Cn) ∼= K̃(S2n)

so K̃(S2n) ∼= Z =⇒ K(S2n) = Z2.
The K-theoretic Thom isomorphism

theorem is very powerful, and lends cre-
dence to this formulation of K-theory;

for example, it gives an extremely quick

proof of Bott periodicity.

Cohomology

The classical Thom isomorphism theorem is given in terms of ordinary coho-

mology, and is essentially a generalization of the fact Hi(B) ∼= Hi+1(ΣB),

i.e, that reduced suspension just increases the indexing of cohomology by

one.

Theorem 3.3: Thom Isomorphism

Let ξ : E → B be a rank n real vector bundle. There is a unique

cohomology class u ∈ Hn(E,E0) = Hn
c (E) (called the Thom class)
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whose restriction to Hn(F, F0) is nonzero for every fiber F (where

E0 is the complement of the zero section and F0 = F ∩E0) for a fiber

F ) giving an orientation. Moreover, the correspondence y 7→ y ⌣ u

maps Hj(E) isomorphically onto Hj+n(E,E0) for every integer j.

This can also be interpreted more geometrically in terms of the Thom space

of the bundle ξ, where the above isomorphism becomes

Hi(B)
∼−→ H̃n+i(T (ξ))

To construct the Thom space, choose a Riemannian metric on E (hence

paracompactness of the base), and, using the metric, let D(ξ) be the unit

ball bundle (whose fibers are the unit balls in the fibers of E) and S(ξ)

the unit sphere bundle (defined similarly). Then T (ξ) = D(ξ)/S(ξ) is the

Thom space of ξ. This amounts to taking the one-point compactification

of each fiber and identifying the “points at infinity.” For a compact base,

this is the same as taking the one-point compactification of the total space.

So, in particular, the Thom space of a trivial rank one bundle is the reduced

suspension of the base, and, inductively, the Thom space of a trivial rank

n bundle is the iterated reduced suspension, with the above isomorphism

reducing to the suspension isomorphism:

Hi(B)
∼−→ H̃n+i(ΣnB)

For CW complexes, the reduced sus-

pension is homotopy equivalent to the
ordinary suspension.

For the base compact and oriented, the Thom isomoprhism is equivalent to

Poincaré-Lefschetz.

Chern Classes/Characters

Characteristic Classes

Throughout this seminar, we have made passing references to the theory

of characteristic classes. Here we will do our best to give a crash course in

their construction and significance.

Definition 4.1

Given a (real or complex) vector bundle E → X, a characteristic

class for E is a cohomology class c(E) ∈ H∗(X) which is natural in

the sense that for any map f : Y → X, c(f∗E) = f∗c(E).
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The two most basic families of characteristic classes are Stiefel-Whitney and

Chern classes, for real and complex vector bundles respectively. Both can

be understood as obstructions to the problem of finding n − i + 1 linearly

independent sections of the vector bundle in question, in a way which we

can make precise. This is the easiest way to state what

Chern classes are, and it makes the ap-

plications to obstruction theory imme-
diate, unfortunately, at the cost that

it’s not very useful for calculations.

Let E → X be a complex rank n vector bundle overX, and let e1, · · · , en−i+1

be n − i + 1 generic sections of E (which we can choose to be pairwise

transverse and transverse to the zero section). If these sections are linearly

dependent anywhere, then their locus of degeneracy should be of complex

codimension i (this dimension count is somewhat nontrivial), and therefore

the Poincaré dual to this locus should be an element of H2i(X;Z). We call

this element ci(E), and one can show that this is well-defined. If there exist

n − i + 1 linearly independent sections of E, then, clearly, ci(E) = 0, and

therefore ci+1, ci+2, · · · = 0.

The total Chern class c(E) ∈ H∗(X;Z) is just the sum

c(E) = 1 + c1(E) + c2(E) + · · ·

(where c0(E) = 1)

The essential properties of the Chern classes are the following: c0(E) = 1, additivity, naturality, and

one additional normalization criterion
for the tautological bundle over CPk

actually suffice to uniquely define the

Chern classes, though this is nontrivial
to show.

• c0(E) = 1 for all E

• Naturality: If f : Y → X is continuous, c(f∗E) = f∗c(E) as required by

our definition of a characteristic class

• Additivity: For E,F vector bundles over X,

c(E ⊕ F ) = c(E) ⌣ c(F )i =⇒ ck(E ⊕ F ) =

i∑
i=0

ci(E) ⌣ ck−i(F )

This property can be rephrased in terms of short exact sequences (triv-

ially, since all short exact sequences are split) as follows: for any SES of

complex vector bundles

0 → E′ → E → E′′ → 0

c(E) = c(E′) ⌣ c(E′′). This is useful for an axiomatic approach.

Suppose that E = L1 ⊕ · · · ⊕ Ln splits as a direct sum of line bundles.

Then, letting xi = c1(Li) ∈ H2(X;Z), the above formula tells us that

c(E) =

n∏
i=1

c1(Li) =

n∏
i=1

(1 + xi) = 1 +
∑
i

xi +
∑
i<j

xixj + · · ·

whence it is clear that ck(E) is the kth elementary symmetric polynomial

of the xi. It follows that any symmetric polynomial in the xi can be

expressed as a polynomial in the Chern classes. As an example of a complex vector bun-
dle that does not split as a sum of line

bundles, take TCP2, which has total
Chern class 1 + 3h + 3h2 (where h is
Poincaré dual to the class of a hyper-

plane CP1 ⊆ CP2) and this polynomial
does not factor.

Note that additivity also implies that c is stable, that is, it is insensitive

to summing with a trivial bundle.
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• Splitting Principle: For any E → X, there exists a space F (E) (called

the flag bundle of E) and a map π : F (E) → X such that π∗ : H∗(X) →
H∗(F (E)) is injective and π∗(E) splits as the direct sum of complex line

bundles. This is then useful for calculating c(E) since

π∗c(E) = c(π∗E) = c(L1 ⊕ · · · ⊕ Ln) =

n∏
i=1

c(Li) =
∏
i

(1 + xi)

as above, where xi = c1(Li) are the Chern roots of E, living in some

enlargement of the cohomology ring.

The Chern Character
Why does one write down the Chern

character? One possible reason is that
this is all secretly about symmetric

functions, and
∑

i e
xi is a convenient

way to package together all of the
power-sum symmetric polynomials. I

imagine that other power series whose

expansions are symmetric polynomials
in increasing degrees should have simi-

lar significance (we will see another one
below).

Definition 4.2: The Chern Character

The Chern character of a rank n complex vector bundle E → X is

given by

ch(E) =
∑
i

exi = n+
∑
i

xi +
1

2!

∑
i

x2
i + · · · =

n+ c1 +
1

2
(c21 − 2c2) +

1

6
(c31 − 3c1c2 + 3c3) + · · ·

where, for example,

c21(E)− 2c2(E) =

(∑
i

xi

)2

− 2
∑
i<j

xixj =
∑
i

x2
i

so the terms in the expansion for the Chern character simply rewrite

the power-sum symmetric polynomials in terms of the elementary

symmetric polynomials.

It follows that

ch(E ⊕ F ) = ch(E) + ch(F )

and

ch(E ⊗ F ) = ch(E) ⌣ ch(F )

Extending the Chern character to K(X) (since Chern classes are stable),

we may regard the Chern character as a ring homomorphism ch : K0(X) →
H2∗(X;Q). Replacing X with ΣX and using the degree shift isomor-

phism between the cohomology of X and that of ΣX (and using K1(X) =

K0(ΣX) from Bott periodicity), we also have ch : K1(X) → H2∗+1(X;Q).

Together, this can be regarded as a homomorphism

ch : K∗(X) → H∗(X;Q)
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Theorem 4.3

For X a finite CW-complex, the Chern character

ch : K∗(X)⊗Q → H∗(X;Q)

is an isomorphism.

Sidestepping for now the moral significance of this result, we now have

Thom isomorphisms in K∗ and H∗ and an isomorphism between them.

Does the natural square one can draw commute?

K(X) K(E)

H∗(X;Q) H∗
c (E;Q)

ch ch

Unfortunately, no. The difference between the two paths turns out to be

essentially the following correction factor: Note that the power series in the def-

inition of the Todd class is manifestly

symmetric in the variables, and, there-
fore, its degree expansion should con-

sist of symmetric polynomials.

Definition 4.4: Todd Class

The Todd class of a complex vector bundle E is given by

td(E) =

n∏
i=1

xi

1− e−xi
1 +

1

2
c1 +

1

12
(c2 + c21) +

c1c2
24

+ · · ·

By definition, td(E ⊕ F ) = td(E) ⌣ td(F ).

Jacob will tell us more about some/all of this next week.
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