
k-theory learning seminar 1

Of course, one has to check that all of
these satisfy the local triviality condi-

tion. As an aside, the direct sum can

be realized as a special case of the pull-
back operation via the following con-

struction: let E1, E2 be vector bundles
over X, E1 ⊕ E2 is the pullback of the

vector bundle E1×E2 → X×X by the

diagonal map ∆ : X → X ×X.
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Operations and Examples

To recap, last time we defined the notion of vector bundles and some oper-

ations on them. The three operations to keep in mind are:

• Direct sum of vector bundles over the same base, where the fiber of the

direct sum is the direct sum of the fibers (this is sometimes called the

Whitney sum)

• Tensor product of vector bundles over the same base, where the fiber is

the tensor product of the fibers

• Pullbacks: given a vector bundle E
p−→ Y and a smooth map f : X → Y

we have the pullback bundle f∗E which sits in the following diagram:

f∗E E

X Y
f

p

As a set, f∗E = {(x, e) ∈ X × E : f(x) = p(e)} ⊆ X × E, from which

there are obvious projection maps making the above square commute.

The fibers of f∗E are given by (f∗E)x = Ef(y)

Of course, there are other operations we care about on vector spaces that

will end up porting over to vector bundles (dualizing, complexifying, etc.).

In Milnor and Stasheff1, there is a proof sketched that any functor T : Cn →
C where C is the category (in fact, a groupoid) of finite dimensional vector

spaces and isomorphisms among them that is “continuous” in the sense that

its action on morphisms depends continuously on the morphisms, gives rise

to an operation on vector bundles. This gives us (in addition to tensor

products and direct sums) Homs, exterior powers, duals, etc. Basically, the

philosophy is that any reasonable operation on vector spaces should port

to vector bundles.

For completeness, we will list some basic examples of vector bundles:
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In fact, all Lie groups are paralleliz-

able; the idea is that one can pick a
basis (or frame) on the tangent space

at the identity, and then slide it around

by the (derivative of the) left action of
the group on itself.

Similarly, one can define tautological

bundles over Grassmanians Grk(Rn)

and Grk(Cn), with total space

{(H,x) ∈ Grk(F
n)× Fn : x ∈ H}

for F = R or C and again equipped with

the obvious projection maps giving the
vector bundle structure.

Some sources call the tautological bun-
dle the canonical bundle, which is

an unfortunate clash of notation that

should be avoided if possible, as the
canonical bundle is more commonly

given to mean the determinant (top

exterior power) of the cotangent bun-
dle, particularly in algebraic geometry;

canonical is maybe justified in this set-

ting due to the role the canonical bun-
dle plays in the adjunction formula.

Example 1.1: Tangent Bundles

Given a smooth manifold Mn, the tangent bundle TM is the union

of all the tangent spaces of M , which has a natural topology and is

also a smooth manifold. If TM is trivial, i.e, splits as TM ∼= M×Rn,

then M is called parallelizable. For example, S1 is parallelizable, but

S2 is not.

In fact, TS2 does not admit even one non-vanishing section (i.e, a

non-vanishing vector field); this is the hairy ball theorem which one

can see e.g via Poincaré-Hopf (the sum of the degrees of the zeroes

of a vector field on an orientable smooth manifold equal its Euler

characteristic, and χ(S2) = 2).

Example 1.2: Tautological Bundles

Consider RPn or CPn which parameterize lines in Rn+1 and Cn+1

respectively; the idea of the tautological bundle on a projective space

is that the line (real or complex) above a point is the line correspond-

ing to that point. The total space is {(l, x) ∈ RPn × Rn+1 : x ∈ l}
equipped with the obvious projection maps (and similarly for C).

Example 1.3: Subbundles

There is a natural notion of a subbundle of a vector bundle, whose

definition we will not belabor here. As an example, take the trivial

bundle S1×R2, which has as a subbundle the Möbius strip (bundle),

which one can see by picking a line through the origin, and then

allowing it to rotate through a full circle as the base point varies over

S1 (this is exactly the construction of the tautological line bundle

on RP1 = S1).

Example 1.4: Normal Bundles

Given an embedding M ↪→ N , we can consider its normal bundle

inside N , which one should think of interchangeably with a tubular

neighborhood of the embedded copy of M (technically we need a

Riemannian structure on N to take orthogonal complements). So,

for example, if you know all of the possible vector bundles over M ,

then you know all of the possible tubular neighborhoods it can have

in another manifold; I will give an example of the utility of this

below.
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Section is kind of an opaque word

choice for this concept; it comes
from shortening the more old-fashioned

cross-section of a vector bundle.

This is straightforward if one knows

the following fact: a continuous map
h : E1 → E2 between vector bundles

over the same base space B is an iso-
morphism if it takes each fiber p−1

1 (b)

to p−1
2 (b) by a linear isomorphism.

Sections

Another basic definition in the world of vector bundles is that of a section.

In particular, given a vector bundle E
p−→ B, a section is simply a map

B
s−→ E such that p ◦ s = idB , i.e, s(b) is a vector lying in the fiber above b

for all b ∈ B.

Example 2.1: Zero Section

Any vector bundle E → B has a canonical section, the zero section,

which picks out the origin in each fiber.

Example 2.2: Vector Fields

Any vector field on a manifold is the same as a section of the tangent

bundle.

An easy result that one can show is that a vector bundle E
p−→ B is trivial iff

it has n linearly independent sections (i.e sections whose values are linearly

independent vectors above each point b ∈ B).

As an aside, much of what we studied last year in the characteristic classes

learning seminar can be phrased as finding obstructions to finding some

number of linearly independent sections on a vector bundle (along with

variations of this type of problem).

Clutching

We also touched on clutching last time, which is the technique of building

vector bundles by looking at explicit open covers of a given manifold and

considering the restrictions on the transition maps. Before we can discuss

the utility of clutching, we need some basic results:

Lemma 3.1

The restrictions of a vector bundle E → X × I over X × {0} and

X × {1} are isomorphic if X is paracompact.

Corollary 3.2

Let Vectn(X) denote the set of isomorphism classes of n-dimensional

real vector bundles over a space X. A homotopy equivalence f :

A → B induces a bijection f∗ : Vectn(B) → Vectn(A) for all n

(the same result holds for complex vector bundles, and, in fact, for
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2 A. Hatcher. Vector bundles and k-
theory, 2017. URL https://pi.math.

cornell.edu/~hatcher/VBKT/VB.pdf

Similar results hold for fiber bundles
where the fibers are not necessarily vec-

tor spaces (for example, when the fibers

are spheres).

general fiber bundles). In particular, every vector bundle over a

contractible (paracompact) base is trivial.

Proofs of the above results can be found in Hatcher2. The point is now that

in studying vector bundles over a topological space, we only care about the

homotopy type of the base space.

Returning to clutching, the only case I’ve ever personally used in practice

is to study vector bundles (or, more generally, fiber bundles) on Sn, with

its standard covering by stereographic projections. The data of a k-vector

bundle over Sn, then is a map from the intersection of the two charts

(which is homotopy equivalent to the equatorial Sn−1) to GLk(R) (or C
for complex vector bundles), and, by the results above, we only care about

the homotopy type of this map. Thus, an element of πn−1(GLk(R)) gives a
real k-vector bundle over Sn. Conversely, given an arbitrary real k-vector

bundle over Sn, its transition map in the standard open cover must be an

invertible k × k matrix, so we have the following:

Theorem 3.3

The map

Φ : πn−1(GLk(C)) → VectkC(S
n)

(which sends a clutching map to its corresponding vector bundle) is

a bijection (of sets; we have not defined a group structure on the

target to make this a homomorphism). Similarly, in the real case,

the map

Φ : πn−1(GL+
k (R)) → Vectk+(S

n)

where GL+
n (R) denotes the positive determinant component, and

Vectk+(S
n) denotes the groupoid of oriented vector bundles and ori-

entation preserving isomorphisms among them. Moreover, by Gram-

Schmidt, GL+
k (R) deformation retracts onto SO(k) and GLk(C) onto

U(k), so we may replace GLk(C) above with U(k) and similarly in

the real case (this will often simplify calculations conceptually).

Example 3.4

Consider a smooth embedding Sn−2 ↪→ Sn, a knotted sphere (codi-

mension two is not actually necessary for knottedness in the smooth

category, though it is in the PL category; there exists a knotted

S3 inside S6 and in general S4k−1s inside S6k). An open tubular

neighborhood of our embedded Sn−2 is diffeomorphic to the total

space of a rank two vector bundle over Sn−2, which are classified by

πn−3(SO(2)) = πn−3(S
1). Thus, we know that for n ≥ 3, n ̸= 4, the

normal bundle is trivial and therefore the tubular neighborhood is

diffeomorphic to Sn−2 × D̊2. In fact, this is also true for n = 4, but

https://pi.math.cornell.edu/~hatcher/VBKT/VB.pdf
https://pi.math.cornell.edu/~hatcher/VBKT/VB.pdf
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3 E. C. Zeeman. Twisting spun

knots. Trans. Am. Math. Soc.,
115(0):471–495, 1965. URL

https://api.semanticscholar.

org/CorpusID:16020709

Note that by a complex vector bundle,

we only mean that the fibers have a
complex structure and that any maps

are complex linear. This differs from a

holomorphic vector bundle, which is a
complex vector bundle over a complex

manifold, such that the total space is

also a complex manifold and the pro-
jection map is holomorphic. Alterna-

tively, one can require that the transi-

tion maps are all biholomorphisms.

Grothendieck completion amounts to

adjoining formal inverses to a monoid,

and as a functor is the left adjoint to
the forgetful functor.

requires some further arguments.

Details of the n = 4 case can be found in Zeeman3, section 5.

Classifying Vector Bundles

Now that we have defined something, we must be good mathematicians and

try to classify all possible instances of that thing. For the purposes of our

discussion, we will assume that our base spaces are all compact Hausdorff,

and all vector bundles are complex unless stated otherwise, as the theory

is a little cleaner in the complex case (though we won’t see this until next

week at least).

Note that VectnC(X) has a natural structure as an abelian monoid under

direct sum; we want a group instead so we will make one:

Definition 4.1: Grothendieck Completion

Let M be an abelian monoid, then let Gr(M) be the Grothendieck

completion of M , defined as

Gr(M) = Z⟨M⟩/([m] + [n]− [m+ n] : m,n ∈ M)

We take Z-linear combinations of elements of M (to get formal negatives of

elements in M), and the relations we have adjoined simply ensure that the

addition in M is reflected in Gr(M). Note that any element of Gr(M) can

be written as [m]−[n] form,n ∈ M , with [m]−[n]⊕[a]−[b] = [m⊕a]−[n⊕b]

where ⊕ is the monoid addition.

Example 4.2

Gr(N) = Z.

Then, we can set K0(X) := Gr(VectC(X)). Note that we can write every

element of K0(X) as [E]− εn since (as we will show below), for any vector

bundle E, there exists E′ s.t E ⊕ E′ ∼= εn for some n, so, starting with a

formal difference [E]− [E′], we can add a bundle E′′ s.t E′ ⊕E′′ ∼= εn, and

therefore [E]− [E′]⊕ [E′′]− [E′′] = [E ⊕ E′′]− [εn].

This leads us to consider the notion of stable equivalence of vector bundles,

where two vector bundles E1, E2 both over X are stably equivalent if E1 ⊕
εn = E2 ⊕ εm, denoted E1

∼=s E2, (where ε denotes the trivial bundle) for

some m,n (and stably isomorphic if we may take m = n).

https://api.semanticscholar.org/CorpusID:16020709
https://api.semanticscholar.org/CorpusID:16020709
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Note that TS2 = TCP1 is not sta-

bly trivial as a complex vector bun-
dle, since its Chern class (equivalently,

here, its Euler class which should equal

χ(S2)) is 2 and the Chern class is sta-
ble; thanks to Jacob for this example.

This is true over R or C.

Example 4.3

TSn is stably trivial (as a real vector bundle); consider Sn sitting

inside Rn+1, then the sum of the tangent bundles and the (trivial)

normal bundle is a trivial bundle since the elements of this bundle

are of the form (x, v, tx) ∈ Sn×Rn+1×Rn+1 such that x is perpen-

dicular to v, and there is a map (x, v, tx) 7→ (x, v + tx) which gives

an isomorphism to the trivial bundle Sn × Rn+1.

One reason for considering this equivalence relation is that, as we saw last

year in the characteristic classes learning seminar, it can be extraordinarily

difficult to classify vector bundles up to actual equivalence, and, moreover,

the characteristic classes we came up with to differentiate vector bundles

were generally insensitive to direct summing with a trivial bundle (the

Stiefel-Whitney, Chern, and Pontryagin classes but not the Euler class).

Proposition 4.4

For X compact Hausdorff, the set of equivalence classes of vector

bundles over X forms an abelian group.

Proof : That direct summing is associative and commutative is straightforward.

The identity element is (the class of) ε0. For inverses to exist, we need that

for all bundles E there exists a bundle E′ such that E ⊕E′ ∼= εm for some

m, that is, every vector bundle is a subbundle of some trivial bundle. We

assume X is connected for simplicity.

The idea is as follows: if we had an embedding E ↪→ X × Rm for some m,

then projecting to Rm gives a map E → Rm that is a linear injection on

each fiber. We will reverse this logic, first building an injection that is linear

on each fiber of E into Rm, then showing that this gives an embedding of

E into X × Rm.

Let E
p−→ X; for each x ∈ X, there is an open neighborhood Ux ∋ x

s.t E trivializes over Ux, and by Urysohn’s lemma, there is a function

φx : B → [0, 1] that is nonzero at x and has support contained in Ux.

Since X is compact, we may pass to a finite subcover and relabel φxi
= φi,

Uxi = Ui. Define gi : E → Rn (where n is the dimension of the fibers of E;

here is where we use that X is connected) by

gi(v) = φi(p(v)) · πi(hi(v))

where we have the following diagram:

p−1(Ui) Ui × Rn

Rn

πi

hi
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4 A. Hatcher. Vector bundles and k-

theory, 2017. URL https://pi.math.

cornell.edu/~hatcher/VBKT/VB.pdf

and hi is the local trivialization, πi the projection map. Then gi is a linear

injection on each fiber in the support of φi, and so we can tuple the gi

together to form g : E → RN which is a linear injection on each fiber in

E. We then have the map f := (p, g) : E → X × RN , and it remains only

to show that the image of f is a subbundle, and one can show that the

image trivializes over the supports of the φi; for the details see Hatcher4

Proposition 1.4. In fact, more is true: one can show that every short exact

sequence

0 → A → B → C → 0

of vector bundles is split by picking a metric and taking orthogonal com-

plements. ■

Even though inverses don’t really exist, we do have a cancellation property,

i.e, if E1 ⊕ E2
∼=s E1 ⊕ E3 then E2

∼=s E3 since we can direct sum both

sides with a vector bundle E′
1 s.t E1 ⊕ E′

1
∼= εn.

We denote the group of such equivalence classes K̃0(X). Evidently, there

is a surjective homomorphism K0(X) → K̃0(X) sending [E] − [εn] to the

class of E with kernel generated by elements of the form [εm]− [εn] hence

K0(X) ∼= K̃0(X) ⊕ Z. We call K0(X) and K̃0(X) the unreduced and

reduced complex K-group of X respectively. Another way to arrive at the

reduced K-group is

K̃0(X) = ker(l∗ : K0(X) → K0(•))

where l is the inclusion of some basepoint to X, and K0(•) = Z since finite

dimensional vector spaces are classified by their dimension.
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