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I. INTRODUCTION

For our purposes, a scheme X is separated of finite type
over a field k. Unless stated otherwise, k is algebraically
closed and of characteristic 0. A variety V is simply an
integral scheme. A subscheme is a closed subscheme unless
stated otherwise.

The general outline by which we will proceed is to first
discuss Bézout’s Theorem in a few of its various forms, as
these results serve as important guiding principles for inter-
section theory. We then define the Chow ring, which will
allow us to abstract away a lot of the difficulty of concep-
tualizing scheme theoretic intersection. After developing a
series of essential lemmas about the behavior of the Chow
ring and its underlying group, we will conclude with some
applications to enumerative geometry.

II. THREE COURSES OF BÉZOUT

Theorem 1 (Baby Bézout’s Theorem) Let X and Y be
plane projective curves over a field k with no common factor.
Then

|X ∩ Y | = degX deg Y

Proof: Write the equations for X and Y as

X : a0z
n + a1z

n−1 + · · ·+ an = 0

and

Y : b0z
m + b1z

m−1 + · · ·+ bm = 0

where the ai and bi are polynomials in x and y, with z the
homogenizing factor. Form the Sylvester matrix S of the two
polynomials; for example, if n = 3, m = 2, the matrix would
be

S =


a0 a1 a2 a3 0
0 a0 a1 a2 a3
b0 b1 b2 0 0
0 b0 b1 b2 0
0 0 b0 b1 b2


with the obvious generalization to other n,m thereof.

The determinant of the Sylvester matrix is zero iff the two
curves have a common root (e.g they intersect); to see this,
let Pd be the d-dimensional vector space over k of polynomi-
als of degree at most d− 1, and define φ : Pm ×Pn → Pm+n

given by

φ(P,Q) = XP +QY

where, by abuse of notation, X and Y refer to the homoge-
neous equations above. Using the basis of 1, · · · , zk for all
vector spaces involved, it is easy to see that S is the transpose
of the matrix of φ, and a nonzero element of kerφ indicates
that X and Y have a common zero. To see this, note that
XP = −QY , hence any zero of X is a zero of QY . If X has
no roots in common with Y , then X must divide Q, but Q is
of degree at most n− 1 (and nonzero), so this cannot hold.

Then, detS is a nonzero homogeneous polynomial of de-
gree mn in x and y. To see this, we use the alternating sum
definition of the determinant, and we need only show that

m+n∏
i=1

Si,σ(i)

has degree mn whenever it is nonzero. Note that ak has
degree n− k and bk has degree m− k in x and y, so that

degSi,j =

{
j − i 1 ≤ i ≤ m

j − (i−m) m+ 1 ≤ i ≤ m+ n

Therefore, the degree of the product when nonzero is given
by

m+n∑
i=1

σ(i)−
n∑

i=1

i−
m∑
i=1

i =
(m+ n+ 1)(m+ n)

2
−

n2 + n

2
− m2 +m

2
= mn

Finally, by the Fundamental Theorem of Algebra detS
splits into linear factors, which follows by pulling out a fac-
tor of ymn from detS and factoring the resulting polynomial
in x

y into linear terms, then pushing the factors of y back

in. Therefore, since there are mn linear terms ax + by in
the factorization of detS, each one gives one projective so-
lution (together with z = 1) for a point in the intersection,
therefore, there are mn points of intersection (counted with
multiplicity). ■

Much of the intersection theory we will explore is mod-
eled on this result; in particular, it is remarkable that the
number mn does not depend on the curves, but this is in
part because we have concocted projective space to avoid
the “unlikely” scenario of parallel lines, and work over an
algebraically closed field to avoid missing intersections. In
that vein, we will develop a notion of rational equivalence,



and a setting where intersections of subvarieties depend only
on the rational equivalence class of the given subvarieties.
Moreover, the fact that the number of intersections mn is
the product of degrees suggests some sort of ring structure
on subvarieties, which we construct in the next section. With
that technology, we will be able to prove the following gen-
eralization of the above:

Theorem 2 (Teenage Bézout’s Theorem) If
X1, · · · , Xk ⊂ Pn are subvarieties of codimensions c1, · · · , ck
such that

∑
i ci ≤ n, and the Xi intersect transversely, then

deg(X1 ∩ · · · ∩Xk) =
∏
i

deg(Xi)

This result essentially extends the domain of Bézout’s The-
orem from curves to subvarieties generally. From here, there
is another level of abstraction we can consider: to deal with
subvarieties of arbitrary smooth varieties as opposed to Pn,
and to loosen the requirement of generic transversality by in-
troducing intersection multiplicities, which we already have
some familiarity with in elementary settings; for example, a
tangent to a conic, though not a transverse intersection, can
be handled by our machinery as an intersection of multiplic-
ity 2.

Theorem 3 (Adult Bézout’s Theorem) Let A,B ⊆ X
be subvarieties of a smooth variety X, and suppose that
codimC = codimA + codimB for each irreducible compo-
nent C of the intersection A ∩ B, then we can associate to
each irreducible component C a positive integer mC(A,B) in
such a way that

[A][B] =
∑
i

mCi
(A,B) · [Ci]

with the additional constraint that mC(A,B) = 1 iff A and
B intersect transversely at a general point of C.

The key step of proving this result will be in establishing
Serre’s Intersection Formula, which states that

mC(A,B) =

dimX∑
i=0

(−1)i lengthOA∩B,Z
(Tor

OX,Z

i (OA,Z ,OB,Z))

This result will remain outside the scope of our discussion,
but serves as a good guiding result for further study.

III. THE CHOW RING

The development of the Chow Ring is somewhat similar
to the development of the divisor class group.

Definition 4 (Group of Cycles) Let X be a scheme, then
Z(X) is the group of cycles on X, the free abelian group
generated by the reduced irreducible subschemes (e.g subva-
rieties, or, equivalently, integral subschemes) of X.

Clearly, Z(X) is graded by dimension, e.g

Z(X) =
⊕
k

Zk(X)

where elements of Zk(X) are called k-cycles. Notice that
Zn−1(X) is the group of divisors, from which we will inherit
much of our terminology; for example, a cycle

∑
i niYi is ef-

fective if all the coefficients ni are nonnegative. For the fol-
lowing proof, recall the result that a scheme X is irreducible
iff it has a unique generic point.

Lemma 5 Let X be a scheme. Then Z(X) = Z(Xred).

Proof: This follows from the fact that there is a bijective
correspondence between integral subschemes Y ⊆ X and
points x ∈ X, given by taking the (unique) generic point
of such a subscheme, with the reverse map taking a point
to its closure. Therefore, since X and Xred have the same
underlying topological space, the equality is immediate. ■

To regard arbitrary (not necessarily reduced or irreducible)
subschemes Y ⊆ X as elements of Z(X), we introduce the
notion of the effective cycle: let Y1, · · · , Yr be the irreducible
components of Yred (of which there are finitely many since
schemes of finite type over a Noetherian ring are Noetherian),
then we define

⟨Y ⟩ =
r∑

i=1

liYi

where li are the lengths of the local ringsOY,xi where xi is the
unique generic point of Yi. The li are called the multiplicity
of Y along Yi.

As in the study of the divisor class group, we only care
about algebraic cycles up to a certain kind of equivalence.
To that end, define Rati(X) to be the subgroup of Zi(X)
consisting of all elements of the form

(f) =
∑
Y

ordY (f)⟨Y ⟩

where f is a rational function on some (i + 1)-dimensional
integral subscheme W of X, and the sum runs over all codi-
mension 1 irreducible subschemes Y , and ordY (f) is the or-
der of vanishing of f along Y .

Definition 6 (Chow Group) Let X be a scheme, and let
CHk(X) = Zi(X)/Rati(X). Then the Chow Group of X is
given by

CH(X) :=
⊕
k

CHk(X)

Note that we sometimes grade the Chow group by codimen-
sion, denoted CHk(X) = CHn−k(X) with X n-dimensional.

An equivalent formulation is to define Rat(X) as the
subgroup of P1

k × X generated by differences of the form
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⟨Φ ∩ ({t0} ×X)⟩ − ⟨Φ ∩ ({t1} ×X)⟩ for t0, t1 ∈ P1
k and sub-

varieties Φ of P1
k × X not contained in any fiber {t} × X.

The idea is that the fiber above {t0} ×X is one subvariety,
and the fiber above {t1} × X another one, and as t passes
between t0 and t1, one subvariety “smoothly” (in an infor-
mal sense) deforms into the other. This has a nice visual
analogy with cobordism, where two manifolds of a given di-
mension are cobordant if they together form the boundary
for a manifold of one higher dimension; e.g, a pair of pants
is a cobordism between a circle and a pair of circles, and
the smooth deformation is obtained by taking cross sections
from the waist down to the legs.

This data is also equivalent to defining CH(X) via the
following right-exact sequence:

Z(P1 ×X) → Z(X) → CH(X) → 0

where the left hand map takes a variety Φ ⊆ P1×X to 0 if it is
contained in a fiber, and to ⟨Φ∩({t0}×X)⟩−⟨Φ∩({t1}×X)⟩
otherwise. This formulation will be useful later to prove some
key lemmas.

Note that, as above with Z(X), we have that CH(X) =
CH(Xred), since Rati(X) = Rati(Xred) for each i by the
same argument as for Z(X). We are then ready to produce
a ring from this group, to define the product on CH(X); to
do so, we need to define what it means for an intersection to
be transverse.

Definition 7 (Transverse Intersection) Let X be a
scheme, A,B subvarieties. A and B intersect transversely
at a point p if A,B, and X are all smooth at p, and the
tangent spaces at A and B at p taken together span the
tangent space of X at p, e.g

TpA+ TpB = TpX

Equivalently,

codim(TpA ∩ TpB) = codimTpA+ codimTpB

A and B are generically transverse if they meet transversely
at a generic point of each component of their intersection.

Similar to how the introduction of projective space forces
all pairs of distinct lines to intersect at a unique point, in
order to rule out counterexamples in affine space such as par-
allel lines, which are in some sense “unlikely,” the transverse
condition prevents the consideration of curves intersecting at
a point where they are tangent to one another (although we
will deal with these cases by essentially moving the curves
until they intersect transversely).

Definition 8 (Intersection Products) If X is a smooth
variety over a field, then there is a unique product struc-
ture on CH(X) such that for any two subvarieties A,B of X
which are generically transverse, then

[A][B] = [A ∩B]

which gives CH(X) the structure of an associative, commu-
tative graded ring.

This operation makes CH(X) into a ring; there is the slight
issue that this definition is really more of a theorem, as there
is quite a bit to check. First, note that we need the product to
be well-defined for all subvarieties, not just those which are
generically transverse to one another. Furthermore, we need
to show that the product makes sense with respect to rational
equivalence. Unfortunately, the proofs of these results are
too involved to present concisely here, but the main result is
as follows:

Theorem 9 Let X be a smooth variety.

1. For every α, β ∈ CH(X), there exist generically trans-
verse cycles A,B ∈ Z(X) such that [A] = α, [B] = β.

2. The class [A ∩ B] is independent of the choice of such
cycles A and B.

The moral of the first part of this famous result is that a fail-
ure to be generically transverse is somehow “rare,” e.g there
are, in some natural sense, far more ways to arrange a circle
and a line which intersect in two distinct points than a circle
plus a tangent line. Given one of the unfavorable situations,
we can always perturb it to a favorable one. The second part
is the “uniqueness” counterpart to the “existence” of the first
part. Indeed, if [A∩B] depended on the choice of cycles, we
would need a weaker notion of rational equivalence to get
any use out of the Chow ring, and we may not be able to
ignore the unfavorable situations any longer in this “finer”
setting. Assuming this result, we are ready to carry out some
elementary calculations:

Definition 10 Let X be a scheme, then [X] ∈ CH(X) is the
fundamental class of X.

Note that [X] is never rationally equivalent to zero, since
if X is n-dimensional, such a rational equivalence would be
given by a divisor on an n+ 1-dimensional subscheme of X.

Proposition 11 CH(An) ∼= Z · [An] = Z

Proof: Let Y be a proper subvariety of An; we will show
that Y is rationally equivalent to zero. To that end, choose
coordinates z1, · · · , zn on An so that the origin does not lie
in Y . Define

W ◦ = {(t, tz) ⊂ (A1 \ {0})× An : z ∈ Y }

Clearly, then, we have

W ◦ = V ({f(z/t) : f(z) vanishes on Y })

The fiber of W ◦ over a point t ∈ A1 \ {0} is tY . Let W ⊂
P1 ×A1 be the closure of W ◦, which is irreducible since W ◦

(which is the image of (A1 \ {0})× Y ) is.
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Since the origin does not lie in Y , there is some polynomial
g(z) vanishing on Y which has a nonzero constant term c.
Then G(t, z) := g(z/t) on (A1\{0})×An extends to a regular
function on P1 × An with constant value c above ∞ × An;
therefore, the fiber of W over t = ∞ is empty (by the latter
characterization of W ◦) whereas the fiber over t = 1 is just
Y , which establishes that [Y ] = 0. ■

A direct approach, as above, to calculate the Chow ring is
hopelessly difficult in a more general situation. To remedy
that, we will now develop some results that allow us to build
the Chow ring up piece by piece, towards the ultimate goal
of proving an elementary result on what are known as quasi-
affine stratifications.

First, note that for any closed subscheme Y ⊆ X, cycles
on Y are automatically cycles on X, and similarly cycles
of P1 × Y are cycles of P1 × X, so we have a natural map
of Chow groups CH(Y ) → CH(X). Similarly, let U = Y c,

and since the intersection of a subvariety of X with U is a
possibly empty subvariety of U , there is a natural restric-
tion morphism Z(X) → Z(U). As above, this also holds
for Z(P1 × X) → Z(P1 × U), so we have a natural restric-
tion morphism of Chow groups CH(X) → CH(U) given by
intersecting with U .

Lemma 12 (Excision) Let X be a scheme, Y a closed sub-
scheme of X, U = Y c its complement, then there is a right
exact sequence of groups

CHk(Y ) → CHk(X) → CHk(U) → 0

for all k. Moreover, if X is smooth, then the map CH(X) →
CH(U) is a ring homomorphism.

Proof: We have the following diagram:

0 Zk(Y × P1) Zk(X × P1) Zk(U × P1) 0

0 Zk(Y ) Zk(X) Zk(U) 0

CHk(Y ) CHk(X) CHk(U) 0

0 0 0

That the columns are exact is immediate, by our discussion
of rational equivalence above. Since cycles on Y are cycles
on X, Zk(Y ) → Zk(X) is clearly an inclusion. The map
Zk(X) → Zk(U) acts by [A] 7→ [A ∩ U ] which is clearly
surjective since subvarieties of U are subvarieties of X, and
exactness in the middle is satisfied since U is the complement
of Y . Therefore, the middle row is exact, and by the same
reasoning, the top row as well. It remains only to show that
CHk(X) → CHk(U) is a surjection; to see this, note that we
can pull elements in CHk(U) back to Zk(U) via surjectivity,
then pull that back to Zk(X) again by surjectivity, and map
that down to CHk(X). That CH(X) → CH(U) is a ring ho-
momorphism if X is smooth simply reflects the fact that the
intersection product is only well-defined on smooth schemes.
■

As an immediate corollary, for any nonempty open set
U ⊆ An, CH(U) = Z, since CH(An) → CH(U) given by
[Z] 7→ [Z ∩U ] is a surjection of rings, so CH(U) is a quotient
of Z generated by [U ], but the fundamental class generates
a copy of Z, so CH(U) is Z itself.

Lemma 13 (Mayer-Vietoris) Let X be a scheme, X1, X2

closed subschemes of X, then there is a right exact sequence
of groups

CH(X1 ∩X2) → CH(X1)⊕ CH(X2) → CH(X1 ∪X2) → 0
Proof: Let Y = X1 ∩ X2, and we may assume that X =
X1 ∪ X2 by shrinking X if necessary. Then we have the
following diagram:
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0 Z(Y × P1) Z(X1 × P1)⊕ Z(X2 × P1) Z(X × P1) 0

0 Z(Y ) Z(X1)⊕ Z(X2) Z(X) 0

CH(Y ) CH(X1)⊕ CH(X2) CH(X) 0

0 0 0

The columns are again exact by construction. The rows need
some explaining; the map Z(Y ) → Z(X1) ⊕ Z(X2) acts by
[A] 7→ ([A],−[A]), and the map Z(X1) ⊕ Z(X2) → Z(X) is
addition. From this, exactness follows for the middle row,
and similarly for the top row. By this reasoning, the bottom
row is clearly exact in the middle, and to show surjectivity
on the right, we can diagram chase as before. Elements of
CH(X) retract to elements of Z(X), which retract to ele-
ments of Z(X1) ⊕ Z(X2), which we can there map down to
CH(X1)⊕ CH(X2). ■

Finally, we are ready to define stratifications. As we stated
above, in general, it is difficult to calculate the the Chow
ring of a scheme except in some special circumstances; one
of these is when our scheme has an open cover satisfying
certain properties.

Definition 14 (Stratification) A scheme X is stratified
by a finite collection of irreducible, locally closed subschemes
Ui if X is the disjoint union of the Ui, and the closure of any
Ui is the union of such Uj. The latter condition is equiva-

lent to the following: if Ui intersects Uj nontrivially, then

Ui contains Uj. The sets Ui are the strata or open strata

of the stratification, while the sets Yi = Ui are the closed
strata. A stratification of X is affine if each Ui is isomor-
phic to some Ak, and quasi-affine if each Ui is isomorphic
to an open subset of some Ak.

Proposition 15 If a scheme X has a quasi-affine stratifi-
cation, then CH(X) is generated by the classes of the closed
strata.

Proof: We induct on the number of strata. If there is one
stratum, then the result follows from our observation above
that CH(U) = Z for a nonempty open subset of affine space.
In the general case, let U0 be a stratum which is minimal
with respect to inclusion. Since U0 is the union of Ui, by
minimality, we must conclude that U0 is closed; therefore,
Y = U c

0 is stratified by the strata other than U0. By the
inductive hypothesis, CH(Y ) is generated by the classes of
the closures of these strata, and by the n = 1 case, CH(U0)
is generated by [U0]. By the excision right exact sequence,
we have

CH(U0) = Z → CH(X) → CH(Y ) → 0

Since CH(Y ) is generated by the closed strata other than U0

by induction, and these closed strata are naturally elements
of X, it therefore follows that CH(X) is generated by the
classes of the closed strata. ■

We are now ready to determine the the Chow ring of Pn,
an essential calculation to any problem in enumerative ge-
ometry.

Theorem 16 CH(Pn) = Z[ζ]/(ζn+1) where ζ is the rational
equivalence class of a hyperplane. Moreover, the class of a
variety of codimension k and degree d is dζk.

Proof: Let

{p} ⊂ P1 ⊂ · · · ⊂ Pn

be a complete flag of subspaces, and let Ui = Pi \ Pi−1 ∼=
Ai. The Ui give an affine stratification of Pn, since Ui = Pi

and therefore contains all Uk for k ≤ i. By Proposition 15,
CHk(Pn) is generated by the class of Pk, e.g any k-plane.

Moreover, CH0(Pn) = Z since there is a surjection
CH0(Pn) → Z taking a linear combination of points to the
sum of their coefficients (reminiscent of the degree morphism
for divisors on curves), and because we can move all the
points to one point by rational equivalence (given points p, q,
we can construct a rational function vanishing at p with a
pole at q, so that the element [p] + [q] ∈ CH0(Pn) is equal to
[p] + [q] + [p]− [q] = 2[p]).

This in fact implies that CHk(Pn) = Z for all k; to see this,
note that a a general k-plane L intersects a general (n− k)-
plane M transversely at one point. This follows from the
fact that a copy of Pk in Pn+1 is given by demanding that
n− k of the coordinates are equal to 0, and a copy of Pn−k

by demanding that k of the coordinates be 0. For the Pk

to intersect transversely with the Pn−k, these indices must
be disjoint, leaving a 1 in one coordinate and 0s in all other
coordinates, e.g, a single point. Therefore, multiplication
by [M ] induces a surjection CHk(Pn) → CH0(Pn) = Z, so
CHk(Pn) = Z for all k, since we know that CHk(Pn) is gen-
erated by [L] and therefore both contains and is contained
in Z.
A k-plane in Pn is the transverse intersection of n − k

hyperplanes by the coordinate counting argument above, so
any such plane L has class [L] = ζn−k where ζ is the class of
a hyperplane, from which the result follows. Note that the
class of a variety X of codimension k and degree d is dζk; to
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see this, note that X intersects a general k-plane transversely
in d points, so deg([X]ζn−k) = d, with deg(ζn) = 1, so that
[X] = dζk. ■

Immediately, we have a proof of Theorem 2 as an easy
corollary; if degXi = di, then [Xi] = diζ

ci , so that

[X1 ∩ · · · ∩Xk] =

∏
i

di

 ζ
∑

i ci

That the sum of the codimensions does not exceed n, the
dimension of the ambient space, ensures that the ζ term
does not vanish. The result on degrees follows immediately
from this calculation.

Theorem 17

CH(Pn1 × · · · × Pnr ) =

r⊗
k=1

CH(Pn
k )

Together with the previous result, this implies that

CH(Pn1 × · · · × Pnr ) ∼= Z[t1, · · · , tr]/(tn1+1
1 , · · · , tnr+1

r )

where tk is the class of the pullback (via projection) of the
hyperplane class on Pnk . Moreover, the class of the hyper-
surface defined by a homogeneous form of degree (a1, · · · , ar)
is

∑r
k=1 aktk.

Proof: For notational clarity, we will restrict to the case
where r = 2, though the underlying ideas are the same. We
need to prove that

CH(Pm × Pn) ∼= CH(Pm)⊗ CH(Pn)

and we proceed as above by constructing an affine stratifica-
tion on Pm × Pn. We have complete flags

Λ0 ⊂ · · · ⊂ Λm = Pm Γ0 ⊂ · · · ⊂ Γn = Pn

and take the closed strata to be

Ξa,b = Λm−a × Γn−b

with corresponding open strata

Ξ̃a,b := Ξa,b \ (Ξa−1,b ∪ Ξa,b−1)

By Proposition 15, we can conclude that CH(Pm × Pn) is

generated by the classes [Ξa,b] ∈ CHa+b(Pm × Pn). Since
Ξa,b is the transverse intersection of the pullbacks (via pro-
jection) of a hyperplanes in Pm and b hyperplanes in Pn

(since each hyperplane increases the codimension by 1), we
have [Ξa,b] = αaβb where α and β are, respectively, the pull-
backs via projection of the hyperplane classes in Pm and Pn.
Therefore, it is easy to see that αm+1 = βn+1 = 0, since
their projections vanish. This shows that there is a surjec-
tive morphism from

Z[α, β]/(αm+1, βn+1) = Z[α]/(αm+1)⊗ Z[β]/(βn+1)

to CH(Pm×Pn). To see that it is a bijection, note that Ξm,n

is a single point, so its degree is 1, and consider the pairing

CHa+b(Pm × Pn)× CHm+n−a−b(Pm × Pn) → Z

given by ([X], [Y ]) 7→ deg([X][Y ]) for [X], [Y ] of appropri-
ate dimension. Under this map, (αaβb, αrβs) is sent to 1 if
a + r = m and b + s = n, since the intersection in this case
is transverse and consists of a single point, and to 0 other-
wise, since the intersection would be empty. This shows that
monomials of degree (a, b) are linearly independent with a, b
in the appropriate range, which proves the result.

If F ∈ k[x, y] is homogeneous of degree (d, e), then because
F (x, y)/xd

0y
e
0 is a rational function on Pm×Pn (and therefore

its vanishing locus is rationally equivalent to zero), the class
defined by F = 0 is dα+ eβ. ■

We then have some results on the functoriality of Chow
groups, which we will use later in some calculations but will
not prove in the interest of brevity.

Definition 18 (Pushforward for cycles) Let f : X → Y
be a proper map of schemes, A ⊆ Y a subvariety.

1. If f(A) has strictly lower dimension than A, then we
set f∗⟨A⟩ = 0

2. If dim f(A) = dimA and f |A has degree n, then we set
f∗⟨A⟩ = n · ⟨f(A)⟩

Theorem 19 (Pullback for cycles) Let f : Y → X be a
map of smooth quasi-projective varieties. There is a unique
map of groups f∗ : CHc(X) → CHc(Y ) such that when-
ever A ⊆ X is a subvariety generically transverse to f ,
that is f−1(A) is generically reduced and codimY (f

−1(A)) =
codimX(A), then

f∗([A]) = [f−1(A)]

Note that this equality also holds when the hypothesis of
generic transversality is weakened to codimY (f

−1(A)) =
codimX(A) and A is Cohen-Macaulay. The map f∗ is a
ring homomorphism making CH into a contravariant func-
tor from the category of smooth projective varieties into the
category of graded rings.

With the pullback well-defined, we have another result in
the vein of our right-exact sequence lemmas above:

Proposition 20 Let X be a scheme, and π : E → X a lo-
cally free sheaf of rank r on X. Then for all k ≥ 0, the pull
back homomorphism π∗ : CHk(X) → CHk+r(E) is surjec-
tive.

Proof: Note that π∗ maps CHk(X) to CHk+r(E) since a
cycle will gain a factor of Ar under preimage. We proceed
via induction on dimX; let U be an open affine on which E
is trivial, e.g, such that E|U ∼= U × Ar, and set Y = U c. By
excision, we have the following diagram:
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CHk(Y ) CHk(X) CHk(U) 0

CHk+r(E|Y ) CHk+r(E) CHk+r(U × Ar) 0

π∗

By the four lemma, if we can show that CHk(Y ) →
CHk+r(E|Y ) and CHk(U) → CHK(U × Ar) are surjections,
it follows that π∗ is a surjection, and the former map is a sur-
jection by the inductive hypothesis. Therefore, we need only
show that the rightmost arrow factors, e.g, we have reduced
the proof the assertion to the case of X = SpecR affine, and
E = X × Ar is the trivial bundle (by choice of U above).
Moreover, we can factor π as a series of projections:

π : E = X × Ar → X × Ar−1 → · · · → X × A1 → X

Therefore, we may assume that r = 1 by treating each locally
free sheaf in the chain as a rank 1 free sheaf on the scheme
below, and we have that

E = X × A1 = SpecR⊗k Spec k[t] = SpecR[t]

We are then tasked with showing that π∗ : CHk(X) →
CHk+1(X × A1) is surjective; to that end, let V ⊂ X × A1

be a (k + 1)-dimensional subvariety, and let W = π(V ). If
dimW = k, then V = W × A1 since π is a projection, so
[V ] = π∗[W ]. If dimW = k + 1 (this is the only other
option) we must show that [V ] is in the image of the induced
pullback map CHk(W ) → CHk+1(W×A1). We can therefore
assume that W = X, let I(V ) be the vanishing ideal of V ,
and consider the related ideal

I(V )⊗R K ⊂ K[t]

where K is the fraction field of R. This ideal is not the unit
ideal, as otherwise V = W × A1 which we handled above.
Since K[t] is a PID, I(V )⊗R K[t] = (φ) for some φ ∈ K[t].
Then the divisor of φ (taken as a function on X ×A1) is [V ]
by construction, up to terms of the form π∗[Wi] for Wi ⊂ X
corresponding to tensoring with K, from which the result
follows. ■

Note that this result gives an easy alternative derivation of
the Chow ring of affine space by showing that all subvari-
eties are rationally equivalent to zero. First, we have that
CH0(An) = 0 for all n; to see this, for any x ∈ An, pick a line
L ∼= A1 ⊆ An through x and a function on L vanishing (only)
on x. Then, by the above result, CH0(An−k) → CHk(An) is
surjective for all k < n, from which the result follows.

IV. COUNTING CURVES

With these results, we are already able to answer some
nontrivial enumerative problems via parameter spaces. First
note that the set of all curves of degree n in P2 can be

parametrized by P(
n+2
2 )−1, since such a curve is a homoge-

neous polynomial in three variables, and there are
(
n+2
2

)
so-

lutions to a + b + c = n (each solution corresponding to a
term with a coefficient determined up to a constant overall
scale). In particular, the parameter space for lines is P2, for
conics, P5, for cubics, P9.

Our first example provides an archetypal use of pullbacks
to calculate degrees, which will be central to the problems
that follow.

Proposition 21 Let Σm,n be the Segre variety, defined by

the embedding σm,n : Pm × Pn → P(m+1)(n+1)−1 given by

([X0, · · · , Xm], [Y0, · · · , Yn]) 7→ [X0Y0, · · · , XiYj , · · ·XmYn]

Then

degΣm,n = deg(α+ β)m+n =

(
m+ n

n

)
where α and β are the hyperplane classes in Pm and Pn re-
spectively.

Proof: By definition, the degree of Σm,n is the number of
points in which it meets the intersection of m + n general
hypersurfaces in P(m+1)(n+1)−1; since σm,n is an embedding
we may compute this number by pulling back these hyper-
surfaces to Pm×Pn. Thus degΣm,n = deg(α+β)m+n, since
the class of a hyperplane in the codomain pulls back to α+β,
and because the intersection with Σm,n is taken for granted
in the domain since σm,n is an embedding. In CH(Pm×Pn) =

Z[α, β]/(αm+1, βn+1), (α+β)m+n =
(
m+n
n

)
αmβn since every

other term vanishes by the quotient, from which the result
follows. ■

Proposition 22 Let F0, F1, F2 ∈ k[x, y, z] be general homo-
geneous cubic polynomials. Up to scalars, 21 linear combi-
nations t0F0+ t1F1+ t2F2 factor as a product of a linear and
a quadratic polynomial.

Proof: Let Γ ⊂ P9 be the closure of the locus of cubics
consisting of a conic and a transverse line. Γ is the image of
the map

τ : P2 × P5 → P9

sending a line and a conic to their product. The coefficients
of the product are bilinear in the coefficients of the factors,
so the pullback of the hyperplane class ζ ∈ CH1(P9) is

τ∗(ζ) = α+ β

where α and β are the pullbacks (via projections) to P2×P5

of the hyperplane classes on P2 and P5 respectively. Since
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polynomials over a field factor uniquely, τ is birational onto
its image (and therefore we are not overcounting); therefore,

deg Γ = deg(τ∗(ζ)7) = deg(α+ β)7 =

(
7

2

)
= 21

The first and final equalities follow from the logic in Propo-
sition 21.

The reason that deg Γ counts what we want it to here is
that F0, F1, and F2 are points in our parameter space P9, so
t0F0 + t1F1 + t2F2 forms a copy of P2 in P9 parametrized by
[t0, t1, t2], and dimΓ = 7, so deg Γ is the number of intersec-
tions between this plane of curves and Γ by the definition of
degree.

Note that, geometrically, we are counting the number of
degenerate cubics which factor as a conic and a transverse
line. Further degeneracies (e.g a conic with a tangent line,
or three lines) are excluded from this count by assumption
of generic transversality for the pullback to exist. ■

Proposition 23 Let F0, F1, F2, F3 ∈ k[x, y, z] be general ho-
mogeneous cubic polynomials. Up to scalars, 15 linear com-

binations t0F0 + t1F1 + t2F2 + t3F3 factor as a product of
three distinct linear polynomials.

Proof: Proceeding as above, let Σ ⊂ P9 be the closure of
the locus of such cubics which factor as three lines meeting
transversely; geometrically, this is the set of “triangles,” a
very degenerate class of cubics. By Bertini’s theorem, and
the arguments made above, this is the degree of Σ.

Σ is the image of the map

µ : P2 × P2 × P2 → P9

that sends three lines to their product, e.g ([L1], [L2], [L3]) 7→
[L1L2L3]. This map is no longer birational, but generically
six-to-one, so we can calculate

deg Σ =
1

6
deg((α+ β + γ)6) =

1

6

(
6

2, 2, 2

)
= 15

where α, β, and γ are the pullbacks via projection of hyper-
plane classes in successive factors of P2. ■
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