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Overview

Lecture 1: January 14th

All our manifolds will be 4-dimensional, compact, oriented, and smooth

unless stated otherwise. There is a thermodynamic situation in the problem

of classifying manifolds: in dim ≤ 3 (the solid phase), the problem is solved,

and in dim ≥ 5 (the gaseous phase), the problem in some sense is not

solvable, but there are tools such as surgery theory which give partial results

(for instance, simply-connected closed 5-manifolds are classified). However

(for instance) the Poincaré conjecture is open in (say) dimension 126. In

dimension 4 (the phase boundary) there is no conjectural classification, and

the tools that work in higher dimensions generally fail.

How can we come up with a conjectural classification? The basic strategy

is to look for a set of “features” these manifolds have, and check whether

they completely determine the manifolds in question. The first such fea- If we allow for manifolds with bound-

ary, conjecturing a classification is
more difficult as, in addition to the fea-

tures of the manifold itself, the fea-

tures of the boundary and the features
of ι : ∂X ↪→ X are also essential to

consider, which results in complication

that we will seek for the moment to
avoid.

ture to consider is the fundamental group. If we restrict to π1 = 1, we

may ask whether this is complete; evidently, it is not, as H2 and its inter-

section form QX are not detected by π1. Per Freedman, these additional

data are sufficient for classifying simply connected closed 4-manifolds up to

homeomorphism; per Donaldson, these data are insufficient in the smooth

category via gauge/Floer theoretic invariants. These gauge and Floer the-

oretic data also cannot complete our classification per Ren-Willis1 (at least 1 Ren and Willis, Khovanov homology

and exotic 4-manifolds.for manifolds with boundary).

Returning for a moment to Donaldson’s results, which give multiple smooth

structures corresponding to some intersection forms QX ; it is then also

interesting to ask whether QX is insufficient to determine X (smoothly) for

all QX . That is, are there exotic copies of all closed, smooth 4-manifolds?

This will be one of our guiding questions in this course.

How To Construct Exotica

The procedure for building exotica is as follows:

Step I Build candidate manifolds X, X ′ (one often gets X for free)

Step II Show that X ∼=
top

X ′
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Step III Show that X ̸∼=
sm

X ′

Step 2. usually involves calculating the classical algebraic invariants of the

manifolds, step 3. usually involves calculating some non-classical gauge/Floer/lasagna-

theoretic invariants. We will primarily be focused on step 1. in this class,

though all three can be quite difficult.

The outline for the course is as follows:

Part I We will begin with constructive basics, in the setting of manifolds with

boundary. We will introduce Floer TQFTmethods and build some exotic

homotopy S2s (i.e., knot traces) and B4s.

Part II We will apply Floer TQFT methods to closed manifolds, develop the

theory of Lefschetz fibrations (these give Donaldson’s original exotic

construction of CP2#9CP2). We will consider various surgery opera-

tions such as torus surgeries and knot surgeries, and cover the relevant

TQFT gluing formulae relevant to these surgeries. We will sketch many

many examples of exotica (down to CP2#5CP2), and discuss Lefschetz

fibration geography.

Part III We will sketch the record-setting construction of an exotic CP2#3CP2

due to Akhmedov-Park,2 and the construction of small σ = 0 exotica 2 Akhmedov and Park, Exotic smooth
structures on small 4-manifolds.due to Baykur-Hamada.3
3 Baykur and Hamada, Exotic 4-
manifolds with signature zero.

Framings

An n-dimensional k-handle is Dn thought of as Dk ×Dn−k (with corners

appropriately smoothed), which we attach to some manifoldX via a smooth

embedding f : ∂Dk ×Dn−k → ∂X.

Lemma 1.2.1

X ∪f handle is well-defined up to isotopy of f .

The essential data of a handle attachment is where ∂Dk ×{0} goes (called

the attaching sphere) in ∂X. The attaching map turns out to constitute

only a mild decoration of this data, corresponding to a choice of trivializa-

tion for the tubular neighborhood of the attaching sphere.

Definition 1.2.2: Framings

For a k− 1-sphere S ↪→ Y n−1 with trivial normal bundle, a framing

is a choice of diffeomorphism (or bundle isomorphism) f : Sk−1 ×
Dn−k → ν(S).
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From a handle decomposition, by defor-
mation retracting every handle onto its

core, we obtain a CW complex homo-

topy equivalent to it; this process is in-
sensitive to framings i.e. is determined

by the data of the attaching spheres

alone.

A framed sphere is enough info to attach a handle. With the title of our

class in mind, we don’t need to be coy and work in generality; set n = 4

and k = 2, so we are interested in embeddings K : S1 ↪→ Y 3 and framings

thereof.

Lemma 1.2.3

The set of framings in this setting (up to isotopy of the framing

map) is non-canonically in bijection with Z = π1(SO(2)).

Proof : Choose any framing f and declare φ(f) = 0; for any other framing g,

consider f−1 ◦ g : S1 × D2 → S1 × D2. Using the fact that the mapping

class group Diffeo+(S1 × D2)/isotopy is isomorphic to Z and generated

by the Dehn twist element τ , set φ(g) = [f−1 ◦ g] ∈ Z. φ is our desired

bijection. ■
In general, the set of framings for an n-

dimensional k-handle are a πk−1 O(n−
k) torsor.Exercise 1.2.4

1. Show that φ above is a bijection

2. Show that f is determined by f(S1 × {1})

3. Bonus: prove that handle attachment is determined by the iso-

topy class of the attaching map

4. Bonus: exhibit the relationship between framings in this setting

and π1(SO(2))

This is not a particularly satisfactory situation (e.g., 3 is non-canonically 7

in torsor land); fortunately, we can do a little better if we assume that our

attaching circles are nullhomologous.

Definition 1.2.5: Meridians and Longitudes

For a (classical) knot K : S1 → Y 3, the meridian of K is µK :

S1 ↪→ ∂ν(K) the boundary of a disc fiber of the normal bundle. A

longitude is λK → S1 → ∂ν(K) such that [λK ] generates H1(ν(K))

(equivalently, λK intersects µK geometrically once).

Corollary 1.2.6

Framings are determined by a choice of longitude.
Lisa says that this is the only foolproof
notion of framing, and what you should

return to if/when you become confused.Definition-Proposition 1.2.7

If K is nullhomologous in Y , then there is a unique longitude λ0

in ∂ν(K) s.t. [λ0] = 0 ∈ H1(Y \ ν(K)), called the Seifert longi-

tude. Thus, for K nullhomologous, we have a canonical bijection for
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framings.

Exercise 1.2.8

Prove the above proposition. As a bonus, show that if Γ2 ↪→ Y is a

surface with ∂Γ = Y , show that λn ∩Γ in n points (where λn is the

longitude with φ(λn) = n).
Lecture 2: January 16th

Proof : We will invoke without proof a theorem of Thom:

Theorem 1.2.9: Thom

If n ≤ 4, then any class in H∗(X
n) can be represented by a submani-

fold. Moreover, if Y m ↪→ Xn withm ≤ n−1, with [Y ] = 0 ∈ Hm(X)

then Y = ∂Zm+1 ↪→ X.

To see the result from this, since [K] = 0, there exists a Seifert surface

Σ2 ↪→ Y with ∂Σ = K. A pushoff of K into Σ gives λ with [λ] = 0 ∈
H1(Y \ ν(K)).

To prove uniqueness of λ, we claim that [µK ] is infinite order in H1(Y \
ν(K)). Suppose there exists λ′ with [λ′] = 0, then [λ − λ′] = [0], and

[λ− λ′] = n[µK ] ∈ H1(Y \ ν(K)) so n = 0 and λ = λ′.

To see that [µK ] is non-torsion, note that 3-manifolds have a bilinear in-

tersection pairing H1(Y ) × H2(Y ) → Z given by counting the number of

intersections; this implies that meridians are infinite order. To see this,

note that if n[µK ] = 0 ∈ H1(Y \ ν(K)), then n[µK ] bounds a surface

Γ ↪→ Y \ ν(K), then in Y we can obtain a new surface Γ′ by gluing in

the obvious disc bounded by each of the n parallel copies of µK . In Y ,

|Γ′ ∩K| = n but [K] = 0 ∈ H1(Y ) so n = 0. ■

One can also prove this result using

Mayer-Vietoris. Lisa remarks that in

other settings, there might be a differ-
ent preferred longitude given by some
additional data (e.g. a surface the knot
lies on).

Definition-Proposition 1.2.10: Linking Pairing

For K,K ′ ⊆ Y a pair of nullhomologous knots, we may consider

K ′ ⊆ Y \ ν(K). We claim that H1(Y ) = H1(Y \ ν(K))/⟨µK⟩. Since
[K ′] = 0 ∈ H1(Y ), [K ′] = n[µK ] ∈ H1(Y \ ν(K)). Thus, we may

define the linking pairing lk(K,K ′) := n.

Exercise 1.2.11

Show that H1(Y ) = H1(Y \ ν(K))/⟨µK⟩. There are two bonus

exercises: first, give a diagrammatic definition of lk for knots in

S3 or (double bonus) arbitrary 3-manifolds; second, prove that

lk(K,K ′) = lk(K ′,K).
One can also do this with Mayer-
Vietoris or van Kampen.

Proof : Y = Y \ ν(K) ∪ (S1 × D2). We may decompose S1 × D2 as a 3-ball (A)
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with one 1-handle attached (B), so, instead, we can write

Y = (Y \ ν(K) ∪g A) ∪B

Gluing in A along g is essentially just gluing in a disc along its boundary,

and B gets glued in along its entire S2 boundary (which does not affect

H1). Gluing in a disc picks us up a relator in homology, so, H1(Y ) =

H1(Y \ ν(K))/⟨g(γ)⟩ where γ is the boundary of the disc, and g(γ) = µK

by construction. ■

By convention X denotes a 4-manifold,
Y a 3-manifold, Σ and Γ 2-manifolds.

The mnemonic for this is to count the

number of leaves of the graph defined
by each letter; X has 4 leaves, Y , 3,

etc.

Suppose X is a 2-handlebody (which, for our purposes, means that it is

built from a single 0-handle and some collection of 2-handles) described as

(Ki, fi).

Question 1.2.12

What are the λfi? Why do we care, if we have this apparently

simpler description in terms of an integer framed link diagram?

Exercise 1.2.13

Suppose X is a 2-handlebody with two 2-handles (K1, f1) and

(K2, f2). Suppose further that we do some slide of the K2 handle

over K1. What is the resulting attaching circle for the new handle

diagram? Bonus: prove that the effect on the boundary of 2-handle

attachment is λ-framed Dehn surgery.

Proof : K ′
2 is a band sum of K2 with λf1 . The point is that a handle slide is just an

isotopy, so we’re taking a bight of K2 and sliding it over some disc in the

boundary. Since λf1 is the image of ∂D2 × {1} under the attaching map

for the 2-handle, it bounds the embedded disc D2 ×{1} ↪→ ∂(X ∪ h1); this

is the disc we are sliding over. The effect of this isotopy is a band sum. ■

Note that λf1 bounds a disc in the new

boundary created by attaching h1, i.e.,
in

∂(X ∪h1) = (∂X \S1 ×D2)∪D2 ×S1

The moral of this story is that it pays
to know where the non-obvious discs

are; this will come up repeatedly in this

course.

Note that, in general, our attaching circles may not appear nullhomologous

in our handle diagram (and so our framing numbers a priori do not make

sense); the convention for 2-handlebodies is that we are considering the

framing number for Ki ⊆ S3 (i.e., ignore everything but the one knot in

question). Lecture 3: January 23rd

Recall Seifert’s algorithm, which from a diagram of a knotK in S3 produces

an orientable surface Σ ↪→ S3 with ∂Σ = K.

Definition 1.2.14: Blackboard Framing

For a knot diagram, the blackboard framing λbb is the longitude

that lies in the blackboard.

Figure 1.1: The blackboard framing
for the standard drawing of the right-

handed trefoil.
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Exercise 1.2.15

Pick any nontrivial knot, and draw both λbb and λ0 (by running

Seifert’s algorithm). Prove that λ0 = λbb − ω where ω is the writhe

of the diagram, i.e., the number of positive minus the number of

negative crossings.

Positive Crossing Negative Crossing

As a bonus, consider how integer framings change under handle

slides (the relevant players are f1, f2 and lk(K1,K2)).

The right hand rule is useful for remem-

bering the signs of crossings.

Proof : To convince yourself of the formula, it suffices to consider the various fram-

ings at a single crossing. The Seifert longitude is obtained by pushing λbb

Figure 1.2: Pushing λbb onto the
Seifert surface.

onto the Seifert surface Σ whose boundary is K; each ± crossing of the

diagram of K induces two ∓ 1
2 twists, which gives us the desired formula

after summing over all crossings. ■

Dotted Circles

A 4-dimensional 1-handle is D1 ×D3 attached along S0 ×D3 which is just

a pair of 3-balls. One way to draw a 1-handle attachment, then, is just
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to draw a pair of balls in the handle diagram. This has some downsides:

for one, this is just cumbersome when there’s multiple 1-handles since they

need to be labeled; for another, this does not automatically give us a Dehn

surgery presentation of the boundary which we had for 2-handlebodies.

Thankfully, there is a remedy.

Figure 1.3: Planar isotopy that changes
2-handle framing by 2. Since this
is a picture of a cancelling pair, this

shouldn’t be too surprising; as we

will discuss below, 1-handle attachment
does 0-framed Dehn surgery on the

boundary, so this is essentially a draw-
ing of the standard fact that the (0, 0)-
framed Hopf link is the same (as a han-

dle diagram) as the (0, 2n)-framed Hopf
link.

Remark 1.3.1

One objection to the “pair of 3-balls” notation is that 2-handle fram-

ings are not well-defined as in Figure 1.3, where the 2-handle framing

can change by ±2 via planar isotopy. In fact, this is only a men-

tal problem, and it is perfectly fine for framings to change along a

planar isotopy.

Proposition 1.3.2

If a 2-handle h2 runs over a 1-handle h1, such that the attaching

sphere of h2 geometrically intersects the belt sphere of h1 in a single

point, then h1 and h2 are a cancelling pair, i.e., X ∪ h1 ∪ h2 = X.

One mental model for this is just a thickened disc filling in a genus, but

this is too simple for our 4-dimensional needs. The point will of course be

that a dotted circle meridian to any 2-handle (with any framing) forms a

cancelling pair.

Lemma 1.3.3

Let Y 3 ↪→ ∂Z4, then Z ∪τ (Y × I) ∼=
sm

Z where Y ×{0} τ−→ ∂Z is the

embedding we already had.

Proof : Essentially, we are just attaching reverse collar neighborhoods only to

Y ⊆ ∂Z. Taking an existing collar neighborhood of Y , we can build a

diffeomorphism from Z that is the identity away from this collar and just

stretches Y × I out by a factor of 2 on the collar. ■

Lemma 1.3.4

For any manifold M ,

This is barely a lemma and does not

deserve a proof.
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Exercise 1.3.5

Prove the above proposition using the above two lemmas. As a

bonus, using your proof, give a handle diagram for the diagram in

the margin after cancelling the appropriate handles.

Figure 1.4: A tricky handle diagram.

Proof : h2 = D2 × D2 attached along a thickened S1; the point of the second

lemma above is that we should (here) think of a disc bounded by a circle

as guiding an interpolation between two paths (given by splitting the circle

into two arcs) rather than as guiding a nullhomotopy.

In our case, we want to partition our attaching circle for our 2-handle into

two arcs, one of which is visible in the handle diagram, and the other runs

over the 1-handle (see below). Then we use the non-obvious disc between

these two arcs (the core disc of the 2-handle) to guide an isotopy that places

the two arcs almost parallel, and makes the 1-handle into a bulge on the

boundary.

Figure 1.5: Guiding an isotopy using a

hidden disc.

We may then apply the first of the two above lemmas (bulges don’t matter)

to finish. ■
Another example of it paying to know
where your hidden discs are.

Thus X ∼= X ∪h1∪h2
∼= X ∪ (D3×D1); if we want to recover X ∪h1 from

this, we need to remove a thickened disc. This is the key observation that

leads to dotted circle notation for 1-handles: that 1-handle attachment is

the same as deleting a disc. Lecture 4: January 28th

To make this explicit, we consider X ∼= X∪(D3×D1) with a cancelling pair

attached, thought of as a 1-handle “lying down” as in the above picture.

In particular, thinking of D3 × D1 as a 1-parameter family (indexed by

time) of 3-balls, glued to ∂X along D2 ×D1 (the D2 ⊆ D3 being one half

of the boundary sphere), we may obtain X ∪ h2 by deleting a judiciously

chosen disc (see Figure 1.6). In this setup, the evident disc to delete Recall that a submanifold is boundary

parallel if there is an ambient isotopy
(fixing the boundary) taking the sub-

manifold to the boundary.

is D0 = D2 × {0} ⊆ D3 × [−1, 1]. Note that ∂D0 ⊆ ∂X is unknotted

(i.e., bounds a disc in ∂X) by construction, and this disc is boundary

parallel. ∂D0 in fact bounds D0, so this belabors the point a little since
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Figure 1.6: We can produce the cor-

rect dimensional “hole” (as is created
by attaching a 1-handle) by deleting an

appropriate neighborhood of D0.

D0 automatically lies in ∂X but these are precisely the criteria for a circle

in the boundary to define a unique disc, and therefore prescribe a 1-handle

attachment.

Exercise 1.3.6

We know that X ∪ h1
∼= X♮S1 × B3. Where is S1 × {•} in the

dotted circle notation (where • ∈ ∂B3)? How can we convert from

the dotted circle notation back to standard notation?
My answer to this was that S1 × {•}
is where we would attach the 2-handle

that cancels the 1-handle, so it must be
a meridian of the dotted circle. This

is a little circular, and you can come

up with the same answer by somewhat
carefully studying the above diagram.

The standard fact that the boundary

of (D2, S1) ∩ (D2, S1) ⊆ (D4, S3) in-
tersecting transversely in a single point

has boundary the Hopf link may be rel-

evant.

Proposition 1.3.7

The effect on the boundary of 1-handle attachment is 0-framed Dehn

surgery on the dotted circle (not the attaching circle, which is S0).

Bonus: prove this using QS4 = ( 0 ).

Proof : Since the effect of attaching a handle is local, we will study the effect of 1-

handle attachment on B4. ∂(B4∪h1) = ∂(B4\ν(D0)) = (S3\ν(U))∪D0×
S1 so deleting a disc evidently results in Dehn surgery, and it remains only

to determine the surgery coefficient. Observe that we know that ∂(B4 ∪
h1) = S1 × S2, so H1(B

4 ∪ h1) = Z. This will imply that the surgery

coefficient is 0.

Recall that H1(S
3) = 0 ∼= H1(S

3 \ ν(U))/⟨µ0⟩ and µ0 is infinite order; the

key point is that H1(S
3
p
q
(U)) = ⟨µ0⟩/⟨pµ0 + qλ0⟩ = Z/pZ, so we know that

p = 0. Then q = 1 since other values of q prescribe attaching S1 to disjoint

copies of circles (q = −1 is disallowed to preserve orientation). ■

For the bonus, note that we may split

S4 into two copies of B4 glued along

their common S3 boundary. In one
of these copies of B4, we may remove

D0 × D2, i.e., attach a 1-handle, and
glue this D0×D2 to the other B4. Tak-
ing the standard surface associated to

this 2-handle (core disc union Seifert

surface), this surface must have self-
intersection 0 since QS4 = ( 0 ), so

the framing of the 2-handle curve is 0.
But since ∂(B4 \ D0 × D2) = ∂(B4 ∪
D0 ×D2), the surgery coefficient for 1-

handle attachment is 0.

This also gives an argument that

no 4-manifolds (with boundary) with

nonzero intersection form can embed in
S4.

Proposition 1.3.8

We can slide 2-handles “over” (some say “under”) 1-handle dotted

circles.

Since the effect on the boundary of a dotted circle is 0-framed Dehn surgery,

sliding over a 1-handle has to be identical to sliding over a 0-framed 2-
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handle. The effect on framing under such a slide is also given by pretending

dotted circles are 0-framed 2-handles.

Remark 1.3.9

There are many proscriptions for dotted circle notation. You can

only dot unknots (a knot, even a slice knot, will not prescribe a

unique disc). You cannot slide a dotted circle over over another

dotted circle in general as the result may no longer bound a bound-

ary parallel disc (i.e. it may no longer be unknotted). Dotted circles

may not be linked (this screws up the discs).

Relative Handle Calculus

Lecture 5: January 30th

Exercise 1.4.1

Build simply connected closed 4-manifolds out of at most (say)

six handles (including the 0 and 4-handles) that are not obviously

#kS2 × S2 or mCP2#nCP2. Can you do it with b2 = 0? b2 = 4?

The point of this exercise is that constructions are quite hard, and this is a

big problem in the field. The two dual problems are that it’s hard to close

things up, and that when we can, closing tends to collapse everything back

to one of our standard examples. For intersection forms of size less than

8, we also know from number theory
that they are a direct sum of a ±1 diag-

onal matrix plus some hyperbolic forms(
0 1
1 0

)
, which would correspond topo-

logically to #kS2 × S2#mCP2#nCP2,

so this exercise was to produce small
exotica explicitly from handles.

Relative handle decompositions allow us to build interesting closed mani-

folds out of handles by eliminating the problem of closing things up. The

idea is to build two 4-manifolds X and X ′ with the same boundary and

then glue them together to get a closed 4-manifold. The tricky part is that

we have to turn X ′ “upside down” in order to have a unified handle dia-

gram for X ∪∂ X
′. An alternative way to think of these data is to consider

the handle diagram of X ′ relative to that of X.

A relative handle diagram starts from some 3-manifold Y (the common

boundary ofX andX ′ in the above setup), which we stretch to a 4-manifold

X = Y × I, which we then add more handles to. The left boundary is

∂−X = Y , and ∂+X depends on the handles we add. To describe X we

have to describe the attaching regions of handles in Y . For example, if we

have a Heegaard splitting for Y , we may draw our 2-handle attaching curves

on the pair of handlebodies. Integer framings are tricky in this setting, so

we need to provide an explicit longitude (see Figure 1.7 below). We may

also draw 1-handles as dotted circles provided they bound a disc in Y (i.e.

they cannot wrap the topology of the handlebodies).

We may also start with a Dehn surgery presentation for Y and attach 4-
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Figure 1.7: A relative handle diagram

starting from a genus 2 Heegaard split-
ting of Y . The red curve is the at-

taching curve for a 2-handle, the green

curve is its framing longitude. The dot-
ted circle is appropriately contained in

a 3-ball.

dimensional handles from there. The Dehn surgery curves are distinguished

from the handle attaching curves by bracketed framings. We can slide the

4-manifold 2-handles over the bracketed handles but not vice versa, as the

bracketed handles give us Y , and Y cannot be modified in this setting. We

may also slide the bracketed handles over each other to modify our Dehn

surgery presentation for Y .

Figure 1.8: A relative handle diagram

from a Dehn surgery presentation. Y

is on the left, before the handle attach-
ments, and X is on the right.

Figure 1.9: X, which will imminently
be upside down

Exercise 1.4.2

Let X be the 4-manifold described by the relative handle diagram in

Figure 1.9. Turn X upside down, and then draw a simpler relative

handle diagram for X. Bonus: build three other manifolds Xi with

∂Xi = ∂X.

The 1-handles upside down become 3-handles so we don’t need to draw

them (using Laudenbach-Poénaru — 3-handle attachment is unique). A

2-handle upside down becomes a 0-framed meridian to its attaching curve,

so a relative handle diagram for X upside down is the first of the following



12 Abhishek Shivkumar

Illustrations by Elise Brod

diagrams:

Figure 1.10: Two relative handle dia-

grams for X turned upside down, 3 and
4-handles not depicted.

Our original handles forX are now surgery curves for ∂X = Y = ∂Xupside down.

In order to draw a simpler diagram for X , we need the following fact: One can also derive this lemma using
the slam-dunk move from Kirby calcu-

lus.Lemma 1.4.3

This holds for 3-manifold surgery presentations (as indicated by the brack-

eted framings), not for 4-manifold handle diagrams, and follows by sliding

the red strands over the black strand and then cancelling black with green

(this makes sense if we think of our 3-manifold as the boundary of a 4-

manifold, where the black strand is a 2-handle and the green circle is a

cancelling 1-handle). We apply this lemma to the above diagram by sliding

black, then yellow over blue (so that neither links green), then cancelling

blue and yellow. The result of these slides is the second diagram in Fig-

ure 1.10 (where the yellow 2-handle has been redrawn in blue). For the bonus, one option is to swap

⟨0⟩ and 0 in our simplified diagram. I’m
not quite sure how to come up with oth-

ers.Now, if we can find X ′ and f : ∂X
∼−→ ∂X ′, we can form Z = X ∪f X ′, a

closed 4-manifold using the following lemma:

Lemma 1.4.4

Given φ : Y
∼−→ Y ′,

(Y × I) ∪A handles ∼= (Y ′ × I) ∪φ(A) handles

where A denotes the attaching regions.

This lemma just ensures that our gluing operation is actually well-defined,
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and that a diffeomorphism of the boundary is enough to glue our data

together (a possible counterfactual would be dependence on the specific

surgery presentation of the common boundary Y ). Lecture 6: February 4th

Note that ∂X as drawn in the right-hand side of Figure 1.10 is just 0-

surgery on a single knot, which turns out to be 61. This is because, for

relative handlebodies, ∂−X is the 3-manifold prescribed (here) by the Dehn

surgery curves, before any 2, 3, and 4-handles (in this case, ∂+ = ∅); see
Figure 1.11.

Figure 1.11: ∂−X is never affected by

handle attachments.

In particular, ∂X has the same boundary as the 0-trace of 61:

Definition 1.4.5: n-Trace of a Knot

Given a knot K ⊆ S3, its n-trace Xn(K) is the 4-manifold given by

attaching an n-framed 2-handle to B4 along K.

Thus, we set Z = X ∪∂ X0(61) and obtain a closed 4-manifold. Z is simply

connected since there are no 1-handles — we can combine the natural handle

decomposition for X0(61) with the above relative handle decomposition for

X to obtain an absolute handle decomposition for Z with no 1-handles.

The data of the map identifying ∂X with ∂(X0(61)) tells us (in principle)

where the relative handle attachment curves go. In this case, since we have

manipulated the relative handle diagram for X to look exactly like the

natural handle diagram for X0(61), the identification is superimposition,

and thus, the handle diagram for Z we obtain in Figure 1.12 is just the

relative handle diagram for X with ⟨0⟩ replaced by 0.

Figure 1.12: The handle diagram for Z
obtained from the relative handle dia-

gram for X (upside down).

Exercise 1.4.6

Show that Z ∼=
sm

S4. Bonus: for any f ′ : ∂X → ∂X0(61), π1(Zf ′) = 1

where Zf ′ is obtained by gluing X to X0(61) along f ′. Moreover,

for any such f ′, H∗(Zf ′) ∼= H∗(S
4) so Zf ′ is a homotopy 4-sphere.

When saying that π1 = 1 and an isomorphism on H∗ are enough to imply

homotopy equivalence, we are invoking a mildly nontrivial application of

Whitehead’s theorem; Freedman then implies that homotopy 4-spheres are

homeomorphic to S4.

Proof : Sliding black over blue in the above handle diagram produces two unlinked

0-framed unknots which are then cancelled by the 3-handles:
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Illustrations by Elise Brod

I wonder if this example has anything
to do with sliceness of 61, this almost

looks like a Kirby diagram for a ribbon

disc exterior.For the first bonus, note that the above argument still suffices; there are no

1-handles. Any gluing also produces a homology 4-sphere by counting han-

dles; the problem is that, in principle, f ′ might produce a very complicated

handle diagram for Z . However, since we know π1(Zf ′ ) = 1, we know

that H2 is free and H3 = 0, so it follows that the 2 and 3-handles must

homologically cancel, as otherwise the 3-handles would generate nontrivial

H3 (one can also see this by calculating χ(X ) = 2 + b2(X ) from the given

handle presentation and noting that there can be no torsion in H2). ■

Since homotopy 4-spheres are exciting (pending resolution of the smooth

Poincaré conjecture in dimension 4), we should be interested in finding

f ′ ∈ MCG(S3
0 (61)) different from our f above. To that end, we have the

following definition:

Definition 1.4.7: Generalized Dehn Twists

Suppose we have ι : Wn−1 ↪→ Y n and φ : S1 → Diff+(W ) based at

the identity. Then define the (ι, φ) Dehn twist of Y to be Φ : Y → Y

supported on ν(W ) ∼= W × I given by

Φ|W×I(w, t) = (φ(t)(w), t)

where t ∈ S1 = [0, 1]/(0 ∼ 1). Then Φ is a self-diffeomorphism of

Y .
I suppose the point(s) are that 1) the

mapping class group in general is hard

to understand and 2) having such a
concrete element of an automorphism

in terms of a codimension 1 subman-

ifold allows one to (hopefully) apply
some kind of gluing formula to compute

Floer invariants.

Example 1.4.8

Consider a circle in a genus 2 surface which splits it into two genus

1 surfaces, and S1 → Diff+(S1) given by θ mapping to rotation

through θ. This is an ordinary Dehn twist.
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Exercise 1.4.9

Find T 2 ↪→ S3
0(61). Use that T 2 to define a Dehn twist homeomor-

phism f ′ of S3
0(61). Bonus: give a handle diagram for Zf ′ .

Floer Homology

spinc structures
Lecture 7: February 6th

Our coverage of Floer homology will be
very high-level, and we will mostly en-

gage with the formal properties of the
invariants which are often enough to do

nontrivial computations with them. In

particular, we don’t really even need to
know what a spinc structure means, so

we won’t try to motivate them for the

umpteenth time.

An orientation is extra structure on a manifold; one may or may not exist,

and if one exists, there are several. spinc structures can be thought of

analogously, with the same properties. For 4-manifolds X, if H1(X) has no

2-torsion, then

Spinc(X) = {spinc structures on X} =

{α ∈ H2(X, ∂) : ∀β ∈ H2(X, ∂) α · β ∼= β · β (mod 2)}

i.e. spinc structures are in bijection with the set of characteristic elements

of second homology. To see that a characteristic vec-

tor/element always exists, note that 0
is characteristic in the even case. In

the odd case, pick an odd orthogonal

basis for H2 (one can always do this
by starting with any orthogonal basis

then adding any odd basis element (one
must exist) to the even basis elements)

and set α to be the sum of all basis ele-

ments. Then α·β is the sum of the coef-
ficients of β in this basis, and β ·β is the

sum of the squares of these coefficients.

Since x ≡ x2 (mod 2), α · β ≡ β · β
(mod 2).

For 3-manifolds Y , if H1(Y ) has no 2-torsion, and Y is closed,

Spinc(Y ) = {α ∈ H1(Y ) := 2β for some β ∈ H1(Y )}

A spinc manifold is then a pair (M, s) of a manifold and a spinc structure

on it.

Note that we are not interested per se in spinc 4-manifolds, it just turns

out that the invariants we want to study are invariants of spinc manifolds.

Thus, if we want to show that M ̸∼=
sm

M ′ using an invariant σ of spinc

manifolds, then we need to show that σ(M, s) ̸= σ(M ′, s′) for any s′ which

could arise as f∗(s).

Note that we are interested in 4-manifolds with boundary and closed 3-

manifolds which will arise as boundaries in our cases of interest; in partic-

ular, a spinc structure on X will induce a spinc structure on ∂X = Y via

the long exact sequence

· · · → H2(X) → H2(X,Y )
∂−→ H1(Y ) → · · ·

Exercise 1.5.1

Show that a characteristic element is sent to a 2-divisible element

by the boundary map.
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Illustrations by Elise Brod

Example 1.5.2

If X is B4 with a single 2-handle (i.e. a knot trace) then the cocore

disc D of the 2-handle gives a class [D] ∈ H2(X, ∂), hence a spinc

structure on X ([D] is a generator hence vacuously characteristic

in a rank 1 lattice); the corresponding spinc structure on H1(∂) is

given by [∂D].

Exercise 1.5.3

Show that there can be boundary spinc structures which don’t

extend over X. Show that there can be boundary spinc struc-

tures with non-unique extensions. Bonus: for Xn(K), compute

∂ : H2(X2(K), ∂) → H1(∂).

Proof : Working purely on the level of homology, for the first problem, we just

want the boundary to have more H1 than the manifold itself has H2. Set

X = S1 ×D3, where H1(Y ) = Z, and inspect the long exact sequence.

For the second problem, set X = (CP2)◦ where M◦ denotes the punctured

manifold M \ int(B4); ∂X = Y = S3, and once again, inspection of the

long exact sequence provides the result. ■

A Taxonomy of Floer H∗ Theories

There are roughly three main types of Floer homology: For the purposes of this class, symplec-

tic manifolds don’t exist.

Instanton (I∗) due to Floer

Monopole (HM) due to Kronheimer-Mrowka

Heegaard (HF ) due to Ozsváth-Szabó

Fundamentally, all these homology theories come from some kind of func-

torial association taking (Y 3, s) to an infinite dimensional Lie group G

equipped with a Morse function f : G → R, and an infinite-dimensional

analogue of Morse homology in that setting. The various Floer theories

give us chain complexes C∗ over a field F or a polynomial ring F[U ] for

some formal variable U (more than one formal variable is irrelevant to us

in this class), generically denoted R. The Floer theories also capture es-

sentially the same data as various gauge theoretic invariants: monopole

Floer homology is equivalent to Seiberg-Witten theory, instanton Floer to

Donaldson theory, and Heegaard-Floer (conjecturally) to Seiberg-Witten

theory again.

The chain complexes C∗ will be finitely generated, graded, and the chain

homotopy type of C∗ will be an invariant of (Y, s). spinc-cobordisms (W, s) :

(Y1, s1) → (Y2, s2) will induce an R-linear map F(W,s) : C∗(Y1, s1) →
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C∗(Y2, s2) (i.e, our chain complexes are TQFTs). H∗(W ) and s govern the

grading shifts in the chain complex, so the classical topology determines

the grading shift (via the Atiyah-Singer index theorem).

We can extract invariants of closed spinc 4-manifolds from Floer homologies

as cobordisms between the empty manifold. For reasons we will see, these

will always vanish when b+2 − b1 ≡ 0 (mod 2). I only know one incarnation of this par-

ity problem for invariants of smooth

structures on 4-manifolds, the version
for Seiberg-Witten invariants; there, it

arises from having our moduli space

sitting inside of K(Z, 2) = CP∞, and
we get our invariants by evaluating the

homology class of the moduli space

against [CP1]k = [CPk] which is an
even-dimensional cocyle (at least this

is how it works in the simply con-

nected case). It’s very bizarre to me
that this fact that seems very specific

to the setup of Seiberg-Witten theory
is apparently a core limitation of all

gauge/Floer-theoretic invariants of 4-

manifolds.

For what follows, we will first develop the theory for 4-manifolds with

boundary, then for closed 4-manifolds, and, finally, we will discuss some

gluing formulae.

Heegaard Floer

There are two flavors of Heegaard-Floer chain complexes of interest to us:

ĈF (over F), and CF− (over F[U ]). For our purposes, F = F2; much of

what we will discuss is also known over Z, but we leave those extensions

to the Floer theorists. The Floer chain complexes are Q-graded for torsion

spinc structures. Note that CF− ̸= ĈF⊗F F[U ].

We will write CF◦ and HF◦(Y, s) = H∗(CF
◦(Y, s)) when we are talking

about either flavor. Also note that if the spinc structure is not defined,

then HF(Y ) =
⊕

s∈Spinc(Y ) HF◦(Y, s) by convention.

Example 1.5.4

We begin with the simplest 3-manifold, S3; H1(S
3) = 1 and there-

fore there is a unique spinc structure (by convention, for integer

homology 3-spheres, the spinc structure is unique hence omitted in

the notation). ĤF(S3) = F and HF−(S3) = F[U ]; U has grade −2,

so multiplication by U lowers the grading by 2, which is drawn as a

tower, see Figure 1.13 in the margin.

Figure 1.13: The HF− tower for S3,

whose top grading is 0 and rank is 1
(this is all of the salient information but

this tower serves as a good example for
more complicated towers to come).

Example 1.5.5

Next, we consider S1×S2; H1(S
1×S2) = Z, so Spinc(S1×S2) = 2Z.

ĤF(S1 × S2, s2i) = 0 for i ̸= 0 and F ⊕ F for i = 0. HF−(S1 ×
S2, s2i) = 0 for i ̸= 0 and F[U ] ⊕ F[U ] for i = 0. The absolute

grading of the two generators for HF− are ± 1
2 , see Figure 1.14.

Example 1.5.6

Let Q be the connected sum of the right and left-handed trefoils

(i.e. the square knot), and consider S3
−1(Q) which is a homology

3-sphere and therefore has a unique spinc structure; its HF− tower

is depicted in Figure 1.15.

It turns out that ĤF(Y, s) =
⊕

i Fgi so the data of ĤF is the number of



18 Abhishek Shivkumar

Illustrations by Elise Brod

nonzero elements and their gradings. Similarly, HF−(Y, s) =
⊕

j F[U ]
⊕

k F[U ]/Unk

so HF− has infinite towers and some torsion; the torsion part is denoted

HFred. By Figure 1.15, HFred(S
3
−1(Q)) = ⟨x+ y, y + z⟩.

When b1(Y ) = 0, it turns out that there is a unique tower, whose grading is

denoted d(Y ) (the d-invariant). We say that Y is an L-space if HFred(Y, s)

is trivial for all spinc structures s.

Figure 1.14: The HF− tower for S1×S2

with two infinite towers and no torsion.

Figure 1.15: The HF− tower for
S3
−1(Q) with one infinite tower and

nontrivial torsion.
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